1
|
Wang P, Gong M, Zhao R, Li Z, Kang H, Hou Y, Zhang W, Niu H, Zhang S. Advancements in small molecule fluorescent probes for the detection of formaldehyde in environmental and food samples: A comprehensive review. Food Chem 2025; 481:144041. [PMID: 40174380 DOI: 10.1016/j.foodchem.2025.144041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
Formaldehyde (FA), a hazardous substance with carcinogenicity and mutagenicity, necessitates sensitive and accurate detection methods for protecting public health and the environment. While numerous reviews have explored FA fluorescent probes, the current literature predominantly emphasizes biological systems, leaving a gap in addressing FA's roles in environmental monitoring and food safety. This review discusses recognition mechanisms for FA detection, including 2-aza-Cope rearrangement, methylenehydrazine reaction, formimine formation, and other mechanisms. Furthermore, this review underscores the practical applications of these probes in real-world contexts, namely their incorporation into test strips, hydrogels, and membranes for environmental monitoring and food safety. Moreover, this review highlights future directions for developing intelligent detection systems that combine fluorescent probes with data processing algorithms and artificial intelligence technologies. By synthesizing the current knowledge in this area, this review aims to stimulate future research and advancements in FA detection technology, ultimately contributing to improved environmental management and public health protection.
Collapse
Affiliation(s)
- Pengfei Wang
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Minggui Gong
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Rui Zhao
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Zhaozhou Li
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Huaibin Kang
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Ying Hou
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Wenfen Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China; Food Laboratory of Zhongyuan, Luohe 462000, PR China
| | - Huawei Niu
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471023, PR China; Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Shusheng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China; Food Laboratory of Zhongyuan, Luohe 462000, PR China
| |
Collapse
|
2
|
Chen Z, Zhong J, Zhu Z, Li C, Su Z, Li W, Chen X, Qian S. A new bioluminescent probe for detecting formaldehyde in real food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126210. [PMID: 40222227 DOI: 10.1016/j.saa.2025.126210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Formaldehyde (FA) is an important type of reactive carbonyl species (RCS). The development of a rapid and efficient method to quantify FA in food and biological samples is necessary. Herein, we have developed the first bioluminescent probe FA-Fluc with homoallyl amine to cage firefly D-luciferin (Fluc), which could react almost completely with FA via aza-Cope rearrangement in 4 h to afford a turn-on Bioluminescence (BL). The detection limit of FA-Fluc was 0.047 ppm; and could detect FA in different seafood, agricultural products, and cooking processes. FA-Fluc has a good selectivity for FA, which shows that it does not react with other RCS. In addition, the FA content detected in complex food substrates is almost the same as that detected by acetylacetone and high-performance liquid chromatography (HPLC) methods. We also found that FA-Fluc was a powerful tool for real-time and dynamic imaging of FA in live cells and animals.
Collapse
Affiliation(s)
- Ziyao Chen
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Zhong
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhangyan Zhu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chunmei Li
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhenquan Su
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Wenjun Li
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xianggui Chen
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu 610039, China.
| |
Collapse
|
3
|
Liu X, Wang K, Wei L, Wang Y, Liu C, Rong X, Yan T, Shu W, Zhu B. A highly sensitive Golgi-targeted fluorescent probe for the simultaneous detection of malondialdehyde and formaldehyde in living systems and foods. Talanta 2024; 278:126427. [PMID: 38955101 DOI: 10.1016/j.talanta.2024.126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.
Collapse
Affiliation(s)
- Xueting Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Tingyi Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
4
|
Xu X, Yang E, Chen Y. Progress in the Study of Optical Probes for the Detection of Formaldehyde. Crit Rev Anal Chem 2024; 54:1146-1172. [PMID: 35939357 DOI: 10.1080/10408347.2022.2107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Formaldehyde, one of the simplest reactive carbonyl substances, is involved in many physiological and pathological processes in living organisms. There is a large amount of data showing that abnormal elevation of formaldehyde is associated with a variety of diseases in the body, such as neurodegenerative diseases, Alzheimer's disease, cardiovascular diseases and cancer, and is also a representative carcinogen, so monitoring formaldehyde is of great importance for disease diagnosis and treatment. In this review, In this paper, we summarize and classify the last ten years of probes for the detection of formaldehyde according to different reaction mechanisms and discuss the structures and applications of the probes. Finally, we briefly describe the challenges and possible solutions in this field. We believe that more new probes provide powerful tools to study the function of formaldehyde in living systems.
