1
|
Faubel N, Blanco-Morales V, Sentandreu V, Barberá R, Garcia-Llatas G. Modulation of microbiota composition and markers of gut health after in vitro dynamic colonic fermentation of plant sterol-enriched wholemeal rye bread. Food Res Int 2025; 201:115570. [PMID: 39849717 DOI: 10.1016/j.foodres.2024.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
A human oral phase followed by a dynamic gastrointestinal digestion and colonic fermentation (simgi®) has been applied to wholemeal rye bread (WRB) and PS-enriched WRB (PS-WRB). The aim of this study was to evaluate the impact of these solid and high-fiber food matrices on the metabolism of PS, modulation of the microbiota and production of short-chain fatty acids (SCFA) and ammonium ion after a simulated chronic intake (5 days). In both breads, campesterol, campestanol, stigmasterol, β-sitosterol, sitostanol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-stigmastenol, and Δ7-avenasterol were identified, of which only β-sitosterol was metabolized to sitostenone after PS-WRB treatment. The presence of fiber in both breads exerted a prebiotic effect after fermentation by the increase in Firmicutes (Lactobacillus genus, maximum abundance of 89-99 %) and Actinobacteria (Bifidobacterium genus, maximum abundance of 30-31 %), reflected in an increase of SCFA content. The reduction of proteolytic activity confirmed by the decrease in ammonium ion contents is related to a reduction in the Proteobacteria phylum. Thus, PS-WRB could be considered as a healthy staple food choice since, besides the known hypocholesterolemic effect of PS, rye bread fiber preserves the beneficial microbiota and exerts a positive impact on markers of gut health.
Collapse
Affiliation(s)
- Nerea Faubel
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Virginia Blanco-Morales
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Vicente Sentandreu
- Statistics and Omics Data Analysis, Central Service for Experimental Research (SCSIE), University of Valencia, Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain.
| |
Collapse
|
2
|
Faubel N, Barberá R, Garcia-Llatas G. Human Oral Phase Coupled with In Vitro Dynamic Gastrointestinal Digestion for Assessment of Plant Sterol Bioaccessibility from Wholemeal Rye Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15672-15679. [PMID: 38950138 PMCID: PMC11261621 DOI: 10.1021/acs.jafc.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
A dynamic gastrointestinal digestion system (simgi) after a human oral phase was used, for the first time, to assess the bioaccessibility of plant sterols (PS) from wholemeal rye bread (74.8 ± 2.2 mg of PS/100 g d.m.) and PS-enriched wholemeal rye bread (PS-WRB) (1.6 ± 0.04 g of PS/100 g of fresh bread). The use of these solid food matrices requires a novel adaptation of the gastric phase of the system. The PS identified in the breads are campesterol, campestanol, stigmasterol, β-sitosterol, sitostanol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-stigmastenol, and Δ7-avenasterol. The bioaccessibility of the total PS, only quantifiable in PS-WRB, is 19.9%, with Δ7-avenasterol being the most bioaccessible and Δ5-avenasterol being the least (p < 0.05). As shown in this study, PS-WRB can be considered to be a good choice to include in the daily diet. Furthermore, although the use of dynamic digestion methods for evaluating bioaccessibility implies high costs and technical complexity, their application means a closer approximation to in vivo scenarios.
Collapse
Affiliation(s)
- Nerea Faubel
- Nutrition and Food Science
Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Reyes Barberá
- Nutrition and Food Science
Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science
Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
3
|
HAYASHI K, UCHIDA R, HORIBA T, KAWAGUCHI T, GOMI K, GOTO Y. Soy sauce-like seasoning enhances the growth of Agathobacter rectalis and the production of butyrate, propionate, and lactate. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:275-281. [PMID: 38966053 PMCID: PMC11220332 DOI: 10.12938/bmfh.2023-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/08/2024] [Indexed: 07/06/2024]
Abstract
The short-chain fatty acids responsible for gut homeostasis are volatile fatty acids produced by commensal bacteria in the gut as fermentation products from undigested food components. Among the short-chain fatty acids, butyrate is important for maintaining intestinal tract anaerobic conditions, promoting epithelial barrier functions, and inducing regulatory T cells that suppress inflammatory bowel disease and allergic diarrhea. However, the type of food-derived molecular components and mechanisms by which they regulate the growth and butyrate production of butyrate-producing bacteria are not clearly understood. Agathobacter rectalis is a butyrate-producing bacterium highly colonized in the gut of the Japanese population. In this study, we investigated the effects on A. rectalis of a soy sauce-like seasoning made by brewing with a low salt concentration. The soy sauce-like seasoning promoted the growth of A. rectalis 2.6-fold. An ethanol precipitate prepared from the soy sauce-like seasoning was critical for promoting the growth of A. rectalis and the production of butyrate, propionate, and lactate. Fourier transform infrared spectroscopy (FT-IR) analysis suggested that polysaccharides were active ingredients in the ethanol precipitate of the soy sauce-like seasoning. Inulin, a representative prebiotic with effects against butyrate-producing bacteria, had a limited effect on the growth of A. rectalis compared with the soy sauce-like seasoning. Our results indicate that polysaccharides in a soy sauce-like seasoning contributed to the growth of A. rectalis and enhanced production of butyrate, propionate, and lactate.
