1
|
Zhra M, Elahi MA, Tariq A, Abu-Zaid A, Yaqinuddin A. Sirtuins and Gut Microbiota: Dynamics in Health and a Journey from Metabolic Dysfunction to Hepatocellular Carcinoma. Cells 2025; 14:466. [PMID: 40136715 PMCID: PMC11941559 DOI: 10.3390/cells14060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction leading to non-alcoholic fatty liver disease (NAFLD) exhibits distinct molecular and immune signatures that are influenced by factors like gut microbiota. The gut microbiome interacts with the liver via a bidirectional relationship with the gut-liver axis. Microbial metabolites, sirtuins, and immune responses are pivotal in different metabolic diseases. This extensive review explores the complex and multifaceted interrelationship between sirtuins and gut microbiota, highlighting their importance in health and disease, particularly metabolic dysfunction and hepatocellular carcinoma (HCC). Sirtuins (SIRTs), classified as a group of NAD+-dependent deacetylases, serve as crucial modulators of a wide spectrum of cellular functions, including metabolic pathways, the inflammatory response, and the process of senescence. Their subcellular localization and diverse functions link them to various health conditions, including NAFLD and cancer. Concurrently, the gut microbiota, comprising diverse microorganisms, significantly influences host metabolism and immune responses. Recent findings indicate that sirtuins modulate gut microbiota composition and function, while the microbiota can affect sirtuin activity. This bidirectional relationship is particularly relevant in metabolic disorders, where dysbiosis contributes to disease progression. The review highlights recent findings on the roles of specific sirtuins in maintaining gut health and their implications in metabolic dysfunction and HCC development. Understanding these interactions offers potential therapeutic avenues for managing diseases linked to metabolic dysregulation and liver pathology.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
2
|
Mansour RM, Abdel Mageed SS, Abulsoud AI, Sayed GA, Lutfy RH, Awad FA, Sadek MM, Shaker AAS, Mohammed OA, Abdel-Reheim MA, Elimam H, Doghish AS. From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH. Funct Integr Genomics 2025; 25:30. [PMID: 39888504 DOI: 10.1007/s10142-025-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH. In the current review, the latest development concerned with the activity of complex regulatory networks of miRNA in the incidence as well as the evolution of NAFLD is to be discussed, also conferring about the miRNAs' role in the onset, pathogenesis as well as diagnosis of NAFLD and NASH discussing miRNAs' role as diagnostic biomarkers and their therapeutic effects on NAFLD/NASH.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
3
|
Ren Y, Xiao K, Lu Y, Chen W, Li L, Zhao J. Deciphering the mechanism of Chaihu Shugan San in the treatment of nonalcoholic steatohepatitis using network pharmacology and molecular docking. J Pharm Pharmacol 2024; 76:1521-1533. [PMID: 39250725 DOI: 10.1093/jpp/rgae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES In China, there is a long history and rich clinical experience in treating nonalcoholic steatohepatitis (NASH) with traditional Chinese herbal medicines, including Chai Hu Shu Gan San. This study aims to investigate the potential regulatory effects of Chaihu Shugan San (CSS) on liver lipid metabolism and inflammatory damage in mice with experimental nonalcoholic steatohepatitis (NASH) induced by a choline-deficient high-fat diet (CDHFD). Utilizing network pharmacology, we systematically explore the mechanisms of action and therapeutic potential of CSS against NASH. METHODS Potential targets in CSS and targets for NASH were identified using online databases. Functional enrichment and protein-protein interaction analyses were conducted to identify hub-targeted genes and elucidate the underlying molecular mechanisms. The affinities of active compounds in CSS with hub-targeted genes were evaluated using molecular docking. Finally, hub-targeted genes were validated through real-time polymerase chain reaction, western blotting, and immunofluorescence in choline-deficient high-fat diet mice, both with and without CSS treatment. KEY FINDINGS CSS reduces serum ALT and AST levels in NASH mice(P < 0.05) and ameliorates ballooning degeneration in the livers of NASH mice, thereby lowering the NAS score(P < 0.05). Including naringenin, high-performance liquid chromatography/mass spectrometrys identified 12 chromatographic peaks. Based on network pharmacology analysis, CSS contains a total of 103 active compounds and 877 target genes. Transferase activity represents a potential mechanism for therapeutic intervention of CSS in NASH. The transcriptional levels and protein expression of the SIRT1 gene in NASH mice are significantly increased by CSS (P < 0.05). CONCLUSIONS Naringenin is probable active compound in CSS and SIRT1 is the hub gene by which CSS is involved in NASH treatment.