Collapse
Affiliation(s)
- Xuexuan Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Erpei Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yanyan Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
5
|
S H, K S, Suntharavadivelan, M V, Prabhavathy P. FinSecure: Utilizing IoT Sensors for Formaldehyde Detection and Fish Freshness Detection for Enhancing Safety in Fish Consumption Using Machine Learning and Deep Learning. 2024 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTATION, ELECTRONICS, POWER AND TELECOMMUNICATION (ICONSCEPT) 2024:1-8. [DOI: 10.1109/iconscept61884.2024.10627800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Harish S
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - Somesh K
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - Suntharavadivelan
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - Venkatesan M
- National Institute of Technology Puducherry,Department of Computer Science and Engineering,Karaikal,India
| | - P. Prabhavathy
- Vellore Institute of Technology,Department of Computer Science and Engineering and Information Systems,Vellore,India
| |
Collapse
|
6
|
Ma XX, Geng MH, Cheng XY, Zhang TS, Li ZL, Zhao K. Excellent ratiometric two-photon fluorescent probes for hydrogen sulfide detection based on the fluorescence resonance energy transfer mechanism. Phys Chem Chem Phys 2024; 26:6008-6021. [PMID: 38293905 DOI: 10.1039/d3cp05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Fluorescence resonance energy transfer (FRET) is an important mechanism to design ratiometric fluorescent probes that are able to detect analytes quantitatively according to the ratio of two well-resolved emission signals. Two-photon (TP) fluorescent probes can realize the detection in living cells and tissues with deeper penetration depth, higher resolution, and lower photodamage in contrast to one-photon fluorescent probes. However, to date, fabricating TP-FRET ratiometric fluorescent probes possessing large two-photon absorption (TPA), high fluorescence quantum yield and perfect FRET efficiency is still challenging. Consequently, to develop excellent TP-FRET ratiometric probes and explore the relationship between their molecular structures and TP fluorescence properties, in this paper, we designed a series of H2S-detecting TP fluorescent probes employing the FRET mechanism based on an experimental probe BCD. Thereafter, we comprehensively evaluated the TP sensing performance of these probes by means of time-dependent density functional theory and quadratic response theory. Furthermore, we determined energy transfer efficiency and fluorescence quantum yield. Significantly, through regulating benzene-fused positions, we successfully improved fluorescence quantum yield and TPA cross-section simultaneously. Large spectral overlap between energy donor emission and acceptor absorption was achieved and near perfect energy transfer efficiency was acquired for all the studied probes. We revealed that these probes exhibit two well-resolved TPA bands, which are contributed by FRET donors and acceptors, respectively. Especially, both the wavelengths and the cross-sections of the two TPA bands agree well with those of energy donors and acceptors, which is the unique TPA spectral profile of FRET probes and has never been previously reported. Moreover, we proposed an excellent TP-FRET probe BCD3 and its product molecule BCD3-H2S, which exhibit large Stokes (141 nm and 88 nm) and emission shifts (5931 cm-1), as well as greatly increased TP action cross-sections (24-fold and 60-fold) in the near-infrared region with respect to BCD and BCD-H2S. Our detailed study can give an insight into the efficient design of novel TP-FRET fluorescent probes.
Collapse
Affiliation(s)
- Xue-Xue Ma
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Ming-Hui Geng
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Xia-Yu Cheng
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Tong-Shu Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Zong-Liang Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Ke Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| |
Collapse
|
7
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
8
|
Du H, Zhang H, Fan Y, Zheng Y, Yuan S, Jia TT, Li M, Hou J, Li Z, Li Y, Ma Z, Wang Y, Niu H, Ye Y. A novel fluorescent probe for the detection of formaldehyde in real food samples, animal serum samples and gaseous formaldehyde. Food Chem 2023; 411:135483. [PMID: 36708641 DOI: 10.1016/j.foodchem.2023.135483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Formaldehyde (FA) is widely used as an adhesion promoter and dyeing aid in industrial production. Ingestion of a certain amount of formaldehyde may cause corrosive burns in the mouth, throat, and digestive tract. Therefore, it is very necessary to use simple and effective detection methods to ensure human health and food safety. Herein, a novel fluorescent probe NFD based on naphthalimide for the detection of formaldehyde in food was designed and synthesized. The probe had a remarkable fluorescence response to formaldehyde at 554 nm. And it exhibited fascinating advantages of good selectivity, high sensitivity, and low detection limit. In addition, the solid sensor prepared by loading the probe on the filter paper was successfully realized the visual detection of liquid and gaseous formaldehyde. More importantly, the probe possessed excellent stability in the detection of formaldehyde in real food samples and animal serum samples.
