1
|
Liu Y, Liao J, Tang S, Zhou C, Tan Z, Salem AZM. Physicochemical profiles of mixed ruminal microbes in response to surface tension and specific surface area. Front Vet Sci 2025; 11:1514952. [PMID: 39834927 PMCID: PMC11743942 DOI: 10.3389/fvets.2024.1514952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction In ruminants, a symbiotic rumen microbiota is responsible for supporting the digestion of dietary fiber and contributes to health traits closely associated with meat and milk quality. A holistic view of the physicochemical profiles of mixed rumen microbiota (MRM) is not well-illustrated. Methods The experiment was performed with a 3 × 4 factorial arrangement of the specific surface area (SSA: 3.37, 3.73, and 4.44 m2/g) of NDF extracted from rice straw and the surface tension (ST: 54, 46, 43, and 36 dyn/cm) of a fermented medium in a fermentation time series of 6, 12, 24, 48 h with three experimental units. Here, we used three rumen-fistulated adult Liuyang black goats as the rumen liquid donors for this experiment. Results It was found that increasing SSA decreased the average acetate/propionate ratio (A/P, p < 0.05) and increased the molarity of propionate (p < 0.05). Increasing ST decreased total volatile fatty acid (tVFA) concentration (p < 0.01). Greater SSA increased (p < 0.01) MRM hydrophobicity, whereas increasing ST increased MRM cell membrane permeability (p < 0.01). The neutral detergent fiber digestibility (NDFD, r = 0.937) and tVFA (r = 0.809) were positively correlated with the membrane permeability of MRM. Discussion The surface tension of the artificial medium and substrate-specific surface area had a significant influence on MRM's fermentation profiles, hydrophobicity, and permeability. The results suggest that physical environmental properties are key in regulating rumen fermentation function and homeostasis in the gastrointestinal tract ecosystem.
Collapse
Affiliation(s)
- Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Junrui Liao
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
2
|
Chakraborty A, Sarkar S, Munjal R, Majhi J, Bandyopadhyay A, Mukhopadhyay S. Catalyzing Knoevenagel Condensation and Radioiodine Sequestration with Tuned Porous Organic Polymers to Decipher the Role of Surface Area, Pore Volume, and Heteroatom. Chem Asian J 2024; 19:e202400969. [PMID: 39295253 DOI: 10.1002/asia.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 09/21/2024]
Abstract
The impact of surface area, pore volume, and heteroatom type on the performance of porous organic polymers (POPs) in various applications remains unclear. To investigate this, three isoreticular POPs were employed having one common building block, resulting in varying surface areas, pore volumes, and heteroatom compositions. This study aimed to establish a correlation between the structural features of POPs (surface area, pore volume, and heteroatom type) with their adsorption capacity, and catalytic efficiency. To explore this relationship, the Knoevenagel condensation reaction was used as a model system, testing various substituted aldehydes to further validate our findings. Additionally, the capture of radioactive iodine vapor at 75 °C was simulated to examine the correlation with adsorption capacity, comparing the gravimetric iodine uptake capacity of each POP to gain insights into this relationship.
