1
|
Santos CCD, da Silva AF, Castro RN, Leitão GG. Selective isolation of Artepillin C from Brazilian green propolis by countercurrent chromatography. J Chromatogr A 2025; 1752:465977. [PMID: 40288227 DOI: 10.1016/j.chroma.2025.465977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
The selective isolation by countercurrent chromatography of artepillin C, a prenylated derivative of p-coumaric acid, directly from the ethanol extract of Brazilian green propolis in a single step was developed using a two-phase system containing organic solvent and a basic aqueous solution, based on the ionization ability of carboxyl groups in a basic medium, which allows the selective extraction of compounds such as artepillin C to the aqueous phase, in the form of a salt. The solvent system hexane - 5 % aqueous Na2CO3 was first optimized with different proportions of ethyl acetate, with the hexane - ethyl acetate ratio 1:1 - 5 % aqueous Na2CO3 being selected. Fractionation of the ethanol extract of green propolis with this solvent system yielded artepillin C with a purity of 72 %. However, the high pH obtained with the Na2CO3 solution also ionized other acidic derivatives (triterpenic acids and other phenolic derivatives) and the base was replaced by 4 % NaHCO3. The composition of the organic phase was re-optimized, with a ratio of hexane - ethyl acetate (8:2) and 4 % aqueous NaHCO3 (1:1, v/v). Fractionation of the ethanol extract of green propolis with this new optimized solvent system provided artepillin C with a purity of 81 %, ensuring an excellent separation from the other compounds in the extract. The lower basicity of the bicarbonate solution was not able to ionize other acidic compounds, and the lower concentration of ethyl acetate prevented the loading of salt into the organic phase.
Collapse
Affiliation(s)
| | - Alicia Fontoura da Silva
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21.941-902, Brasil
| | - Rosane Nora Castro
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23.897-000, Brasil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21.941-902, Brasil.
| |
Collapse
|
2
|
Yamaga M, Kawabe H, Tani H, Yamaki A. Enhanced absorption of prenylated cinnamic acid derivatives from Brazilian green propolis by turmeric in humans and rats. Food Sci Nutr 2024; 12:4680-4691. [PMID: 39055207 PMCID: PMC11266932 DOI: 10.1002/fsn3.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024] Open
Abstract
Prenylated cinnamic acid derivatives are the bioactive components of Brazilian green propolis (BGP). The effect of other botanical components on the pharmacokinetic profiles of these derivatives remains relatively unexplored. In the present study, we investigated the influence of several herbal extracts (turmeric, ginkgo leaf, coffee fruit, soybean, and gotu kola) on the plasma concentrations of cinnamic acid derivatives after BGP consumption. When the herbal extracts were co-administered with BGP in the clinical study, the area under the curve (AUC) values of artepillin C and drupanin, the major BGP components in plasma, were significantly increased by 1.7- and 1.5-fold, respectively, compared to those after BGP administration alone. Among the herbal extracts administered to rats, turmeric extract increased the AUC. Furthermore, a bidirectional transport assay suggested that artepillin C and drupanin are substrates of breast cancer resistance protein (BCRP), a drug elimination transporter. These results suggest that curcumin-containing turmeric extract may increase the plasma concentrations of artepillin C and drupanin via BCRP. Our findings enabled us to estimate the food-herb and herb-herb interactions in vivo in foods and herbal medicines containing cinnamic acid derivatives and prenylated compounds.
Collapse
Affiliation(s)
- Masayuki Yamaga
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroshi Kawabe
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroko Tani
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Ayanori Yamaki
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| |
Collapse
|
3
|
Zhong F, Zhang Q, Chen K, Lan S, Yang W, Gan X. Eco-Friendly Cinnamic Acid Derivatives Containing Glycoside Scaffolds as Potential Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17752-17762. [PMID: 37943715 DOI: 10.1021/acs.jafc.3c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Natural products are a crucial source in the development of new eco-friendly antiviral agents to control plant viral diseases. In our previous studies, some ferulic acid derivatives with good antiviral activity were obtained as an immune activator. To continue the discovery of eco-friendly antiviral agents, different monosaccharides were introduced into cinnamic acid skeletons by an activity-based strategy to obtain a series of cinnamic acid derivatives containing glycoside scaffolds, and their antiviral activities against tobacco mosaic virus (TMV) and tomato spotted wilt virus (TSWV) were evaluated. Among them, compound 8d showed the greatest protective activities against TMV and TSWV, with the EC50 values of 128.5 and 236.8 μg mL-1, respectively, which were superior to those of ningnanmycin (238.5 and 315.7 μg mL-1, respectively). Moreover, compound 8d could significantly improve the defense enzyme activities of peroxidase, chitinase, and β-1,3-glucanase. Proteomic and transcriptome analyses indicated that compound 8d regulated gene transcription and protein expression levels involved in the defense response to resist virus infection. The present study revealed that compound 8d is a potential lead candidate for the development of novel, eco-friendly, and natural-product-based antiviral agents.