Collapse
Affiliation(s)
- Hetuan Du
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Haoyue Zhang
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Yibo Fan
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Yekun Zheng
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Shuang Yuan
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, PR China
| | - Mengyuan Li
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jixiang Hou
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Zhaozhou Li
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China.
| | - Yanfei Li
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Yao Wang
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Huawei Niu
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China.
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
9
|
Liang ZY, Wei N, Guo XF, Wang H. A new quinoline based probe with large Stokes shift and high sensitivity for formaldehyde and its bioimaging applications. Anal Chim Acta 2023; 1239:340723. [PMID: 36628723 DOI: 10.1016/j.aca.2022.340723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
As a common reactive metabolite in living organisms, abnormal levels of formaldehyde may cause diseases such as cancer and Alzheimer's disease. Therefore, it is important to develop a sensitive and efficient method to understand the role of formaldehyde in physiology and pathology. Herein, a new fluorescent probe 4-phenyl-2-(trifluoromethyl) quinolin-7-hydrazino (QH-FA) was prepared for the detection of formaldehyde in near-total aqueous media with hydrazine as the reaction site and quinoline derivatives as the fluorophore. After reacting with formaldehyde, the hydrazine group formed methylenehydrazine and the fluorescence was significantly enhanced (223-fold) with large Stokes shift of 140 nm. Furthermore, the response of QH-FA to formaldehyde could be finished with in only 10 min with good selectivity, and can distinguish formaldehyde from other aldehydes. More remarkably, the estimated limit of detection of QH-FA is 8.1 nM, which is superior to those of previously reported formaldehyde fluorescent probes. At the end, we detected formaldehyde in cells and zebrafish using QH-FA in a near-total aqueous system and obtained fluorescence images by confocal microscopy.
Collapse
Affiliation(s)
- Zhi-Yong Liang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Na Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Feng Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Pei X, Wang T, Liu C, Liu Z. A Ratiometric Fluorescent Nanoprobe for Ultrafast Detection of Formaldehyde in Wood and Food Samples. ChemistrySelect 2023. [DOI: 10.1002/slct.202203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaojuan Pei
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Tianzhu Wang
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Chaozheng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Zhipeng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institution Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| |
Collapse
|
11
|
Zuo YN, Zhao XE, Xia Y, Liu ZA, Sun J, Zhu S, Liu H. Ratiometric fluorescence sensing of formaldehyde in food samples based on bifunctional MOF. Mikrochim Acta 2022; 190:36. [PMID: 36542183 DOI: 10.1007/s00604-022-05607-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
A new fluorescence strategy was described for ratiometric sensing of formaldehyde (FA) with bifunctional MOF, which acted as a fluorescence reporter as well as biomimetic peroxidase. With the assistance of H2O2, NH2-MIL-101 (Fe) catalyzes the oxidation of non-luminescent substrate o-phenylenediamine (OPD) to produce fluorescent product (oxOPD) with the maximum emission at 570 nm. Besides, intrinsic fluorescence of MOF (λem = 445 nm) was quenched by oxOPD through inner filter effect (IFE). However, FA and OPD reacted to generate Schiff bases, which competitively consumed OPD inhibiting the generation of oxOPD. Under the excitation wavelength of 375 nm, a ratiometric strategy was designed to detect FA with the fluorescence intensity ratio at 445 nm and 570 nm (F445/F570) as readout signal. This strategy exhibited a wide linear range (0.1-50 μM) and low detection limit of 0.03 μM. This method was confirmed for FA detection in food samples. In addition to establishing a new method to detect FA, this work will open new applications of MOF in food safety.