Collapse
Affiliation(s)
- Argha Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| | - Ritika Munjal
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| | - Jagannath Majhi
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur Campus, Roorkee, 247001, India
| | - Anasuya Bandyopadhyay
- Department of Polymer and Process Engineering, IIT Roorkee, Saharanpur Campus, Roorkee, 247001, India
| | - Suman Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh, Indore, 453552, India
| |
Collapse
|
3
|
Kee CW, Zheng J, Yap WJ, Ou Yong R, Liu Y. Thermal and Sono-Aqueous Reforming of Alcohols for Sustainable Hydrogen Production. Molecules 2024; 29:4867. [PMID: 39459238 PMCID: PMC11510399 DOI: 10.3390/molecules29204867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Hydrogen is a clean-burning fuel with water as its only by-product, yet its widespread adoption is hampered by logistical challenges. Liquid organic hydrogen carriers, such as alcohols from sustainable sources, can be converted to hydrogen through aqueous-phase reforming (APR), a promising technology that bypasses the energy-intensive vaporization of feedstocks. However, the hydrothermal conditions of APR pose significant challenges to catalyst stability, which is crucial for its industrial deployment. This review focuses on the stability of catalysts in APR, particularly in sustaining hydrogen production over extended durations or multiple reaction cycles. Additionally, we explore the potential of ultrasound-assisted APR, where sonolysis enables hydrogen production without external heating. Although the technological readiness of ultrasound-assisted or -induced APR currently trails behind thermal APR, the development of catalysts optimized for ultrasound use may unlock new possibilities in the efficient hydrogen production from alcohols.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | | | | | | | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| |
Collapse
|
4
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
5
|
Bora HJ, Nath MP, Medhi PJ, Boruah PJ, Kalita P, Bailung H, Choudhury B, Sen Sarma N, Kalita A. Unveiling the Potential of Covalent Organic Framework Electrocatalyst for Enhanced Oxygen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9751-9760. [PMID: 38642056 DOI: 10.1021/acs.langmuir.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
The potential for sustainable energy and carbon neutrality has expanded with the development of a highly active electrocatalyst for the oxygen evolution reaction (OER). Covalent Organic Frameworks (COF) have recently garnered attention because of their enormous potential in a number of cutting-edge application sectors, such as gas storage, sensors, fuel cells, and active catalytic supports. A simple and effective COF constructed and integrated by post-alteration plasma modification facilitates high electrocatalytic OER activity under alkaline conditions. Variations in parameters such as voltage and treatment duration have been employed to enhance the factor that demonstrates high OER performance. The overpotential and Tafel slope are the lowest of all when using an optimized parameter, such as plasma treatment for 30 min utilizing 6 kV of voltage, PT-30 COF, measuring 390 mV at a current density of 10 mA.cm-2 and 69 mV.dec-1, respectively, as compared to 652 mV and 235 mV.dec-1 for the Pristine-COF. Our findings provide a method for broadening the scope by post-functionalizing the parent framework for effective water splitting.
Collapse
Affiliation(s)
- Hridoy Jyoti Bora
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash P Nath
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Jyoti Medhi
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Jyoti Boruah
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Parismita Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Heremba Bailung
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Department of Physics, Bodoland University, Kokrajhar, Assam 783370, India
| | - Biswajit Choudhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelotpal Sen Sarma
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Bakhsh EM, Akhtar K, Khan SB, Asiri AM, Kamal T, Bilal M, Khan SA. Silver oxide doped iron oxide/alginate nanocomposite coated cotton cloth for selective catalytic reduction of potassium ferricyanide. CHEMOSPHERE 2024; 355:141743. [PMID: 38513958 DOI: 10.1016/j.chemosphere.2024.141743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Silver oxide doped iron oxide (Ag2O-Fe2O3) nanocatalyst was prepared and coated on cotton cloth (CC) as well as wrapped in sodium alginate (Alg) hydrogel. Ag2O-Fe2O3 coated CC (Ag2O-Fe2O3/CC) and Ag2O-Fe2O3 wrapped Alg (Ag2O-Fe2O3/Alg) were utilized as catalysts in reduction reaction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). Ag2O-Fe2O3/CC and Ag2O-Fe2O3/Alg were found to be effective and selective catalyst for the reaction of K3[Fe(CN)6]. Further amount of catalyst, K3[Fe(CN)6] quantity, amount of NaBH4, stability of catalyst and recyclability were optimized for the reaction of K3[Fe(CN)6] reduction. Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were appeared to be the stable catalysts by maintaining high activity during recyclability tests showing highest reaction rate constants (kapp) of 0.3472 and 0.5629 min-1, correspondingly. However, Ag2O-Fe2O3/CC can be easily recovered as compared to Ag2O-Fe2O3/Alg by simply removing from the reaction which is the main advantage of Ag2O-Fe2O3/CC. Moreover, Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were also examined in real samples and found useful for K3[Fe(CN)6] reduction involving real samples. The Ag2O-Fe2O3/CC nanocatalyst is a cost and time saving material for economical reduction of K3[Fe(CN)6] and environmental safety.