Collapse
Affiliation(s)
- Kanako HAYASHI
- Project for Host-Microbial Interactions in Symbiosis and
Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8673, Japan
- Reserch and Development Division, Kikkoman Corporation, 338
Noda, Noda-shi, Chiba 278-0037, Japan
| | - Riichiro UCHIDA
- Reserch and Development Division, Kikkoman Corporation, 338
Noda, Noda-shi, Chiba 278-0037, Japan
| | - Taro HORIBA
- Reserch and Development Division, Kikkoman Corporation, 338
Noda, Noda-shi, Chiba 278-0037, Japan
| | - Tomohiro KAWAGUCHI
- Reserch and Development Division, Kikkoman Corporation, 338
Noda, Noda-shi, Chiba 278-0037, Japan
| | - Keiko GOMI
- Reserch and Development Division, Kikkoman Corporation, 338
Noda, Noda-shi, Chiba 278-0037, Japan
| | - Yoshiyuki GOTO
- Project for Host-Microbial Interactions in Symbiosis and
Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8673, Japan
- Division of Pandemic and Post-disaster Infectious Diseases,
Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku,
Chiba-shi, Chiba 260-8673, Japan
- Division of Infectious Disease Vaccine R&D, Research
Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba
260-8673, Japan
- Chiba University Synergy Institute for Futuristic Mucosal
Vaccine Research and Development (cSIMVa), Chiba University, 1-8-1 Inohana, Chuo-ku,
Chiba-shi, Chiba 260-8673, Japan
| |
Collapse
|
4
|
Zhu SL, Gu FF, Tang YF, Liu XH, Jia MH, Valencak TG, Liu JX, Sun HZ. Dynamic fecal microenvironment properties enable predictions and understanding of peripartum blood oxidative status and nonesterified fatty acids in dairy cows. J Dairy Sci 2024; 107:573-592. [PMID: 37690725 DOI: 10.3168/jds.2022-23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
The transition period in dairy cows is a critical stage and peripartum oxidative status, negative energy balance (NEB), and inflammation are highly prevalent. Fecal microbial metabolism is closely associated with blood oxidative status and nonesterified fatty acids (NEFA) levels. Here, we investigated dynamic changes in total oxidative status markers and NEFA in blood, fecal microbiome, and metabolome of 30 dairy cows during transition (-21, -7, +7, +21 d relative to calving). Then the Bayesian network and 9 machine-learning algorithms were applied to dismantle their relationship. Our results show that the oxidative status indicator (OSI) of -21, -7, +7 d was higher than +21 d. The plasma concentration of NEFA peaked on +7 d. For fecal microenvironment, a decline in bacterial α diversity was observed at postpartum and in bacterial interactions at +7 d. Conversely, microbial metabolites involved in carbohydrate, lipid, and energy metabolism increased on +7 d. A correlation analysis revealed that 11 and 10 microbial metabolites contributed to OSI and NEFA variations, respectively (arc strength >0.5). The support vector machine (SVM) radial model showed the highest average predictive accuracy (100% and 88.9% in the test and external data sets) for OSI using 1 metabolite and 3 microbiota. The SVM radial model also showed the highest average diagnostic accuracy (100% and 91% in the test and external data sets) for NEFA with 2 metabolites and 3 microbiota. Our results reveal a relationship between variation in the fecal microenvironment and indicators of oxidative status, NEB, and inflammation, which provide a theoretical basis for the prevention and precise regulation of peripartum oxidative status and NEB.