Collapse
Affiliation(s)
- Ya-Nan Zuo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Yinghui Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China
| | - Zhi-Ang Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.,TEM Laboratory, Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu City, 273165, Shandong, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City, 810001, Qinghai, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, 430223, China
| |
Collapse
|
12
|
Qiao Y, Lu F, Zheng X. A highly sensitive fluorescent nanoprobe for the amplified detection of formaldehyde. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4236-4244. [PMID: 36250494 DOI: 10.1039/d2ay01139e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Non-conjugated polymer nanoparticles (PNPs) have been widely reported for analytical applications; however, the development of an effective fluorescence signal-amplification scheme based on PNPs remains challenging. In this study, polyethyleneimine-based polymer nanoparticles (PEI-PNPs) were synthesized for interrogating the fluorescence signal-amplification analytical application of the PNPs. The PEI-PNPs with an aggregated PEI polymer structure were able to confine a large density of sub-fluorophores on an individual nanoparticle, enabling the realization of a signal-amplification effect. Herein, formaldehyde (FA) was utilized for enhancing the fluorescence intensity of the PEI-PNPs as a model to confirm our proof-of-concept strategy. Our results showed that a more than 9-fold signaling-enhancing ability for the sensing of FA was observed using the PEI-PNPs prepared with a higher PEI concentration. The possible mechanism for the FA amplified sensing was studied. In particular, the FA-recognition units were sub-fluorophores of PEI-PNPs, which were simultaneously formed with the preparation of the PEI-PNPs avoiding the leakage effect of dyes. We believe that the water-soluble and biocompatible PEI-PNPs are promising candidates for the detection of endogenous FA in living systems.
Collapse
Affiliation(s)
- Yali Qiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, P. R. China.
| | - Fang Lu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xingwang Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
13
|
Silver-modified nitrogen-doped graphene quantum dots as a sensor for formaldehyde in milk using headspace micro-extraction on a single-drop of aqueous nanoparticles dispersion. Anal Chim Acta 2022; 1232:340479. [DOI: 10.1016/j.aca.2022.340479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
14
|
Tasangtong B, Henry CS, Sameenoi Y. Diameter-based inkjet-printed paper devices for formaldehyde analysis in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Ding N, Li Z, Hao Y, Yang X. A new amine moiety-based near-infrared fluorescence probe for detection of formaldehyde in real food samples and mice. Food Chem 2022; 384:132426. [PMID: 35202988 DOI: 10.1016/j.foodchem.2022.132426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
Abstract
A new amine moiety-based near-infrared fluorescent probe (Probe-NH2) is developed for detection of formaldehyde in food samples and mice. Probe-NH2 is constructed and synthesized from the IR-780 via two-step reactions as a hemicyanine skeleton bearing an amino moiety. The response mechanism is based on Schiff base reaction that formaldehyde reacts with amine group to form the corresponding imines. Probe-NH2 for detection of formaldehyde exhibits excellent analytical performance, including near-infrared fluorescence emission at 708 nm, high selectivity and sensitivity, also provides a response time as low as 30 min with a detection limit of 1.87 μmolL-1. Notably, we constructed a simple, rapid and visual formaldehyde detection platform based on paper chips in the near-infrared region for the first time. The accurate detection of formaldehyde in real food samples is of great significance, Probe-NH2 was detected in dried beancurd sticks, endive sprout, frozen shrimp and squid, with good recoveries of 99.60%-112.72%, indicating the reliability of Probe-NH2 for spiked determination of formaldehyde in contaminated foods. More importantly, Probe-NH2 has been successfully applied to the detection of endogenous formaldehyde in mice.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
16
|
Patawanich P, Petdum A, Sirirak J, Chatree K, Charoenpanich A, Panchan W, Setthakarn K, Kamkaew A, Sooksimuang T, Maitarad P, Wanichacheva N. Highly selective zinc(II) triggered “Turn-ON” [5]helicene-based fluorescence sensor: its application in liver and brain cells imaging. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Huang S, Li Z, Liu M, Zhou M, Weng J, He Y, Jiang Y, Zhang H, Sun H. Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging. Chem Commun (Camb) 2022; 58:1442-1453. [PMID: 34991152 DOI: 10.1039/d1cc05644a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde (FA), a reactive carbonyl species, is classified as Group 1 carcinogen by International Agency for Research on Cancer (IARC) in 2004. In addition, clinical studies have implicated that elevated levels of FA have been associated with different kinds of diseases, such as neurodegenerative diseases, diabetes, and chronic liver and heart disorders. However, in addition to the direct inhalation of FA in the environment, most organisms can also produce FA endogenously by demethylases and oxidases during the metabolism of amino acids and xenobiotics. Since FA plays an important role in physiological and pathological processes, developing reliable and efficient methods to monitor FA levels in biological samples is crucial. Reaction-based fluorescent/chemiluminescent probes have provided robust methods for FA detection and real-time visualization in living organisms. In this highlight, we will summarize the major developments in the structure design and applications of FA probes in recent years. Three main strategies for designing FA probes have been discussed and grouped by different reaction mechanisms. In addition, some miscellaneous reaction mechanisms have also been discussed. We also highlight novel applications of these probes in biological systems, which offer powerful tools to discover the diverse functions of FA in physiology and pathology processes.