Collapse
Affiliation(s)
- Fangping Zhong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kejia Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Shichao Lan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Wenchao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiuhai Gan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
4
|
Ito T, Degawa T, Okumura N. Brazilian green propolis prevent Alzheimer's disease-like cognitive impairment induced by amyloid beta in mice. BMC Complement Med Ther 2023; 23:416. [PMID: 37978479 PMCID: PMC10656927 DOI: 10.1186/s12906-023-04247-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The increasing incidence of cognitive impairment has become a health problem in the aging society. Owing to its antioxidant and anti-inflammatory properties, Brazilian green propolis-derived from Baccharis dracunculifolia-is anticipated to possess anticognitive properties. However, the preventive effect of Brazilian green propolis on cognitive impairment remains unexplained. This study aimed to investigate the effect of Brazilian green propolis on cognitive impairment using a mouse model of Alzheimer's disease (AD) induced by intracerebroventricular injection of amyloid beta (Aβ)25‒35. METHODS Five-week-old male Slc:ddY mice were randomly divided into five groups (n = 8). The groups were pretreated with vehicle and propolis at a dose of 100, 300 and 900 mg/kg body weight for 8 days, then AD-like phenotypes were induced by intracerebroventricular (ICV) injection of Aβ25‒35. A sham operation group was set as the control. Memory and learning ability were measured at 7 to 8 days after ICV injection. Gene expression and histological studies were performed at the endpoint of the study. RESULTS In a passive avoidance test, the administration of Brazilian green propolis prevented the impairment of learning and memory function. Furthermore, comprehensive gene expression analysis in the hippocampus and forebrain cortex revealed that Brazilian green propolis suppressed Aβ25-35-induced inflammatory and immune responses. In particular, Brazilian green propolis prevented alterations in gene expressions of microglial and astrocytic markers such as Trem2 and Lcn2 induced by Aβ25‒35 injection, suggesting the suppression of excessive activation of glial cells in the brain. In addition, Brazilian green propolis suppressed the elevation of plasma interleukin (IL)-6 levels induced by Aβ25‒35 injection. CONCLUSIONS The results suggest that the prophylactic administration of Brazilian green propolis has a preventive effect against AD by suppressing excessive inflammation and immune response in glial cells. To our knowledge, this study is the first to demonstrate that Brazilian green propolis may inhibit the hyperactivation of microglia and astrocytes as a mechanism of action to prevent AD. Thus, it is a promising ingredient for preventing AD-type dementia.
Collapse
Affiliation(s)
- Takashi Ito
- Institute for Bee Products & Health Science, Yamada Bee Company, Inc, Okayama, Japan
| | - Tomomi Degawa
- Institute for Bee Products & Health Science, Yamada Bee Company, Inc, Okayama, Japan
| | - Nobuaki Okumura
- Institute for Bee Products & Health Science, Yamada Bee Company, Inc, Okayama, Japan.
| |
Collapse
|
5
|
Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals (Basel) 2023; 16:ph16030450. [PMID: 36986549 PMCID: PMC10059947 DOI: 10.3390/ph16030450] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, β-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.
Collapse
|
6
|
Chen J, Zhang Y, Zhong H, Zhu H, Wang H, Goh KL, Zhang J, Zheng M. Efficient and sustainable preparation of cinnamic acid flavor esters by immobilized lipase microarray. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
8
|
Preparative high‐performance liquid chromatography: Isolation of natural chemical compounds for identification and characterization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH, Abrini J. Recent Advances in the Chemical Composition and Biological Activities of Propolis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Nadia Skali Senhaji
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
10
|
Wang S, Chen J, Shi J, Wang Z, Hu D, Song B. Novel Cinnamic Acid Derivatives Containing the 1,3,4-Oxadiazole Moiety: Design, Synthesis, Antibacterial Activities, and Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11804-11815. [PMID: 34597041 DOI: 10.1021/acs.jafc.1c03087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is a lack of effective antibacterial agents against rice bacterial leaf streak and leaf blight. Cinnamic acid derivatives containing the 1,3,4-oxadiazole moiety were synthesized, and their antibacterial activities against Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo) were evaluated. Based on the three-dimensional quantitative structure-activity relationship (3D-QSAR) model, compound 31 with better antibacterial activity against Xoc was designed and synthesized, and the 50% effective concentration (EC50) value was 0.2 mg/L. The curative and protective activities of compound 31 against rice bacterial leaf streak at 100 mg/L were 39.5 and 35.4%, respectively, which were higher than those of thiodiazole copper (28.4 and 20.7%, respectively). The antibacterial activity of compound 31 against rice bacterial leaf streak is closely associated with the activity of related defensive enzymes and the increase in glutathione metabolism.