Collapse
Affiliation(s)
- Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, (Khyber Pakhtunkhwa) , Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
7
|
Kim C, Yoo H, Lee G, Hong HJ. Powdered activated carbon (PAC)-assisted peroxymonosulfate activation for efficient urea elimination in ultrapure water production from reclaimed water. Sci Rep 2024; 14:4597. [PMID: 38409464 PMCID: PMC10897149 DOI: 10.1038/s41598-024-55414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Urea is a problematic pollutant in reclaimed water for ultrapure water (UPW) production. The sulfate radical-based advanced oxidation process (SR-AOP) has been recognized as an effective method for urea degradation. However, conventional metal-based catalysts for peroxymonosulfate (PMS) activation are unsuitable for UPW production due to issues related to metal ion leaching. In this study, the use of powdered activated carbon (PAC) was investigated for the removal of urea from reclaimed water. The PAC exhibited a high degree of defects (ID/IG = 1.709) and various surface oxygen functional groups (C-OH, C=O, and C-O), which greatly enhanced its catalytic capability. The PAC significantly facilitated PMS activation in the PMS + PAC system, leading to the complete urea decomposition. The PMS + PAC system demonstrated excellent urea removal efficiency within a wide pH range, except for pH < 3. Among the various anions present, the CO32- and PO43- inhibited urea degradation, while the coexistence of Cl- promoted urea removal. Furthermore, the feasibility test was evaluated using actual reclaimed water. The quenching test revealed that SO4-·, ·OH, and O2-· played crucial roles in the degradation of urea in the PAC-assisted SR-AOP. The oxygen functional groups (C-OH and O-C=O) and defect sites of PAC clearly contributed to PMS activation.
Collapse
Affiliation(s)
- Chaelin Kim
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea
| | - Heeji Yoo
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea
| | - Gyubin Lee
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea
| | - Hye-Jin Hong
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
8
|
Kita Y, Kato K, Takeuchi S, Oyoshi T, Kamata K, Hara M. Air-Stable Ni Catalysts Prepared by Liquid-Phase Reduction Using Hydrosilanes for Reactions with Hydrogen. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55659-55668. [PMID: 38010144 DOI: 10.1021/acsami.3c11487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The liquid-phase reduction method for the preparation of metal nanoparticles (NPs) by the reduction of metal salts or metal complexes in a solvent with a reducing agent is widely used to prepare Ni NPs that exhibit high catalytic activity in various organic transformations. Intensive research has been conducted on control of the morphology and size of Ni NPs by the addition of polymers and long-chain compounds as protective agents; however, these agents typically cause a decrease in catalytic activity. Here, we report on the preparation of Ni NPs using hydrosilane (Ni-Si) as a reducing agent and a size-controlling agent. The substituents on silicon can control not only the size but also the crystal phase of the Ni NPs. The prepared Ni NPs exhibited high catalytic performance for the hydrogenation of unsaturated compounds, aromatics, and heteroaromatics to give the corresponding hydrogenated products in high yields. The unique feature of Ni catalysts prepared by the hydrosilane-assisted method is that the catalysts can be handled under air as opposed to conventional Ni catalysts such as Raney Ni. Characterization studies indicated that the surface hydroxide was reduced under the catalytic reaction conditions with H2 at around 100 °C and with the assistance of organosilicon compounds deposited on the catalyst surface. The hydrosilane-assisted method presented here could be applied to the preparation of supported Ni catalysts (Ni-Si/support). The interaction between the Ni NPs and a metal oxide support enabled the direct amination of alcohols with ammonia to afford the primary amine selectively.