Collapse
Affiliation(s)
- Shumei Huang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Zejun Li
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Minghui Liu
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jintao Weng
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yong He
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yin Jiang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Hongyan Sun
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.,Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Wang T, Wang H, Xia P, Xue S, Yang G, Li H, Li Z, Jiang X, Xing X. PVA-SM microstructure enhanced ratiometric fluorescence probe for formaldehyde detection in solution and gas. OPTICS LETTERS 2021; 46:5759-5762. [PMID: 34780455 DOI: 10.1364/ol.441296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde (FA) is one of the most common pollutants, which has tremendous harm to humans and environment. In this work, 4-amino-3-pentene-2-one (Fluoral-p) and SiO2 coated quantum dot (QD@SiO2) were combined to implement a new ratiometric fluorescence probe QD@SiO2-Fluoral-p for FA detection. In addition, by utilization of polyvinyl alcohol (PVA) and SiO2 microsphere (SM), a kind of PVA-SM microstructure was assembled with QD@SiO2-Fluoral-p to composite a signal enhanced sensing film. The QD@SiO2-Fluoral-p exhibited good response to 0-400 mg/L FA solution and an enhancement around 15 folds was realized after introducing PVA-SM. In both situations, the probe showed linear relationship to FA concentration (CFA), with detection limits of 14 and 0.5 mg/L, respectively. Also, the sensing film showed a good linear response to FA gas in the range of 0 to 2 ppm, with a detection limit 0.03 ppm. As a result, the PVA-SM enhanced ratiometric fluorescence probe features high sensitivity, low detection limit, good selectivity, as well as portable, which can serve as a useful tool for investigating FA in solution and gas at room temperature.
Collapse
|
19
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Du Y, Zhang Y, Huang M, Wang S, Wang J, Liao K, Wu X, Zhou Q, Zhang X, Wu YD, Peng T. Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo. Chem Sci 2021; 12:13857-13869. [PMID: 34760171 PMCID: PMC8549814 DOI: 10.1039/d1sc04387k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence has highlighted the endogenous production of formaldehyde (FA) in a variety of fundamental biological processes and its involvement in many disease conditions ranging from cancer to neurodegeneration. To examine the physiological and pathological relevance and functions of FA, fluorescent probes for FA imaging in live biological samples are of great significance. Herein we report a systematic investigation of 2-aza-Cope reactions between homoallylamines and FA for identification of a highly efficient 2-aza-Cope reaction moiety and development of fluorescent probes for imaging FA in living systems. By screening a set of N-substituted homoallylamines and comparing them to previously reported homoallylamine structures for reaction with FA, we found that N-p-methoxybenzyl homoallylamine exhibited an optimal 2-aza-Cope reactivity to FA. Theoretical calculations were then performed to demonstrate that the N-substituent on homoallylamine greatly affects the condensation with FA, which is more likely the rate-determining step. Moreover, the newly identified optimal N-p-methoxybenzyl homoallylamine moiety with a self-immolative β-elimination linker was generally utilized to construct a series of fluorescent probes with varying excitation/emission wavelengths for sensitive and selective detection of FA in aqueous solutions and live cells. Among these probes, the near-infrared probe FFP706 has been well demonstrated to enable direct fluorescence visualization of steady-state endogenous FA in live mouse brain tissues and elevated FA levels in a mouse model of breast cancer. This study provides the optimal aza-Cope reaction moiety for FA probe development and new chemical tools for fluorescence imaging and biological investigation of FA in living systems.