Collapse
Affiliation(s)
- Sen-Lin Zhu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Feng-Fei Gu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yi-Fan Tang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Han Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Ming-Hui Jia
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Teresa G Valencak
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jian-Xin Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, China
| | - Hui-Zeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Liu X, Qi X, Han R, Mao T, Tian Z. Gut microbiota causally affects cholelithiasis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1253447. [PMID: 37876873 PMCID: PMC10591199 DOI: 10.3389/fcimb.2023.1253447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background The gut microbiota is closely linked to cholesterol metabolism-related diseases such as obesity and cardiovascular diseases. However, whether gut microbiota plays a causal role in cholelithiasis remains unclear. Aims This study explored the causal relationship between gut microbiota and cholelithiasis. We hypothesize that the gut microbiota influences cholelithiasis development. Methods A two-sample Mendelian randomization method was combined with STRING analysis to test this hypothesis. Summary data on gut microbiota and cholelithiasis were obtained from the MiBioGen (n=13,266) and FinnGen R8 consortia (n=334,367), respectively. Results Clostridium senegalense, Coprococcus3, and Lentisphaerae increased the risk of cholelithiasis and expressed more bile salt hydrolases. In contrast, Holdemania, Lachnospiraceae UCG010, and Ruminococcaceae NK4A214 weakly expressed bile salt hydrolases and were implied to have a protective effect against cholelithiasis by Mendelian randomization analysis. Conclusion Gut microbiota causally influences cholelithiasis and may be related to bile salt hydrolases. This work improves our understanding of cholelithiasis causality to facilitate the development of treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
8
|
Duque-Soto C, Quintriqueo-Cid A, Rueda-Robles A, Robert P, Borrás-Linares I, Lozano-Sánchez J. Evaluation of Different Advanced Approaches to Simulation of Dynamic In Vitro Digestion of Polyphenols from Different Food Matrices-A Systematic Review. Antioxidants (Basel) 2022; 12:101. [PMID: 36670962 PMCID: PMC9854833 DOI: 10.3390/antiox12010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Phenolic compounds have become interesting bioactive antioxidant compounds with implications for obesity, cancer and inflammatory gastrointestinal pathologies. As the influence of digestion and gut microbiota on antioxidant behavior is yet to be completely elucidated, and due to limitations associated to in vivo studies, dynamic in vitro gastrointestinal models have been promoted. A systematic review was conducted of different databases (PubMed, Web of Science and Scopus) following PRISMA guidelines to assess different dynamic digestion models and assay protocols used for phenolic compound research regarding bioaccesibility and interaction with colonic microbiota. Of 284 records identified, those including dynamic multicompartmental digestion models for the study of phenolic compound bioaccesibility, bioactivity and the effects of microbiota were included, with 57 studies meeting the inclusion criteria. Different conditions and experimental configurations as well as administered doses, sample treatments and microbiological assays of dynamic digestion studies on polyphenols were recorded and compared to establish their relevance for the dynamic in vitro digestion of phenolic compounds. While similarities were observed in certain experimental areas, a high variability was found in others, such as administered doses. A description of considerations on the study of the digestion of phenolic compounds is proposed to enhance comparability in research.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
| | - Alejandra Quintriqueo-Cid
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
| | - Paz Robert
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
9
|
Holmes ZC, Tang H, Liu C, Bush A, Neubert BC, Jiao Y, Covington M, Cardona DM, Kirtley MC, Chen BJ, Chao NJ, David LA, Sung AD. Prebiotic galactooligosaccharides interact with mouse gut microbiota to attenuate acute graft-versus-host disease. Blood 2022; 140:2300-2304. [PMID: 35930748 PMCID: PMC10653043 DOI: 10.1182/blood.2021015178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Previous studies suggest that gut microbiome disruption induced by chemotherapy, dietary deficiencies, and/or antibiotics are associated with increased incidence of acute graft-versus-host disease (aGVHD) following hematopoietic stem cell transplantation (HSCT). In a murine model of antibiotic-induced gut microbiome disruption, Holmes and colleagues show that oral administration of galactooligosaccharides (GOS) as a prebiotic attenuates lethal aGVHD, highlighting the crosstalk between diet and gut microbiota. Their data encourage clinical trials of GOS prebiotic diets during HSCT.