Collapse
Affiliation(s)
- Yusuke Kita
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kahoko Kato
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Shun Takeuchi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Takaaki Oyoshi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
9
|
Campbell DJ, Ott Q, Kuntzleman TS. Dealing with Dust Entrained in the Nitrogen Plume Demonstration. JOURNAL OF CHEMICAL EDUCATION 2023; 100:4122-4124. [PMID: 37840822 PMCID: PMC10571037 DOI: 10.1021/acs.jchemed.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/09/2023] [Indexed: 10/17/2023]
Abstract
Water condensation plumes produced by the addition of iron powder to liquid nitrogen can be contaminated with small quantities of particulate matter. Variations on the plume demonstration, including those using noisemakers, are described to help minimize the release of particulates into the air.
Collapse
Affiliation(s)
- Dean J. Campbell
- Mund-Lagowski
Department of Chemistry and Biochemistry,Bradley University, Peoria, Illinois 61625, United States
| | - Q. Ott
- Mund-Lagowski
Department of Chemistry and Biochemistry,Bradley University, Peoria, Illinois 61625, United States
| | - Thomas S. Kuntzleman
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
10
|
Kekana L, Bingwa N. Solvent-free cross aldol condensation of aldehydes and ketones over SrMo 1-xNi xO 3-δ perovskite nanocrystals as heterogeneous catalysts. Heliyon 2023; 9:e21038. [PMID: 37920271 PMCID: PMC10618990 DOI: 10.1016/j.heliyon.2023.e21038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Aldol condensation is arguably one of the most fascinating reactions that leads to the formation of C-C bonds. Its use in the pharmaceutical industry to synthesis complex drugs from simple aldehydes and ketones has become of paramount importance. Although this is one reaction that has lured a lot of attention, not enough has been explored in heterogeneous catalysis. In this work we have successfully synthesized multicationic perovskites via the soft-template method and characterized them thoroughly. The synthesized perovskite nanocrystals were found to have small SBET however their catalytic application in the conversion of benzaldehyde (BAL) in the aldol condensation with diethyl ketone (DEK) was found to be astonishing. The synthesis was confirmed using many techniques, from determining the oxidation states of the materials using XPS. This gave access to determine the coordination of the metals in the perovskite lattice and also qualitatively assess the oxygen environments that exist. The oxygen vacancies and SBET were used to assess the activity of the perovskite catalysts in the cross-aldol condensation reaction. The optimal conditions for this aldol condensation were found to be 120 °C after 25 h with no solvent using SrMo0.5Ni0.5O3-δ inorganic perovskite which had the highest amount of oxygen vacant sites which gave a conversion of 88 % and an 82 % selectivity towards the desired cross-aldol condensation product. The use of dimethylformamide (DMF) for this reaction is discouraged as it reacts with BAL to produce a higher amide.