Collapse
Affiliation(s)
- Yimeng Du
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Meirong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Kongke Liao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
21
|
Jana A, Baruah M, Munan S, Samanta A. ICT based water-soluble fluorescent probe for discriminating mono and dicarbonyl species and analysis in foods. Chem Commun (Camb) 2021; 57:6380-6383. [PMID: 34081065 DOI: 10.1039/d1cc02600c] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique and highly water-soluble ICT-based fluorescent probe is developed for efficient detection and discrimination of reactive monocarbonyl formaldehyde (FA) from dicarbonyl methylglyoxal (MGO)/glyoxal (GO) by modulating the ICT process, which was confirmed by photophysical and TD-DFT analysis. The probe is applied in cellular imaging and quantifying FA in preserved food and MGO in manuka honey.
Collapse
Affiliation(s)
- Anal Jana
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| | - Mousumi Baruah
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| | - Subrata Munan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
22
|
Hu Y, Fan YC, Jiang XH, Zhou LM, Cheng ZJ. A ratiometric fluorescent sensing of proanthocyanidins by MnO 2 nanosheets simultaneously tuning the photoluminescence of Au/AgNCs and thiamine. Talanta 2021; 234:122607. [PMID: 34364420 DOI: 10.1016/j.talanta.2021.122607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
By simultaneously regulating the photoluminescence of alloy Au/Ag nanoclusters (NCs) and thiamine (VB1) through MnO2 nanosheets (MnO2 NS), a novel ratiometric fluorescent probe (RF-probe) was established for sensitively and selectively monitoring proanthocyanidins (PAs). The introduction of Ag (I) ions could enhance significantly the quantum yields (QYs, 11.1%) of AuNCs based on the synthetic method of UVI (UV irradiation) combined with MWH (microwave heating). MnO2 NS could quench the fluorescence (FL) of Au/AgNCs mainly coming from Förster resonance energy transfer (FRET), while it could act as a nanozyme catalyst for directly catalyzing the oxidation of VB1 to produce highly fluorescent oxVB1. In the presence of PAs, MnO2 was reduced to Mn2+, which caused that its quenching capacity and oxidase-like activity were vanished, thus the FL of oxVB1 and Au/AgNCs was reduced and recovered. The concentration of PAs could be monitored by the RF-probe with a linear range of 0.27-22.4 μmol L-1 and corresponding limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 75.9 and 250.5 nmol L-1. Furthermore, the RF-probe was successfully used for the determination of PAs in mineral water, PAs additive and PAs capsule with satisfactory results compared to the standard HPLC method.
Collapse
Affiliation(s)
- Yue Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Yu-Cong Fan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Xiao-Hui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Li-Mei Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Zheng-Jun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong, 637002, China.
| |
Collapse
|
23
|
|
24
|
Wan D, Pan T, Ou P, Zhou R, Ouyang Z, Luo L, Xiao Z, Peng Y. Construct a lysosome-targeting and highly selective fluorescent probe for imaging of hydrogen sulfide in living cells and inflamed tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119311. [PMID: 33333413 DOI: 10.1016/j.saa.2020.119311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Since the fluctuation of cellular hydrogen sulfide (H2S) is a very important third endogenously generated gaseous signaling molecule and plays a key role in the development of numerous human disorders, the real-time fluorescence detection of H2S in living systems has attracted plenty of interest during past decade. Although a lot of H2S fluorescent probes have been reported, the relationship between the physiology and pathology of H2S in organelles remains unclear, especially for inflammatory tissue. In this work, by adopting a weakly basic morpholine group as the lysosome-targeting site, a naphthalimide derivative as the signal reporter group and a 4-dinitrobenzene-ether (DNB) as fluorescence signal quencher and H2S-selective recognition moiety, we reported a new lysosome-targeting TP fluorescent probe LyNP-H2S for H2S detection and imaging in living cells and inflamed tissues. The probe LyNP-H2S exhibits very low fluorescence signal in the absence of H2S, and displays a significant 262-fold fluorescence intensity enhancement in the presence of H2S at 540 nm. Moreover, LyNP-H2S has the capability of quantitative detection of H2S at concentrations ranging from 0 to 12.0 μM (limit of detection = 9.8 nM), rapid response, as well as high sensitivity and selectivity toward H2S. Impressively, the results of living cell and inflamed tissues imaging test demonstrate that LyNP-H2S has the potentiality of being an ideal probe for real-time H2S detection in biosystems.
