1
|
Kotzé-Hörstmann LM, Bedada DT, Johnson R, Mabasa L, Sadie-Van Gijsen H. The effects of a green Rooibos ( Aspalathus linearis) extract on metabolic parameters and adipose tissue biology in rats fed different obesogenic diets. Food Funct 2022; 13:12648-12663. [PMID: 36441182 DOI: 10.1039/d2fo02440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current pharmaceutical treatments addressing obesity are plagued by high costs, low efficacy and adverse side effects. Natural extracts are popular alternatives, but evidence for their anti-obesity properties is scant. We assessed the efficacy of a green (minimally-oxidized) Rooibos (Aspalathus linearis) extract (GRT) to ameliorate the effects of obesogenic feeding in rats, by examining body weight, metabolic measures, adipose tissue cellularity and tissue-resident adipose stem cells (ASCs). Furthermore, we performed statistical correlations to explore the relationships and interactions between metabolic and adipose tissue measures. Using an in vivo/ex vivo study design, male Wistar rats were maintained for 17 weeks on one of 3 diets: CON (laboratory chow), OB1 (high-sugar, medium fat) or OB2 (high-fat, high-cholesterol) (n = 24 each). From weeks 11-17, half of the animals in each group received oral GRT supplementation (60 mg per kg body weight daily). Blood and tissue samples were collected, and ASCs from each animal were cultured. Diets OB1 and OB2 induced divergent metabolic profiles compared to CON, but metabolic measures within dietary groups were mostly unaffected by GRT supplementation. Notably, diets OB1 and OB2 uncoupled the positive association between visceral adiposity and insulin resistance, while GRT uncoupled the positive association between elevated serum cholesterol and liver damage. Obesogenic feeding and GRT supplementation induced adipocyte enlargement in vivo, but lipid accumulation in cultured ASCs did not differ between dietary groups. Larger adipocyte size in subcutaneous fat was associated with favourable glucose metabolism measures in all GRT groups. In conclusion, GRT affected the associations between systemic, adipose tissue-level and cellular measures against the background of obesogenic diet-induced metabolic dysregulation.
Collapse
Affiliation(s)
- L M Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa. .,Institute for Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa
| | - D T Bedada
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa
| | - R Johnson
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa. .,Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), PO Box 19070, Parow 7505, South Africa
| | - L Mabasa
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa. .,Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), PO Box 19070, Parow 7505, South Africa
| | - H Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
2
|
Kang BB, Chiang BH. A novel phenolic formulation for treating hepatic and peripheral insulin resistance by regulating GLUT4-mediated glucose uptake. J Tradit Complement Med 2022; 12:195-205. [PMID: 35528476 PMCID: PMC9072824 DOI: 10.1016/j.jtcme.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022] Open
|
3
|
Kagawa Y. Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection. Nutrients 2022; 14:633. [PMID: 35276992 PMCID: PMC8839931 DOI: 10.3390/nu14030633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
The U.S. and Japan are both democratic industrialized societies, but the numbers of COVID-19 cases and deaths per million people in the U.S. (including Japanese Americans) are 12.1-times and 17.4-times higher, respectively, than those in Japan. The aim of this study was to investigate the effects of diet on preventing COVID-19 infection. An analysis of dietary intake and the prevalence of obesity in the populations of both countries was performed, and their effects on COVID-19 infection were examined. Approximately 1.5-times more saturated fat and less eicosapentaenoic acid/docosahexaenoic acid are consumed in the U.S. than in Japan. Compared with food intakes in Japan (100%), those in the U.S. were as follows: beef 396%, sugar and sweeteners 235%, fish 44.3%, rice 11.5%, soybeans 0.5%, and tea 54.7%. The last four of these foods contain functional substances that prevent COVID-19. The prevalence of obesity is 7.4- and 10-times greater in the U.S. than in Japan for males and females, respectively. Mendelian randomization established a causal relationship between obesity and COVID-19 infection. Large differences in nutrient intakes and the prevalence of obesity, but not racial differences, may be partly responsible for differences in the incidence and mortality of COVID-19 between the U.S. and Japan.
Collapse
Affiliation(s)
- Yasuo Kagawa
- Department of Medical Chemistry, Kagawa Nutrition University, Saitama 350-0288, Japan
| |
Collapse
|
4
|
Tsai MS, Yang YH, Lin YS, Chang GH, Hsu CM, Yeh RA, Shu LH, Cheng YC, Liu HT, Wu YH, Wu YH, Shen RC, Wu CY. GB-2 blocking the interaction between ACE2 and wild type and mutation of spike protein of SARS-CoV-2. Biomed Pharmacother 2021; 142:112011. [PMID: 34388530 PMCID: PMC8339502 DOI: 10.1016/j.biopha.2021.112011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023] Open
Abstract
Since the start of the outbreak of coronavirus disease 2019 in Wuhan, China, there have been more than 150 million confirmed cases of the disease reported to the World Health Organization. The beta variant (B.1.351 lineage), the mutation lineages of SARS-CoV-2, had increase transmissibility and resistance to neutralizing antibodies due to multiple mutations in the spike protein. N501Y, K417N and E484K, in the receptor binding domain (RBD) region may induce a conformational change of the spike protein and subsequently increase the infectivity of the beta variant. The L452R mutation in the epsilon variant (the B.1.427/B.1.429 variants) also reduced neutralizing activity of monoclonal antibodies. In this study, we discovered that 300 μg/mL GB-2, from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, can inhibit the binding between ACE2 and wild-type (Wuhan type) RBD spike protein. GB-2 can inhibit the binding between ACE2 and RBD with K417N-E484K-N501Y mutation in a dose-dependent manner. GB-2 inhibited the binding between ACE2 and the RBD with a single mutation (K417N or N501Y or L452R) except the E484K mutation. In the compositions of GB-2, glycyrrhiza uralensis Fisch. ex DC., theaflavin and (+)-catechin cannot inhibit the binding between ACE2 and wild-type RBD spike protein. Theaflavin 3-gallate can inhibit the binding between ACE2 and wild-type RBD spike protein. Our results suggest that GB-2 could be a potential candidate for the prophylaxis of some SARS-CoV-2 variants infection in the further clinical study because of its inhibition of binding between ACE2 and RBD with K417N-E484K-N501Y mutations or L452R mutation.
Collapse
Affiliation(s)
- Ming-Shao Tsai
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Reming-Albert Yeh
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Ching Cheng
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Wu
- Department of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Heng Wu
- Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Rou-Chen Shen
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; School of Chinese medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|