Collapse
Affiliation(s)
- Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kaihui Xiao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Metabolic Associated Fatty Liver Disease, Capital Medical University, Beijing 100050, China
| |
Collapse
|
4
|
BinMowyna MN, AlFaris NA, Al-Sanea EA, AlTamimi JZ, Aldayel TS. Resveratrol attenuates against high-fat-diet-promoted non-alcoholic fatty liver disease in rats mainly by targeting the miR-34a/SIRT1 axis. Arch Physiol Biochem 2024; 130:300-315. [PMID: 35254877 DOI: 10.1080/13813455.2022.2046106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
This study evaluated if miR-34a/SIRT1 signalling mediates the anti-hepatosteatotic effect of resveratrol (RSV) in high-fat-diet (HFD)-fed rats. Rats were divided into seven groups (n = 6/each) as control, control + miR-34a agomir negative control, HFD, HFD + miR-34a, HFD + RSV, HFD + RSV + Ex-527 (a SIRT1 inhibitor), and HFD + RSV + miR-34a agomir. After 8 weeks, RSV suppressed dyslipidemia, lowered fasting glucose and insulin levels, improved insulin sensitivity, and prevented hepatic lipid accumulation. These effects were associated with hepatic downregulation of SREBP1 and SREBP2, upregulation of PPARα, and acetylation of Nrf2 (activation) and NF-κβ p65 (inhibition). Also, RSV reduced the transcription of miR-34a and increased the nuclear localisation of SIRT1 in the livers, muscles, and adipose tissues of HFD-fed rats. All these effects were prevented by EX-527 and miR-34a agmir. In conclusion, RSV prevents HFD-induced insulin resistance and hepatic steatosis by suppressing miR-34a-induced activation of SIRT1.
Collapse
Affiliation(s)
- Mona N BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Nora A AlFaris
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ekram A Al-Sanea
- Department of Biology, College of Sciences, Ibb University, Ibb, Yemen
| | - Jozaa Z AlTamimi
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tahany S Aldayel
- Department of Physical Sport Science, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
7
|
Ramos-Tovar E, Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem Pharmacol 2023; 217:115861. [PMID: 37863329 DOI: 10.1016/j.bcp.2023.115861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway is mainly responsible for the activation and release of a cascade of proinflammatory mediators that contribute to the development of hepatic diseases. During alcoholic liver disease development, the NLRP3 inflammasome pathway contributes to the maturation of caspase-1, interleukin (IL)-1β, and IL-18, which induce a robust inflammatory response, leading to fibrosis by inducing profibrogenic hepatic stellate cell (HSC) activation. Substantial evidence demonstrates that nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) via NLRP3 inflammasome activation, ultimately leading to fibrosis and hepatocellular carcinoma (HCC). Activation of the NLRP3 inflammasome in NASH can be attributed to several factors, such as reactive oxygen species (ROS), gut dysbiosis, leaky gut, which allow triggers such as cardiolipin, cholesterol crystals, endoplasmic reticulum stress, and uric acid to reach the liver. Because inflammation triggers HSC activation, the NLRP3 inflammasome pathway performs a central function in fibrogenesis regardless of the etiology. Chronic hepatic activation of the NLRP3 inflammasome can ultimately lead to HCC; however, inflammation also plays a role in decreasing tumor growth. Some data indicate that NLRP3 inflammasome activation plays an important role in autoimmune hepatitis, but the evidence is scarce. Most researchers have reported that NLRP3 inflammasome activation is essential in liver injury induced by a variety of drugs and hepatotropic virus infection; however, few reports indicate that this pathway can play a beneficial role by inducing liver regeneration. Modulation of the NLRP3 inflammasome appears to be a suitable strategy to treat liver diseases.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, México.