Collapse
Affiliation(s)
- Dan Wan
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine & Hunan University of Traditional Chinese Medicine, Changsha 410208, PR China
| | - Tao Pan
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine & Hunan University of Traditional Chinese Medicine, Changsha 410208, PR China; Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Pinghua Ou
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China.
| | - Rongrong Zhou
- The First Affiliated Hospital/School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Ziting Ouyang
- Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Lan Luo
- Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Zuoqi Xiao
- Hunan Provincial Maternal and Child Health Care Hospital, Hunan Province, Changsha 410008, China
| | - Yongbo Peng
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine & Hunan University of Traditional Chinese Medicine, Changsha 410208, PR China; The First Affiliated Hospital/School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
25
|
Manna SK, Achar TK, Mondal S. Recent advances in selective formaldehyde detection in biological and environmental samples by fluorometric and colorimetric chemodosimeters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1084-1105. [PMID: 33595559 DOI: 10.1039/d0ay02252g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formaldehyde, a highly reactive carbonyl species, has been widely used in day-to-day life owing to its numerous applications in essential commodities, etc.; the extrusion of formaldehyde from these sources basically leads to increased formaldehyde levels in the environment. Additionally, formaldehyde is endogenously produced in the human body via several biological processes. Considering the adverse effects of formaldehyde, it is highly important to develop an efficient and reliable method for monitoring formaldehyde in environmental and biological samples. Several chemodosimeters (reaction-based sensing probes) have been designed and synthesized to selectively detect the presence of formaldehyde utilizing the photophysical properties of molecules. In this review, we have comprehensively discussed the recent advances in the design principles and sensing mechanisms of developed probes and their biological/environmental applications in selective formaldehyde detection and imaging endogenous formaldehyde in cells. We have summarized the literature based on three different categories: (i) the Schiff base reaction, (ii) the 2-aza-Cope sigmatropic rearrangement reaction and (iii) miscellaneous approaches. In all cases, reactions are accompanied by changes in color and/or emission that can be detected by the naked eye.
Collapse
Affiliation(s)
- Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal-721657, India.
| | - Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchita Mondal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
26
|
Yin A, Sun H, Chen H, Liu Z, Tang Q, Yuan Y, Tu Z, Zhuang Z, Chen T. Measuring calibration factors by imaging a dish of cells expressing different tandem constructs plasmids. Cytometry A 2021; 99:632-640. [PMID: 33491868 DOI: 10.1002/cyto.a.24316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Three-cube Förster resonance energy transfer (FRET) method is the most extensively applied approach for live-cell FRET quantification. Reliable measurements of calibration factors are crucial for quantitative FRET measurement. We here proposed a modified TA-G method (termed as mTA-G) to simultaneously obtain the FRET-sensitized quenching transition factor (G) and extinction coefficients ratio (γ) between donor and acceptor. mTA-G method includes four steps: (1) predetermining the ratio ranges of the sensitized emission of acceptor (FC ) to the donor excitation and donor channel image (IDD [(DA])) for all FRET plasmids; (2) culturing the cells which express every FRET plasmid in one dish respectively; (3) distinguishing and marking the cells expressing different FRET plasmids by detecting their FC /IDD (DA) values; (4) linearly fitting FC /IAA (DA) (acceptor excitation and acceptor channel image) to IDD (DA)/IAA (DA) for different kinds of cells. We implemented mTA-G method by imaging tandem constructs cells with different FRET efficiency cultured in one dish on different days, and obtained consistent G and γ values. mTA-G method not only circumvents switchover of different culture dishes but also keep the constant imaging conditions, exhibiting excellent robustness, and thus will expands the biological applications of quantitative FRET analysis in living cells.
Collapse
Affiliation(s)
- Ao Yin
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Han Sun
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhi Liu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qiling Tang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ye Yuan
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhuang Tu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengfei Zhuang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
27
|
Lu Y, Dong B, Song W, Sun Y, Mehmood AH, Lin W. A mitochondria-targeting ratiometric fluorescent probe for the detection of sulfur dioxide in living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj02461a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mitochondria-targeting ratiometric fluorescent probe was developed for the detection of sulfur dioxide in living cells.
Collapse
Affiliation(s)
- Yaru Lu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Wenhui Song
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yaru Sun
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Abdul Hadi Mehmood
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|