1
|
Trebesch N, Hasdemir HS, Chen T, Wen PC, Tajkhorshid E. Molecular dynamics simulations of biological membranes and membrane-associated phenomena across scales. Curr Opin Struct Biol 2025; 93:103071. [PMID: 40424866 DOI: 10.1016/j.sbi.2025.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Membranes are fundamental components of cells that are involved in a wide variety of cellular functions. They are inherently complex, being composed of hugely diverse collections of lipids and proteins, and their various functions arise directly from the intricate interplay between their components. To investigate the interactions between these components in detail, molecular dynamics (MD) simulations have proven to be an invaluable tool. In this mini-review, we highlight several recent studies that illustrate the current state of the art in using MD to study membrane systems. In particular, we first examine how MD is being used to characterize membrane binding of peripheral membrane proteins, we next describe how interactions between lipids and integral membrane proteins are being probed with MD, and we conclude by discussing new tools that have recently been developed to address the significant challenge of building simulateable models of large-scale membranes with complex curvature.
Collapse
Affiliation(s)
- Noah Trebesch
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tianle Chen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Dommer AC, Wauer NA, Marrink SJ, Amaro RE. All-atom virus simulations to tackle airborne disease. Curr Opin Struct Biol 2025; 92:103048. [PMID: 40319578 DOI: 10.1016/j.sbi.2025.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 05/07/2025]
Abstract
We briefly review the latest computational studies focused on modeling viruses with classical all-atom (AA) molecular dynamics. We report on the challenges, current solutions, and ongoing developments in constructing and simulating whole viruses, and discuss unique insights derived from AA mesoscale simulations that cannot be achieved by other means. Finally, we present new opportunities in computational virology to understand viral aerostability within the context of respiratory disease transmission. Overall, we highlight the value of large-scale AA simulation and champion the need for increased interdisciplinary collaboration to generate novel insights and guide future research in respiratory disease.
Collapse
Affiliation(s)
- Abigail C Dommer
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Nicholas A Wauer
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Siewert J Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Bonollo G, Trèves G, Komarov D, Mansoor S, Moroni E, Colombo G. Advancing Molecular Simulations: Merging Physical Models, Experiments, and AI to Tackle Multiscale Complexity. J Phys Chem Lett 2025; 16:3606-3615. [PMID: 40179097 PMCID: PMC12010417 DOI: 10.1021/acs.jpclett.5c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Proteins and protein complexes form adaptable networks that regulate essential biochemical pathways and define cell phenotypes through dynamic mechanisms and interactions. Advances in structural biology and molecular simulations have revealed how protein systems respond to changes in their environments, such as ligand binding, stress conditions, or perturbations like mutations and post-translational modifications, influencing signal transduction and cellular phenotypes. Here, we discuss how computational approaches, ranging from molecular dynamics (MD) simulations to AI-driven methods, are instrumental in studying protein dynamics from isolated molecules to large assemblies. These techniques elucidate conformational landscapes, ligand-binding mechanisms, and protein-protein interactions and are starting to support the construction of multiscale realistic representations of highly complex systems, ranging up to whole cell models. With cryo-electron microscopy, cryo-electron tomography, and AlphaFold accelerating the structural characterization of protein networks, we suggest that integrating AI and Machine Learning with multiscale MD methods will enhance fundamental understating for systems of ever-increasing complexity, usher in exciting possibilities for predictive modeling of the behavior of cell compartments or even whole cells. These advances are indeed transforming biophysics and chemical biology, offering new opportunities to study biomolecular mechanisms at atomic resolution.