| |
Collapse
|
8
|
Qin H, Song Z, Zhao C, Li S, Ali A, Zheng W. miR-363-3p/PTEN is involved in the regulation of lipid metabolism by genistein in HepG2 cells via ERβ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154839. [PMID: 37121060 DOI: 10.1016/j.phymed.2023.154839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Genistein (GEN) is one of the most well-known phytoestrogens identified in various legumes. Although increasing evidence shows GEN has a potential use in phytotherapy to regulate lipid metabolism, its therapeutic mechanisms have not yet been completely elucidated, especially epigenetic alterations of miRNAs to alleviate lipid accumulation in the liver remains unknown. PURPOSE To clarify how GEN modulates the miRNA profile in HepG2 cells and investigate molecular mechanisms of the modulated miRNA on regulating hepatic lipid metabolism. METHODS The miRNA microarray was performed to compare the miRNAs expression patterns, followed by determining principal miRNA and its target gene associated with hepatic lipid metabolism modulated by GEN. miR-363-3p mimics (mi) and phosphatase and tensin homolog (PTEN)-siRNA were transfected into HepG2 cells and GEN was further treated with the cells for 24 h RESULTS: GEN induced downregulation of miR-363-3p and upregulation of PTEN, which was a target mRNA of miR-363-3p. The miR-363-3p mi led to an upregulation of sterol-regulatory element-binding protein-1c (SREBP-1c) and its downstream lipid synthesis-related factors in HepG2 cells. In addition, the inhibition of PTEN led to an increase of lipogenesis, which was associated with the AKT/mTOR signal regulation. However, GEN treatment could abrogate the lipogenic effects of miR-363-3p mi or PTEN siRNA. The modulation was associated with estrogen receptor β (ERβ). CONCLUSION We discerned a new mechanism that GEN regulated hepatic lipid metabolism by inhibiting miR-363-3p, which could be mediated via ERβ and by targeting PTEN in HepG2 cells. Additionally, GEN reduced hepatic lipid accumulation by regulating PTEN-AKT/mTOR signal. It implicated a protective role of GEN by elucidating its epigenetic modification of the miRNA modulated by ERβ on improving hepatic lipid metabolism and provided novel evidence of the mechanism on targeting miR-363-3p/PTEN in treating hepatic lipid disorders.
Collapse
Affiliation(s)
- Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Ziyu Song
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Chunyu Zhao
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Sha Li
- Changsha Center for Disease Control and Prevention, 509 Wanjiali North Road, Changsha, Hunan, 410005, China
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Wenya Zheng
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.
| |
Collapse
|
9
|
Zhu Y, Tan JK, Wong SK, Goon JA. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24119168. [PMID: 37298120 DOI: 10.3390/ijms24119168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Li F, Zhao X, Xie F, Wang Z, Ding H, Wang W, Jiao R, Pan Y, Kong L. Nuciferine blocks MIB2-mediated CARD6 polyubiquitination and degradation in the amelioration of high fructose-induced liver lipid accumulation. Food Funct 2023; 14:4706-4721. [PMID: 37186242 DOI: 10.1039/d2fo03622c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Dietary alkaloid nuciferine isolated from the leaves of Nelumbo nucifera can ameliorate dyslipidemia and liver lipid accumulation, but the underlying mechanism remains unclear. Caspase recruitment domain protein family member 6 (CARD6) is suggested to play an important role in metabolic diseases. This study aimed to investigate the role and the upstream regulator of CARD6 in high fructose-induced liver lipid accumulation and whether and how the anti-lipid accumulation effect of nuciferine was related to CARD6. Herein, we found that high fructose decreased CARD6 expression and increased ASK1 and JNK1/2 phosphorylation in rat livers and hepatocytes, which were attenuated by nuciferine. Furthermore, after the transfection with HA-CARD6, CARD6 siRNA and MIB2 siRNA, the data showed that CARD6 overexpression blocked high fructose-induced upregulation of ASK1 and JNK1/2 phosphorylation as well as lipid accumulation in hepatocytes. CARD6 siRNA reversed the amelioration of nuciferine to high fructose-induced upregulation of ASK1 and JNK1/2 phosphorylation in hepatocyte lipid accumulation. Mechanistically, high fructose upregulated MIB2 expression by interacting with CARD6 and promoting K48-linked CARD6 polyubiquitination and degradation in high fructose-stimulated hepatocytes which were explored by immunoblotting, immunofluorescence, and immunoprecipitation. However, MIB2 siRNA reversed high fructose-induced downregulation of CARD6 and lipid accumulation in hepatocytes. Notably, nuciferine reduced MIB2 expression and thus decreased K48-linked CARD6 polyubiquitination and degradation in the amelioration of high fructose-induced lipid accumulation in hepatocytes. These results suggested that nuciferine exhibited a protective effect against high fructose-induced liver lipid accumulation through blocking MIB2-mediated CARD6 polyubiquitination and degradation.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Fengyu Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Hong Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Wanru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Ruiqing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