Collapse
Affiliation(s)
- Lebohang Kekana
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, PO Box 542, Auckland Park, 2006, Johannesburg, South Africa
| | - Ndzondelelo Bingwa
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, PO Box 542, Auckland Park, 2006, Johannesburg, South Africa
| |
Collapse
|
11
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Kumar K, Maity T, Panchakarla LS, Jain S. Two-Dimensional Ultrathin CeVO 4 Nanozyme: Fabricated through Non-Oxidic Material. ACS OMEGA 2023; 8:6931-6939. [PMID: 36844543 PMCID: PMC9948189 DOI: 10.1021/acsomega.2c07732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the synthesis of materials in lower dimensions, like two-dimensional (2D) or ultrathin crystals, with distinctive characteristics has attracted substantial scientific attention. The mixed transition metal oxides (MTMOs) nanomaterials are the promising group of materials, which have been extensively utilized for various potential applications. Most of the MTMOs were explored as three-dimensional (3D) nanospheres, nanoparticles, one-dimensional (1D) nanorods, and nanotubes. However, these materials are not well explored in 2D morphology because of the difficulties in removing tightly woven thin oxide layers or exfoliations of 2D oxide layers, which hinder the exfoliation of beneficial features of MTMO. Here, through the exfoliation via Li+ ion intercalation and subsequent oxidation of CeVS3 under hydrothermal condition, we have demonstrated a novel synthetic route for the fabrication of 2D ultrathin CeVO4 NS. The as-synthesized CeVO4 NS exhibit adequate stability and activity in a harsh reaction environment, which gives excellent peroxidase-mimicking activity with a K M value of 0.04 mM, noticeably better than natural peroxidase and previously reported CeVO4 nanoparticles. We have also used this enzyme mimic activity for the efficient detection of biomolecules like glutathione with a LOD of 53 nM.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department
of Chemistry, Indian Institute of Technology
Bombay, Mumbai 400076, India
| | - Tanmoy Maity
- Indian
Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Leela S. Panchakarla
- Department
of Chemistry, Indian Institute of Technology
Bombay, Mumbai 400076, India
| | - Siddarth Jain
- Department
of Chemistry, Indian Institute of Technology
Bombay, Mumbai 400076, India
| |
Collapse
|
13
|
Lian X, Huang Z, Zhang Y, Chen Z, Meidl P, Yi X, Xu B. Constructing Z-scheme 1D/2D heterojunction of ZnIn 2S 4 nanosheets decorated WO 3 nanorods to enhance Cr(VI) photocatalytic reduction and rhodamine B degradation. CHEMOSPHERE 2023; 313:137351. [PMID: 36574576 DOI: 10.1016/j.chemosphere.2022.137351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Photocatalysis has been vastly employed as a feasible and efficient strategy for the removal of environmental pollutants. In this study, a well-designed core-shell heterojunction of WO3 decorated with ZnIn2S4 nanosheets were fabricated under mild in-situ conditions, and fabricated processes were systematically investigated with different fabrication durations. The coupling of WO3 and ZnIn2S4 (ZIS) resulted in a Z-scheme mechanism for charge carrier transfer, holding the respective redox capacity. The as-prepared 1D/2D WO3@ZIS heterostructure displayed the highest removal efficiency within 30 min for 25 mg L-1 Cr(VI), 89.3 and 29.7 times higher than pure WO3 and ZnIn2S4. 1D/2D WO3@ZIS remained excellently stable after 5 cycling experiments. Moreover, 40 mg L-1 RhB could be degraded within 50 min. The broad and short photogenerated electron transportation path is guaranteed by the 1D/2D and Z-scheme charge separation mechanism. It efficiently prevented photo-generated charge carriers from recombination, resulting in a longer carrier lifespan and better photocurrent responses than that of pure ones. This photocatalytic system showed promising results and also provides a framework for an efficient system for photocatalysis with potential for environmental application.
Collapse
Affiliation(s)
- Xinyi Lian
- College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Zongyi Huang
- College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Yuqi Zhang
- College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Zhou Chen
- College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Peter Meidl
- Systematic Botany and Mycology, Ludwig-Maximilians Universität München, Munich, 80638, Germany
| | - Xiaodong Yi
- College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, PR China.
| | - Baile Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
14
|
Fluorescent silicon-doped polymer dots: Preparation and its multiple applications as antibacterial, solid fluorescence and reducing agents. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Elmroth Nordlander J, Bermeo M, Ternero P, Wahlqvist D, Schmeida T, Blomberg S, Messing ME, Ek M, Hübner JM. Mo 3Ni 2N Nanoparticle Generation by Spark Discharge. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031113. [PMID: 36770120 PMCID: PMC9920893 DOI: 10.3390/ma16031113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/01/2023]
Abstract
Spark ablation is an advantageous method for the generation of metallic nanoparticles with defined particle sizes and compositions. The reaction of the metal particles with the carrier gas during the synthesis and, therefore, the incorporation of those light elements into structural voids or even compound formation was confirmed for hydrides and oxides but has only been suspected to occur for nitrides. In this study, dispersed nanoparticles of Mo3Ni2N and Mo with Janus morphology, and defined particle sizes were obtained by spark discharge generation as a result of carrier gas ionization and characterized using transmission electron microscopy and powder X-ray diffraction. Metal nitrides possess beneficial catalytic and thermoelectric properties, as well as high hardness and wear resistance. Therefore, this method offers the possibility of controlled synthesis of materials which are interesting for numerous applications.