Collapse
Affiliation(s)
- Giorgio Bonollo
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Gauthier Trèves
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Denis Komarov
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Samman Mansoor
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Elisabetta Moroni
- National
Research Council of Italy (CNR) - Institute of Chemical Sciences and
Technologies (SCITEC), via Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
4
|
Trebesch N, Tajkhorshid E. Enabling Atomistic Modeling and Simulation of Complex Curved Cellular Membranes with xMAS Builder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632907. [PMID: 39868109 PMCID: PMC11761631 DOI: 10.1101/2025.01.14.632907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As more powerful high performance computing resources are becoming available, there is a new opportunity to bring the unique capabilities of molecular dynamics (MD) simulations to cell-scale systems. Membranes are ubiquitous within cells and are responsible for a diverse set of essential biological functions, but building atomistic models of cell-scale membranes for MD simulations is immensely challenging because of their vast sizes, complex geometries, and complex compositions. To meet this challenge, we have developed xMAS Builder (Experimentally-Derived Membranes of Arbitrary Shape Builder), which is designed to take experimental lipidomics and structural (e.g., electron microscopy and tomography) data as input and use them to build MD-ready models of cellular membrane systems. To test xMAS Builder's capabilities, we have used it to build two models (one ~12.0 million atoms and the other ~11.6 million atoms) of a test system with a representative complex lipid composition and geometry. The two models, which differed only in their lipid packing densities, both maintained their membrane integrity during an extended MD simulation (250 ns and 386 ns), but their highly divergent relaxation dynamics indicate that the proper packing density of curved membranes is determined by leaflet volume rather than surface area. These results suggest that xMAS Builder's algorithms produce high quality models and that simulation of these models will provide profound biophysical insights into the behavior of cellular membranes.
Collapse
Affiliation(s)
- Noah Trebesch
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign
| |
Collapse
|
5
|
Mathur A, Ghosh R, Nunes-Alves A. Recent Progress in Modeling and Simulation of Biomolecular Crowding and Condensation Inside Cells. J Chem Inf Model 2024; 64:9063-9081. [PMID: 39660892 DOI: 10.1021/acs.jcim.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Macromolecular crowding in the cellular cytoplasm can potentially impact diffusion rates of proteins, their intrinsic structural stability, binding of proteins to their corresponding partners as well as biomolecular organization and phase separation. While such intracellular crowding can have a large impact on biomolecular structure and function, the molecular mechanisms and driving forces that determine the effect of crowding on dynamics and conformations of macromolecules are so far not well understood. At a molecular level, computational methods can provide a unique lens to investigate the effect of macromolecular crowding on biomolecular behavior, providing us with a resolution that is challenging to reach with experimental techniques alone. In this review, we focus on the various physics-based and data-driven computational methods developed in the past few years to investigate macromolecular crowding and intracellular protein condensation. We review recent progress in modeling and simulation of biomolecular systems of varying sizes, ranging from single protein molecules to the entire cellular cytoplasm. We further discuss the effects of macromolecular crowding on different phenomena, such as diffusion, protein-ligand binding, and mechanical and viscoelastic properties, such as surface tension of condensates. Finally, we discuss some of the outstanding challenges that we anticipate the community addressing in the next few years in order to investigate biological phenomena in model cellular environments by reproducing in vivo conditions as accurately as possible.
Collapse
Affiliation(s)
- Apoorva Mathur
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Rikhia Ghosh
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
6
|
Brown CM, Marrink SJ. Modeling membranes in situ. Curr Opin Struct Biol 2024; 87:102837. [PMID: 38744147 DOI: 10.1016/j.sbi.2024.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Molecular dynamics simulations of cellular membranes have come a long way-from simple model lipid bilayers to multicomponent systems capturing the crowded and complex nature of real cell membranes. In this opinionated minireview, we discuss the current challenge to simulate the dynamics of membranes in their native environment, in situ, with the prospect of reaching the level of whole cells and cell organelles using an integrative modeling framework.