11
|
Jin M, Li X, Shen Y, Bao Y, Yang B, Wu Z, Jiao L, Zhou Q. The Benefit of Optimal Dietary Lipid Level for Black Seabream Acanthopagrus schlegelii Juveniles under Low-Salinity Environment. AQUACULTURE NUTRITION 2022; 2022:2222029. [PMID: 36860453 PMCID: PMC9973135 DOI: 10.1155/2022/2222029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 06/18/2023]
Abstract
The present study was aimed at evaluating the regulatory effects of dietary lipid levels on growth performance, osmoregulation, fatty acid composition, lipid metabolism, and physiological response in Acanthopagrus schlegelii under low salinity (5 psu). An 8-week feeding trial was conducted in juvenile A. schlegelii with an initial weight of 2.27 ± 0.05 g, and six isonitrogenous experimental diets were formulated with graded levels of lipid: 68.7 g/kg (D1), 111.7 g/kg (D2), 143.5 g/kg (D3), 188.9 g/kg (D4), 239.3 g/kg (D5), and 269.4 g/kg (D6), respectively. Results indicated that fish fed with diet containing 188.9 g/kg lipid significantly improved growth performance. Dietary D4 improved ion reabsorption and osmoregulation by increasing the concentrations of Na+, K+, and cortisol in serum and activities of Na+/K+-ATPase as well as expression levels of osmoregulation related to gene expression levels in the gill and intestine. The expression levels of long chain polyunsaturated fatty acid biosynthesis-related genes were dramatically upregulated when dietary lipid levels increased from 68.7 g/kg to 189.9 g/kg with levels of docosahexaenoic (DHA), eicosapentaenoic (EPA), and DHA/EPA ratio being highest in the D4 group. When fish fed dietary lipid levels from 68.7 g/kg to 188.9 g/kg, lipid homeostasis could be maintained by upregulating sirt1 and pparα expression levels, whereas lipid accumulation was observed in dietary lipid levels of 239.3 g/kg and over. Fish fed with high dietary lipid levels resulted in physiological stress related to oxidative stress and endoplasmic reticulum stress. In conclusion, based on weight gain, the optimal dietary lipid requirement of juvenile A. schlegelii reared at low-salinity water is 196.0 g/kg. These findings indicate that the optimal dietary lipid level can improve growth performance, n-3 LC-PUFA accumulation, and osmoregulatory ability and maintain lipid homeostasis and normal physiological functions of juvenile A. schlegelii.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xuejiao Li
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yangguang Bao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Bingqian Yang
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Zhaoxun Wu
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Hawk Tea Flavonoids as Natural Hepatoprotective Agents Alleviate Acute Liver Damage by Reshaping the Intestinal Microbiota and Modulating the Nrf2 and NF-κB Signaling Pathways. Nutrients 2022; 14:nu14173662. [PMID: 36079919 PMCID: PMC9459715 DOI: 10.3390/nu14173662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hawk tea (Litsea coreana Levl. var. lanuginosa) is a traditional herbal tea in southwestern China, and was found to possess hepatoprotective effects in our previous study. However, it is unclear whether hawk tea flavonoids (HTF) can alleviate alcoholic liver damage (ALD). Firstly, we extracted and identified the presence of 191 molecules categorized as HTFs, with reynoutrin, avicularin, guaijaverin, cynaroside, and kaempferol-7-O-glucoside being the most prevalent. After taking bioavailability into consideration and conducting comprehensive sorting, the contribution of guaijaverin was the highest (0.016 mg/mice). Then, by daily intragastric administration of HTF (100 mg/kg/day) to the ALD mice, we found that HTF alleviated liver lipid deposition (inhibition of TG, TC, LDL-C) by reducing liver oxidative-stress-mediated inflammation (up-regulation NRF2/HO-1 and down-regulation TLR4/MyD88/NF-κB pathway) and reshaping the gut microbiota (Lactobacillus, Bifidobacterium, Bacillus increased). Overall, we found HTF could be a potential protective natural compound for treating ALD via the gut–liver axis and guaijaverin might be the key substance involved.