Collapse
Affiliation(s)
- Zachary C. Holmes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC
| | - Helen Tang
- Duke University School of Medicine, Durham, NC
| | - Congxiao Liu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC
| | - Amy Bush
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC
| | - Benjamin C. Neubert
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC
| | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC
| | - Megan Covington
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC
| | | | - Michelle C. Kirtley
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC
| | - Benny J. Chen
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Lawrence A. David
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC
- Duke University School of Medicine, Durham, NC
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC
- Center for Genomic and Computational Biology, Duke University, Durham, NC
- Duke Microbiome Center, Duke University, Durham, NC
| | - Anthony D. Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, NC
- Duke Cancer Institute, Durham, NC
- Duke Microbiome Center, Duke University, Durham, NC
| |
Collapse
|
10
|
Manoppo JIC, Nurkolis F, Gunawan WB, Limen GA, Rompies R, Heroanto JP, Natanael H, Phan S, Tanjaya K. Functional sterol improves breast milk quality by modulating the gut microbiota: A proposed opinion for breastfeeding mothers. Front Nutr 2022; 9:1018153. [PMID: 36424924 PMCID: PMC9678907 DOI: 10.3389/fnut.2022.1018153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 09/30/2023] Open
Affiliation(s)
- Jeanette Irene Christiene Manoppo
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga Yogyakarta), Yogyakarta, Indonesia
| | - William Ben Gunawan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Gilbert Ansell Limen
- Medical Programme, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Ronald Rompies
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Joko Purnomo Heroanto
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Hans Natanael
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Sardito Phan
- Department of Pediatrics, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Department of Pediatrics, Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | - Krisanto Tanjaya
- Medical Programme, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
11
|
Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces. Metabolites 2022; 12:metabo12080723. [PMID: 36005595 PMCID: PMC9416035 DOI: 10.3390/metabo12080723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Quantitative analysis of bile acids in human feces can potentially help to better understand the influence of the gut microbiome and diet on human health. Feces is a highly heterogeneous sample matrix, mainly consisting of water and indigestible solid material (as plant fibers) that show high inter-individual variability. To compare bile acid concentrations among different individuals, a reliable normalization approach is needed. Here, we compared the impact of three normalization approaches, namely sample wet weight, dry weight, and protein concentration, on the absolute concentrations of fecal bile acids. Bile acid concentrations were determined in 70 feces samples from healthy humans. Our data show that bile acid concentrations normalized by the three different approaches are substantially different for each individual sample. Fecal bile acid concentrations normalized by wet weight show the narrowest distribution. Therefore, our analysis will provide the basis for the selection of a suitable normalization approach for the quantitative analysis of bile acids in feces.
Collapse
|
12
|
Tsiantas K, Konteles SJ, Kritsi E, Sinanoglou VJ, Tsiaka T, Zoumpoulakis P. Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics. Int J Mol Sci 2022; 23:ijms23084070. [PMID: 35456888 PMCID: PMC9024800 DOI: 10.3390/ijms23084070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota.
Collapse
Affiliation(s)
- Konstantinos Tsiantas
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Spyridon J. Konteles
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Vassilia J. Sinanoglou
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Thalia Tsiaka
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
13
|
Blanco-Morales V, Silvestre RDLÁ, Hernández-Álvarez E, Donoso-Navarro E, Alegría A, Garcia-Llatas G. Influence of Galactooligosaccharides on the Positive Effect of Plant Sterol-Enriched Beverages on Cardiovascular Risk and Sterol Colon Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:532-542. [PMID: 35012310 PMCID: PMC9127961 DOI: 10.1021/acs.jafc.1c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In the present study, the impact of galactooligosaccharide (GOS) addition to a plant sterol (PS)-enriched beverage on the hypocholesterolemic effect and on the bioavailability and colonic metabolization of sterols was evaluated. A crossover trial was undertaken in postmenopausal women who intook a PS-enriched (2 g PS/day) or PS-GOS-enriched beverage (2 g PS/day and 4.3 g GOS/day) for 6 weeks. The presence of GOS did not modify the hypocholesterolemic effect of the PS-enriched beverage (total- and low-density lipoprotein-cholesterol reductions) or sterol bioavailability (increments of serum markers of dietary PS intake and of cholesterol synthesis). The consumption of both beverages led to an increase of sterol and metabolite excretion (with the exception of coprostanol, which decreased) and to slight changes in women's capacities for sterol conversion, regardless of the GOS presence. This study demonstrates the suitability of simultaneous enrichment with PS and GOS in milk-based fruit beverages, considering their hypocholesterolemic effect.
Collapse
Affiliation(s)
- Virginia Blanco-Morales
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| | - Ramona de los Ángeles Silvestre
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Elena Hernández-Álvarez
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Encarnación Donoso-Navarro
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Amparo Alegría
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| |
Collapse
|
14
|
Blanco-Morales V, Garcia-Llatas G, Yebra MJ, Sentandreu V, Alegría A. In vitro colonic fermentation of a plant sterol-enriched beverage in a dynamic-colonic gastrointestinal digester. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Priami C. Computational approaches to understanding nutrient metabolism and metabolic disorders. Curr Opin Biotechnol 2020; 70:7-14. [PMID: 33038781 DOI: 10.1016/j.copbio.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Computational methods are becoming more and more essential to elucidate biological systems. Many different approaches exist with pros and cons. This paper reviews the most useful technologies focusing on nutrient metabolism and metabolic disorders. Space limitation prevents from exploring the examples in details, but pointers to the relevant papers are reported.
Collapse
Affiliation(s)
- Corrado Priami
- Dipartimento di Informatica, Università di Pisa, Largo Pontecorvo, 56124 Pisa, Italy.
| |
Collapse
|