Collapse
Affiliation(s)
- Chelsea M Brown
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands. https://twitter.com/chelseabrowncg
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands. s.j.marrinkrug.nl
| |
Collapse
|
7
|
Cornet J, Coulonges N, Pezeshkian W, Penissat-Mahaut M, Desgrez-Dautet H, Marrink SJ, Destainville N, Chavent M, Manghi M. There and back again: bridging meso- and nano-scales to understand lipid vesicle patterning. SOFT MATTER 2024; 20:4998-5013. [PMID: 38884641 DOI: 10.1039/d4sm00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We describe a complete methodology to bridge the scales between nanoscale molecular dynamics and (micrometer) mesoscale Monte Carlo simulations in lipid membranes and vesicles undergoing phase separation, in which curving molecular species are furthermore embedded. To go from the molecular to the mesoscale, we notably appeal to physical renormalization arguments enabling us to rigorously infer the mesoscale interaction parameters from its molecular counterpart. We also explain how to deal with the physical timescales at stake at the mesoscale. Simulating the as-obtained mesoscale system enables us to equilibrate the long wavelengths of the vesicles of interest, up to the vesicle size. Conversely, we then backmap from the meso- to the nano-scale, which enables us to equilibrate in turn the short wavelengths down to the molecular length-scales. By applying our approach to the specific situation of patterning a vesicle membrane, we show that macroscopic membranes can thus be equilibrated at all length-scales in achievable computational time offering an original strategy to address the fundamental challenge of timescale in simulations of large bio-membrane systems.
Collapse
Affiliation(s)
- Julie Cornet
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| | - Nelly Coulonges
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Maël Penissat-Mahaut
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
| | - Hermes Desgrez-Dautet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Matthieu Chavent
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, 31400, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
8
|
Spivak M, Stone JE, Ribeiro J, Saam J, Freddolino L, Bernardi RC, Tajkhorshid E. VMD as a Platform for Interactive Small Molecule Preparation and Visualization in Quantum and Classical Simulations. J Chem Inf Model 2023; 63:4664-4678. [PMID: 37506321 PMCID: PMC10516160 DOI: 10.1021/acs.jcim.3c00658] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Modeling and simulation of small molecules such as drugs and biological cofactors have been both a major focus of computational chemistry for decades and a growing need among computational biophysicists who seek to investigate the interaction of different types of ligands with biomolecules. Of particular interest in this regard are quantum mechanical (QM) calculations that are used to more accurately describe such small molecules, which can be of heterogeneous structures and chemistry, either in purely QM calculations or in hybrid QM/molecular mechanics (MM) simulations. QM programs are also used to develop MM force field parameters for small molecules to be used along with established force fields for biomolecules in classical simulations. With this growing need in mind, here we report a set of software tools developed and closely integrated within the broadly used molecular visualization/analysis program, VMD, that allow the user to construct, modify, and parametrize small molecules and prepare them for QM, hybrid QM/MM, or classical simulations. The tools also provide interactive analysis and visualization capabilities in an easy-to-use and integrated environment. In this paper, we briefly report on these tools and their major features and capabilities, along with examples of how they can facilitate molecular research in computational biophysics that might be otherwise prohibitively complex.
Collapse
Affiliation(s)
- Mariano Spivak
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John E Stone
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - João Ribeiro
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jan Saam
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Rafael C Bernardi
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, Center for Biophyics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Duncan AL, Pezeshkian W. Mesoscale simulations: An indispensable approach to understand biomembranes. Biophys J 2023; 122:1883-1889. [PMID: 36809878 PMCID: PMC10257116 DOI: 10.1016/j.bpj.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Computer simulation techniques form a versatile tool, a computational microscope, for exploring biological processes. This tool has been particularly effective in exploring different features of biological membranes. In recent years, thanks to elegant multiscale simulation schemes, some fundamental limitations of investigations by distinct simulation techniques have been resolved. As a result, we are now capable of exploring processes spanning multiple scales beyond the capacity of any single technique. In this perspective, we argue that mesoscale simulations require more attention and must be further developed to fill evident gaps in a quest toward simulating and modeling living cell membranes.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Pezeshkian W, Grünewald F, Narykov O, Lu S, Arkhipova V, Solodovnikov A, Wassenaar TA, Marrink SJ, Korkin D. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure 2023; 31:492-503.e7. [PMID: 36870335 DOI: 10.1016/j.str.2023.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands
| | - Oleksandr Narykov
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands; Institute for Life Science and Technology, Hanze University of Applied Sciences, 9747AS Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, the Netherlands.