Collapse
|
13
|
Chen S, Che S, Li S, Ruan Z. The combined impact of decabromodiphenyl ether and high fat exposure on non-alcoholic fatty liver disease in vivo and in vitro. Toxicology 2021; 464:153015. [PMID: 34757160 DOI: 10.1016/j.tox.2021.153015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a public health concern. Decabromodiphenyl ether (BDE-209) and high fat (HF) exposure cause liver injury, yet the combined impact on NAFLD development remains unclear. HepG2 cells were incubated with BDE-209 or/and HF reagent (Csodium oleate/Csodium palmitate = 2/1) for establishing the in vitro model, while C57BL/6 mice fed BDE-209 or/and HF diet (HFD) was the in vivo model. Oil Red O staining and the determination of triglyceride, malondialdehyde, and reactive oxygen species (ROS) contents proved the elevated lipid accumulation and oxidative stress by the mixture of BDE-209 and HF in HepG2 cells, consistent in C57BL/6 mice. Importantly, the action analysis showed the synergistic effect between BDE-209 and HF, suggesting that the population preferring the HFD is more susceptible to BDE-209 to aggravate the progression of NAFLD. Further, the increased protein expression of sterol regulatory element-binding protein 1, fatty acid synthase, and stearoyl-CoA desaturase 1 was considered to be responsible for hepatic steatosis. The impairment of antioxidant system was reflected by the lower hepatic superoxide dismutase and glutathione transferase activities and reduced glutathione level, explaining the detected excessive ROS production. Besides, using high content analysis, the decline of mitochondrial mass and membrane potential, which was closed to the NAFLD pathogenesis, was also demonstrated in HepG2 cells.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Shiqi Li
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
14
|
Shao Y, Wang X, Zhou Y, Jiang Y, Wu R, Lu C. Pterostilbene attenuates RIPK3-dependent hepatocyte necroptosis in alcoholic liver disease via SIRT2-mediated NFATc4 deacetylation. Toxicology 2021; 461:152923. [PMID: 34474091 DOI: 10.1016/j.tox.2021.152923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Receptor-interacting protein kinase (RIPK) 3-dependent necroptosis plays a critical role in alcoholic liver disease. RIPK3 also facilitates steatosis, oxidative stress, and inflammation. Pterostilbene (PTS) has favorable hepatoprotective activities. The present study was aimed to reveal the therapeutic effects of PTS on ethanol-induced hepatocyte necroptosis and further illustrate possible molecular mechanisms. Human hepatocytes LO2 were incubated with 100 mM ethanol for 24 h to mimic alcoholic hepatocyte injury. Results showed that PTS at 20 μM reduced damage-associated molecular patterns (DAMPs) release, including IL-1α and high-mobility group box 1 (HMGB1), and blocked necroptotic signaling, evidenced by decreased RIPK1 and RIPK3 expression. Trypan blue staining visually showed that PTS reduced nonviable hepatocytes after ethanol exposure, which was counteracted by adenovirus-mediated ectopic overexpression of RIPK3 but not RIPK1. Besides, PTS inhibited ethanol-induced hepatocyte steatosis via restricting lipogenesis and enhancing lipolysis, decreased oxidative stress via rescuing mitochondrial membrane potential, reducing oxidative system, and enhancing antioxidant system, and relieved inflammation evidenced by decreased expression of proinflammatory factors. Notably, RIPK3 overexpression diminished these protective effects of PTS. Subsequent work indicated that PTS suppressed the expression and nuclear translocation of nuclear factor of activated T-cells 4 (NFATc4), an acetylated protein, in ethanol-exposed hepatocytes, while NFATc4 overexpression impaired the negative regulation of PTS on RIPK3 and DAMPs release. Further, PTS rescued sirtuin 2 (SIRT2) expression, and SIRT2 knockdown abrogated the inhibitory effects of PTS on nuclear translocation and acetylation status of NFATc4 in ethanol-incubated hepatocytes. In conclusion, PTS attenuated RIPK3-dependent hepatocyte necroptosis after ethanol exposure via SIRT2-mediated NFATc4 deacetylation.