Collapse
Affiliation(s)
- Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Zhijia Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| |
Collapse
|
11
|
Ding J, Matsumiya T, Hayakari R, Shiba Y, Kawaguchi S, Seya K, Ueno K, Imaizumi T. Daily Brazilian green propolis intake elevates blood artepillin C levels in humans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4855-4861. [PMID: 33543484 DOI: 10.1002/jsfa.11132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Propolis is a natural product collected by worker bees from a variety of plant species. As a type of propolis, Brazilian green propolis contains a large amount of artepillin C. Artepillin C is a cinnamic acid derivative and has been shown to have a wide variety of biological functions, including anti-inflammatory, antiviral and antitumor activities, in both cell culture and animal models. However, how propolis is digested and absorbed remains to be elucidated. Moreover, blood artepillin C levels after propolis intake have not been shown in human studies. RESULTS A randomized, single-blind placebo-controlled study on the effect of Brazilian green propolis on serum artepillin C levels was conducted with healthy volunteers. The participants (n = 133) were randomly allocated in an approximately 2:1 ratio to two groups: propolis (n = 91) and placebo (n = 42). The participants took daily propolis or placebo, and blood tests were performed on day 0 (before propolis intake) and days 1, 3 and 7. Artepillin C was detected in serum in almost all individuals in the propolis groups. No serum artepillin C was detected in the placebo group. Serum artepillin C levels in the female group tended to be higher than those in the male group. In the female group, menstrual status was unrelated to serum artepillin C levels. CONCLUSION These results suggested that propolis intake might be more effective for females than for males. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangli Ding
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuko Shiba
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kayo Ueno
- Department of Pharmaceutical Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
12
|
Mikami N, Tani H, Kawakami R, Sugimoto A, Sakaguchi S, Ikuta T. Brazilian green propolis promotes TNFR2 expression on regulatory T cells. Food Sci Nutr 2021; 9:3200-3208. [PMID: 34136184 PMCID: PMC8194755 DOI: 10.1002/fsn3.2281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/20/2023] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are needed to suppress inflammatory diseases and maintain immune homeostasis. The suppressive function of Tregs can be used to control autoimmune or inflammatory diseases; therefore, it is well studied how Tregs can be artificially up- or downregulated in vitro and in vivo, by using antibodies, chemical compounds, foods, and natural resources. Propolis is a famous functional food that has an anti-inflammatory effect. However, the influences of propolis on Treg function have not been fully evaluated so far. Here, we demonstrated that Brazilian green propolis increases TNFR2 expression in Tregs via the IRF4/cMyc axis, and artepillin C was a major effective component of propolis on Tregs. These results indicate that propolis and artepillin C have the potential as Treg activators via TNFR2 expression and may be useful for the prevention and/or therapy of autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Norihisa Mikami
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Hiroko Tani
- Institute for Bee Products and Health ScienceYamada Bee Company, Inc.OkayamaJapan
| | - Ryoji Kawakami
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Atsushi Sugimoto
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Shimon Sakaguchi
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Tomoki Ikuta
- Institute for Bee Products and Health ScienceYamada Bee Company, Inc.OkayamaJapan
| |
Collapse
|
13
|
Yamaga M, Tani H, Nishikawa M, Fukaya K, Ikushiro SI, Murota K. Pharmacokinetics and metabolism of cinnamic acid derivatives and flavonoids after oral administration of Brazilian green propolis in humans. Food Funct 2021; 12:2520-2530. [PMID: 33688872 DOI: 10.1039/d0fo02541k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brazilian green propolis (BGP) has chemical compounds from botanical origin that are mainly cinnamic acid derivatives (artepillin C, baccharin, and drupanin) and flavonoids (kaempferide and 6-methoxykaempferide). These compounds are expected to play an important role in the pharmacological activities of BGP. However, there is little known about the pharmacokinetics and metabolism of these compounds after oral administration of BGP. The aim of this study is to investigate the pharmacokinetics and metabolism of BGP components in humans. Twelve volunteers received 3 capsules containing 360 mg of BGP ethanol extract powder. Plasma samples were collected before and up to 24 h after the intake of BGP capsules. The collected plasma samples with or without hydrolysis by the deconjugating enzyme were analyzed by LC/MS/MS. After enzymatic hydrolysis, the Cmax values of artepillin C and drupanin, which were detected mainly in plasma after ingestion of BGP capsules, were 1255 ± 517 and 2893 ± 711 nM, respectively, of which 89.3% and 88.2% were found to be the phenolic glucuronide conjugate. This is the first time that the pharmacokinetics of the BGP components of human metabolites have been reported. Our results could provide useful information for the design and interpretation of studies to investigate the mechanisms and pharmacological effects of BGP.
Collapse
Affiliation(s)
- Masayuki Yamaga
- Institute for Bee Products and Health Science, Yamada Bee Company Inc., 194 Ichiba, Kagamino-cho, Tamata-gun, Okayama 708-0393, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int J Mol Sci 2020; 21:ijms21144988. [PMID: 32679731 PMCID: PMC7404124 DOI: 10.3390/ijms21144988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Propolis is a natural resinous material produced by bees and has been used in folk medicines since ancient times. Due to it possessing a broad spectrum of biological activities, it has gained significant scientific and commercial interest over the last two decades. As a result of searching 122 publications reported up to the end of 2019, we assembled a unique compound database consisting of 578 components isolated from both honey bee propolis and stingless bee propolis, and analyzed the chemical space and chemical diversity of these compounds. The results demonstrated that both honey bee propolis and stingless bee propolis are valuable sources for pharmaceutical and nutraceutical development.
Collapse
|