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
12
|
Stevens JA, Grünewald F, van Tilburg PAM, König M, Gilbert BR, Brier TA, Thornburg ZR, Luthey-Schulten Z, Marrink SJ. Molecular dynamics simulation of an entire cell. Front Chem 2023; 11:1106495. [PMID: 36742032 PMCID: PMC9889929 DOI: 10.3389/fchem.2023.1106495] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The ultimate microscope, directed at a cell, would reveal the dynamics of all the cell's components with atomic resolution. In contrast to their real-world counterparts, computational microscopes are currently on the brink of meeting this challenge. In this perspective, we show how an integrative approach can be employed to model an entire cell, the minimal cell, JCVI-syn3A, at full complexity. This step opens the way to interrogate the cell's spatio-temporal evolution with molecular dynamics simulations, an approach that can be extended to other cell types in the near future.
Collapse
Affiliation(s)
- Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - P. A. Marco van Tilburg
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Melanie König
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Sarkar D, Kulke M, Vermaas JV. LongBondEliminator: A Molecular Simulation Tool to Remove Ring Penetrations in Biomolecular Simulation Systems. Biomolecules 2023; 13:biom13010107. [PMID: 36671493 PMCID: PMC9856086 DOI: 10.3390/biom13010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
We develop a workflow, implemented as a plugin to the molecular visualization program VMD, that can fix ring penetrations with minimal user input. LongBondEliminator, detects ring piercing artifacts by the long, strained bonds that are the local minimum energy conformation during minimization for some assembled simulation system. The LongBondEliminator tool then automatically treats regions near these long bonds using multiple biases applied through NAMD. By combining biases implemented through the collective variables module, density-based forces, and alchemical techniques in NAMD, LongBondEliminator will iteratively alleviate long bonds found within molecular simulation systems. Through three concrete examples with increasing complexity, a lignin polymer, an viral capsid assembly, and a large, highly glycosylated protein aggrecan, we demonstrate the utility for this method in eliminating ring penetrations from classical MD simulation systems. The tool is available via gitlab as a VMD plugin, and has been developed to be generically useful across a variety of biomolecular simulations.
Collapse
|
14
|
Nagaraju M, Liu H. A scoring function for the prediction of protein complex interfaces based on the neighborhood preferences of amino acids. Acta Crystallogr D Struct Biol 2023; 79:31-39. [PMID: 36601805 DOI: 10.1107/s2059798322011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Proteins often assemble into functional complexes, the structures of which are more difficult to obtain than those of the individual protein molecules. Given the structures of the subunits, it is possible to predict plausible complex models via computational methods such as molecular docking. Assessing the quality of the predicted models is crucial to obtain correct complex structures. Here, an energy-scoring function was developed based on the interfacial residues of structures in the Protein Data Bank. The statistically derived energy function (Nepre) imitates the neighborhood preferences of amino acids, including the types and relative positions of neighboring residues. Based on the preference statistics, a program iNepre was implemented and its performance was evaluated with several benchmarking decoy data sets. The results show that iNepre scores are powerful in model ranking to select the best protein complex structures.
Collapse
Affiliation(s)
- Mulpuri Nagaraju
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
15
|
Corey RA, Baaden M, Chavent M. A brief history of visualizing membrane systems in molecular dynamics simulations. FRONTIERS IN BIOINFORMATICS 2023; 3:1149744. [PMID: 37213533 PMCID: PMC10196259 DOI: 10.3389/fbinf.2023.1149744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/13/2023] [Indexed: 05/23/2023] Open
Abstract
Understanding lipid dynamics and function, from the level of single, isolated molecules to large assemblies, is more than ever an intensive area of research. The interactions of lipids with other molecules, particularly membrane proteins, are now extensively studied. With advances in the development of force fields for molecular dynamics simulations (MD) and increases in computational resources, the creation of realistic and complex membrane systems is now common. In this perspective, we will review four decades of the history of molecular dynamics simulations applied to membranes and lipids through the prism of molecular graphics.