Collapse
Affiliation(s)
- Yunyun Shao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Ruoman Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Lin YK, Yeh CT, Kuo KT, Yadav VK, Fong IH, Kounis NG, Hu P, Hung MY. Pterostilbene Increases LDL Metabolism in HL-1 Cardiomyocytes by Modulating the PCSK9/HNF1α/SREBP2/LDLR Signaling Cascade, Upregulating Epigenetic hsa-miR-335 and hsa-miR-6825, and LDL Receptor Expression. Antioxidants (Basel) 2021; 10:antiox10081280. [PMID: 34439528 PMCID: PMC8389247 DOI: 10.3390/antiox10081280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) can promote the degradation of low-density lipoprotein (LDL) receptor (LDLR), leading to hypercholesterolemia and myocardial dysfunction. The intracellular regulatory mechanism by which the natural polyphenol pterostilbene modulates the PCSK9/LDLR signaling pathway in cardiomyocytes has not been evaluated. We conducted Western blotting, flow cytometry, immunofluorescence staining, and mean fluorescence intensity analyses of pterostilbene-treated mouse HL-1 cardiomyocytes. Pterostilbene did not alter cardiomyocyte viability. Compared to the control group, treatment with both 2.5 and 5 μM pterostilbene significantly increased the LDLR protein expression accompanied by increased uptake of LDL. The expression of the mature PCSK9 was significantly suppressed at the protein and mRNA level by the treatment with both 2.5 and 5 μM pterostilbene, respectively, compared to the control. Furthermore, 2.5 and 5 μM pterostilbene treatment resulted in a significant reduction in the protein hepatic nuclear factor 1α (HNF1α)/histone deacetylase 2 (HDAC2) ratio and sterol regulatory element-binding protein-2 (SREBP2)/HDAC2 ratio. The expression of both hypoxia-inducible factor-1 α (HIF1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) at the protein level was also suppressed. Pterostilbene as compared to short hairpin RNA against SREBP2 induced a higher protein expression of LDLR and lower nuclear accumulation of HNF1α and SREBP2. In addition, pterostilbene reduced PCSK9/SREBP2 interaction and mRNA expression by increasing the expression of hsa-miR-335 and hsa-miR-6825, which, in turn, increased LDLR mRNA expression. In cardiomyocytes, pterostilbene dose-dependently decreases and increases the protein and mRNA expression of PCSK9 and LDLR, respectively, by suppressing four transcription factors, HNF1α, SREBP2, HIF1α, and Nrf2, and enhancing the expression of hsa-miR-335 and hsa-miR-6825, which suppress PCSK9/SREBP2 interaction.