Collapse
Affiliation(s)
- Jonas Elmroth Nordlander
- Department of Chemical Engineering and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Marie Bermeo
- Department of Physics and NanoLund, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Pau Ternero
- Department of Physics and NanoLund, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - David Wahlqvist
- Department of Chemistry and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Toni Schmeida
- Leibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Sara Blomberg
- Department of Chemical Engineering and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Maria E. Messing
- Department of Physics and NanoLund, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Martin Ek
- Department of Chemistry and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Julia-Maria Hübner
- Department of Chemistry and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
16
|
Rinaldi N, Purba NDE, Kristiani A, Agustian E, Widjaya RR, Dwiatmoko AA. Bentonite pillarization using sonication in a solid acid catalyst preparation for the oleic acid esterification reaction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
Ti(IV)-Exchanged Nano-ZIF-8 and Nano-ZIF-67 for Enhanced Photocatalytic Oxidation of Hydroquinone. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Kim T, Park H, Park BH, Joon Yoon S, Liu C, Joo SW, Son N, Kang M. Long-term catalytic durability in Z-scheme CdS@ 1T-WS2 heterojunction materials. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Degradation Kinetics of Methyl Orange Dye in Water Using Trimetallic Fe/Cu/Ag Nanoparticles. Catalysts 2021. [DOI: 10.3390/catal11040428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The release of azo dye contaminants from textile industries into the environment is an issue of major concern. Nanoscale zerovalent iron (nZVI) has been extensively studied in the degradation of azo dye pollutants such as methyl orange (MO). In this study, iron was coupled with copper and silver to make trimetallic Fe/Cu/Ag nanoparticles, in order to enhance the degradation of MO and increase reactivity of the catalyst by delaying the rate of oxidation of iron. The synthesis of the trimetallic nanoparticles (Fe/Cu/Ag) was carried out using the sodium borohydride reduction method. The characterization of the particles was performed using XRD, XPS, EDX, and TEM. The analyses confirmed the successful synthesis of the nanoparticles; the TEM images also showed the desired structures and geometry of the nanoscale zerovalent iron particles. The assessment of the nanoparticles in the degradation of methyl orange showed a notable degradation within few minutes into the reaction. The effect of parameters such as nanoparticle dosage, initial MO concentration, and the solution pH on the degradation of MO using the nanoparticles was investigated. Methyl orange degradation efficiency reached 100% within 1 min into the reaction at a low pH, with lower initial MO concentration and higher nanoparticle dosage. The degradation rate of MO using the nanoparticles followed pseudo first-order kinetics and was greatly influenced by the studied parameters. Additionally, LC-MS technique confirmed the degradation of MO within 1 min and that the degradation occurs through the splitting of the azo bond. The Fe/Cu/Ag trimetallic nanoparticles have proven to be an appropriate and efficient alternative for the treatment of dye wastewater.
Collapse
|
20
|
Lee KM, Kwon G, Hwang S, Boscoboinik JA, Kim T. Investigation of the NO reduction by CO reaction over oxidized and reduced NiO x/CeO 2 catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01215k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NO reduction by CO reaction was investigated by NiOx/CeO2 catalysts with different pretreatment conditions. Surface area, oxygen defect sites, and CeO2 crystallite size are closely related to the catalytic performance.
Collapse
Affiliation(s)
- Kyung-Min Lee
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Gihan Kwon
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Taejin Kim
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|