Collapse
Affiliation(s)
- R. A. Corey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - M. Baaden
- Centre Nationale de la Recherche Scientifique, Laboratoire de Biochimie Théorique, Université Paris Cité, Paris, France
| | - M. Chavent
- Institut de Pharmacologie et Biologie Structurale, CNRS, Université de Toulouse, Toulouse, France
- *Correspondence: M. Chavent,
| |
Collapse
|
16
|
Pantano S. Back and forth modeling through biological scales. Biochem Biophys Res Commun 2022; 633:39-41. [DOI: 10.1016/j.bbrc.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
|
17
|
Bottacchiari M, Gallo M, Bussoletti M, Casciola CM. Activation energy and force fields during topological transitions of fluid lipid vesicles. COMMUNICATIONS PHYSICS 2022; 5:283. [PMID: 36405503 PMCID: PMC9660165 DOI: 10.1038/s42005-022-01055-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Topological transitions of fluid lipid membranes are fundamental processes for cell life. For example, they are required for endo- and exocytosis or to enable neurotransmitters to cross the neural synapses. Here, inspired by the idea that fusion and fission proteins could have evolved in Nature in order to carry out a minimal work expenditure, we evaluate the minimal free energy pathway for the transition between two spherical large unilamellar vesicles and a dumbbell-shaped one. To address the problem, we propose and successfully use a Ginzburg-Landau type of free energy, which allows us to uniquely describe without interruption the whole, full-scale topological change. We also compute the force fields needed to overcome the involved energy barriers. The obtained forces are in excellent agreement, in terms of intensity, scale, and spatial localization with experimental data on typical fission protein systems, whereas they suggest the presence of additional features in fusion proteins.
Collapse
Affiliation(s)
- Matteo Bottacchiari
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Mirko Gallo
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
- Present Address: School of Architecture, Technology and Engineering, University of Brighton, Brighton, United Kingdom
| | - Marco Bussoletti
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
18
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502576. [PMID: 35982676 PMCID: PMC9387122 DOI: 10.1101/2022.08.02.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from human convalescent plasma, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
19
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
20
|
Yang Z, Zhang Z, Zhao Y, Ye Q, Li X, Meng L, Long J, Zhang S, Zhang L. Organelle Interaction and Drug Discovery: Towards Correlative Nanoscopy and Molecular Dynamics Simulation. Front Pharmacol 2022; 13:935898. [PMID: 35795548 PMCID: PMC9251060 DOI: 10.3389/fphar.2022.935898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The inter-organelle interactions, including the cytomembrane, endoplasmic reticulum, mitochondrion, lysosome, dictyosome, and nucleus, play the important roles in maintaining the normal function and homeostasis of cells. Organelle dysfunction can lead to a range of diseases (e.g., Alzheimer's disease (AD), Parkinson's disease (PD), and cancer), and provide a new perspective for drug discovery. With the development of imaging techniques and functional fluorescent probes, a variety of algorithms and strategies have been developed for the ever-improving estimation of subcellular structures, organelle interaction, and organelle-related drug discovery with accounting for the dynamic structures of organelles, such as the nanoscopy technology and molecular dynamics (MD) simulations. Accordingly, this work summarizes a series of state-of-the-art examples of the recent progress in this rapidly changing field and uncovering the drug screening based on the structures and interactions of organelles. Finally, we propose the future outlook for exciting applications of organelle-related drug discovery, with the cooperation of nanoscopy and MD simulations.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zichen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Lingjie Meng
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an, China
| | - Jiangang Long
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Luthey-Schulten Z, Thornburg ZR, Gilbert BR. Integrating cellular and molecular structures and dynamics into whole-cell models. Curr Opin Struct Biol 2022; 75:102392. [PMID: 35623188 DOI: 10.1016/j.sbi.2022.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
A complete description of the state of the cell requires knowledge of its size, shape, components, intracellular reactions, and interactions with its environment-all of these as a function of time and cell growth. Adding to this list is the need for theoretical models and simulations that integrate and help to interpret this daunting amount of experimental data. It seems like an overwhelming list of requirements, but progress is being made on many fronts. In this review, we discuss the current challenges and problems in obtaining sufficient information about each aspect of a dynamical whole-cell model (DWCM) for simple and well-studied bacterial systems.
Collapse
Affiliation(s)
- Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA; Center for the Physics of the Living Cell, University of Illinois at Urbana-Champaign, USA.
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| | - Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|