Collapse
Affiliation(s)
- Yen-Kuang Lin
- Biostatistics Research Center, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan City 33301, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Kuang-Tai Kuo
- Department of Surgery, Division of Thoracic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Surgery, Division of Thoracic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26221 Patras, Greece;
| | - Patrick Hu
- Department of Cardiology, University of California, Riverside, CA 92521, USA;
- Department of Cardiology, Riverside Medical Clinic, Riverside, CA 92506, USA
| | - Ming-Yow Hung
- Department of Internal Medicine, Division of Cardiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
- Department of Internal Medicine, Division of Cardiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: ; Tel.: +88-62-2249-0088; Fax: +88-62-8262-2010
| |
Collapse
|
16
|
Jin M, Shen Y, Pan T, Zhu T, Li X, Xu F, Betancor MB, Jiao L, Tocher DR, Zhou Q. Dietary Betaine Mitigates Hepatic Steatosis and Inflammation Induced by a High-Fat-Diet by Modulating the Sirt1/Srebp-1/Pparɑ Pathway in Juvenile Black Seabream ( Acanthopagrus schlegelii). Front Immunol 2021; 12:694720. [PMID: 34248992 PMCID: PMC8261298 DOI: 10.3389/fimmu.2021.694720] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to elucidate the mechanism of dietary betaine, as a lipid-lowering substance, on the regulation of lipid metabolism and inflammation in juvenile black seabream (Acanthopagrus schlegelii) fed a high fat diet. An 8-week feeding trial was conducted in black seabream with an initial weight of 8.39 ± 0.01g fed four isonitrogenous diets including Control, medium-fat diet (11%); HFD, high-fat diet (17%); and HFD supplemented with two levels (10 and 20 g/kg) of betaine, HFD+B1 and HFD+B2, respectively. SGR and FE in fish fed HFD+B2 were significantly higher than in fish fed HFD. Liver histology revealed that vacuolar fat droplets were smaller and fewer in bream fed HFD supplemented with betaine compared to fish fed HFD. Betaine promoted the mRNA and protein expression levels of silent information regulator 1 (Sirt1), up-regulated mRNA expression and protein content of lipid peroxisome proliferator-activated receptor alpha (pparα), and down-regulated mRNA expression and protein content of sterol regulatory element-binding protein-1(srebp-1). Furthermore, the mRNA expression levels of anti-inflammatory cytokines in liver and intestine were up-regulated, while nuclear factor kB (nf-kb) and pro-inflammatory cytokines were down-regulated by dietary betaine supplementation. Likewise, in fish that received lipopolysaccharide (LPS) to stimulate inflammatory responses, the expression levels of mRNAs of anti-inflammatory cytokines in liver, intestine and kidney were up-regulated in fish fed HFD supplemented with betaine compared with fish fed HFD, while nf-kb and pro-inflammatory cytokines were down-regulated. This is the first report to suggest that dietary betaine could be an effective feed additive to alleviate hepatic steatosis and attenuate inflammatory responses in black seabream fed a high fat diet by modulating the Sirt1/Srebp-1/Pparɑ pathway.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xuejiao Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fangmin Xu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom.,Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Zhang H, Chen Y, Li Y, Jia P, Ji S, Chen Y, Wang T. Protective effects of pterostilbene against hepatic damage, redox imbalance, mitochondrial dysfunction, and endoplasmic reticulum stress in weanling piglets. J Anim Sci 2021; 98:5919172. [PMID: 33027517 DOI: 10.1093/jas/skaa328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
This investigation evaluated the potential of natural antioxidants, pterostilbene (PT) and its parent compound resveratrol (RSV), to alleviate hepatic damage, redox imbalance, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in early-weaned piglets. A total of 144 suckling piglets were randomly assigned to four treatments (six replicates per group, n = 6): 1) sow reared, 2) early weaned and fed a basal diet, 3) early weaned and fed the basal diet supplemented with 300 mg/kg PT, or with 4) 300 mg/kg RSV. Early weaning increased plasma alanine aminotransferase (P = 0.004) and aspartate aminotransferase (P = 0.009) activities and hepatic apoptotic rate (P = 0.001) in piglets compared with the sow-reared piglets. Early weaning decreased hepatic adenosine triphosphate (ATP; P = 0.006) content and mitochondrial complexes III (P = 0.019) and IV activities (P = 0.038), but it increased superoxide anion accumulation (P = 0.026) and the expression levels of ER stress markers, such as glucose-regulated protein 78 (P < 0.001), CCAAT/enhancer-binding protein-homologous protein (P = 0.001), and activating transcription factor (ATF) 4 (P = 0.006). PT was superior to RSV at mitigating liver injury and oxidative stress after early weaning, as indicated by decreases in the number of apoptotic cells (P = 0.036) and the levels of superoxide anion (P = 0.002) and 8-hydroxy-2 deoxyguanosine (P < 0.001). PT increased mitochondrial deoxyribonucleic acid content (P = 0.031) and the activities of citrate synthase (P = 0.005), complexes I (P = 0.004) and III (P = 0.011), and ATP synthase (P = 0.041), which may contribute to the mitigation of hepatic ATP deficit (P = 0.017) in the PT-treated weaned piglets. PT also prevented increases in the ER stress marker and ATF 6 expression levels and in the phosphorylation of inositol-requiring enzyme 1 alpha caused by early weaning (P < 0.05). PT increased sirtuin 1 activity (P = 0.031) in the liver of early-weaned piglets than those in the early-weaned piglets fed a basal diet. In conclusion, PT supplementation alleviates liver injury in weanling piglets probably by inhibiting mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yanan Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peilu Jia
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuli Ji
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Tu Q, Le D, Wang C, Mao G. Pterostilbene attenuates ischemic stroke by modulating miR-21-5p/PDCD4 axis in vivo and in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
19
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
20
|
Jin M, Zhu T, Tocher DR, Luo J, Shen Y, Li X, Pan T, Yuan Y, Betancor MB, Jiao L, Sun P, Zhou Q. Dietary fenofibrate attenuated high-fat-diet-induced lipid accumulation and inflammation response partly through regulation of pparα and sirt1 in juvenile black seabream (Acanthopagrus schlegelii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103691. [PMID: 32251698 DOI: 10.1016/j.dci.2020.103691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
An 8-week feeding trail was conducted in Acanthopagrus schlegelii with an initial body weight of 8.34 ± 0.01g. Three isonitrogenous diets were formulated, (1) Control: medium-fat diet (12%); (2) HFD: high-fat diet (18%); (3) HFD + FF: high-fat diet with fenofibrate (0.15%). Liver histological analysis revealed that, compared to HFD, vacuolar fat drops were smaller and fewer in fish fed fenofibrate. Expression of lipid catabolism regulator peroxisome proliferator-activated receptor alpha (pparα) was up-regulated by fenofibrate compared with HFD. In addition, fenofibrate significantly increased the expression level of silent information regulator 1 (sirt1). Meanwhile, the expression level of anti-inflammatory cytokine interleukin 10 (il-10) in intestine was up-regulated, while pro-inflammatory cytokine interleukin 1β (il-1β) in liver and intestine were down-regulated by dietary fenofibrate supplementation. Overall, the present study indicated that fenofibrate reduced fat deposition and attenuated inflammation response caused by HFD partly through a pathway involving regulation of pparα and sirt1.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xuejiao Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
21
|
The Interplay between Oxidative Stress and miRNAs in Obesity-Associated Hepatic and Vascular Complications. Antioxidants (Basel) 2020; 9:antiox9070607. [PMID: 32664383 PMCID: PMC7402144 DOI: 10.3390/antiox9070607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nowadays, the obesity pandemic is one of the most relevant health issues worldwide. This condition is tightly related to comorbidities such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs), namely atherosclerosis. Dysregulated lipid metabolism and inflammation link these three diseases, leading to a subsequent increase of oxidative stress (OS) causing severe cellular damage. On the other hand, microRNAs (miRNAs) are short, single-stranded, non-coding RNAs that act as post-transcriptional negative regulators of gene expression, thus being involved in the molecular mechanisms that promote the development of many pathologies including obesity and its comorbidities. The involvement of miRNAs in promoting or opposing OS in disease progression is becoming more evident. Some miRNAs, such as miR-200a and miR.421, seem to play important roles in OS control in NAFLD. On the other hand, miR-92a and miR-133, among others, are important in the development of atherosclerosis. Moreover, since both diseases are linked to obesity, they share common altered miRNAs, being miR-34a and miR-21 related to OS. This review summarizes the latest advances in the knowledge about the mechanisms of oxidative stress (OS) generation in obesity-associated NAFLD and atherosclerosis, as well as the role played by miRNAs in the regulation of such mechanisms.
Collapse
|