1
|
Töpfer K, Boittier E, Devereux M, Pasti A, Hamm P, Meuwly M. Force Fields for Deep Eutectic Mixtures: Application to Structure, Thermodynamics and 2D-Infrared Spectroscopy. J Phys Chem B 2024; 128:10937-10949. [PMID: 39446046 DOI: 10.1021/acs.jpcb.4c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Parametrizing energy functions for ionic systems can be challenging. Here, the total energy function for an eutectic system consisting of water, SCN-, K+ and acetamide is improved vis-a-vis experimentally measured properties. Given the importance of electrostatic interactions, two different types of models are considered: the first (model M0) uses atom-centered multipole whereas the other two (models M1 and M2) are based on fluctuating minimal distributed charges (fMDCM) that respond to geometrical changes of SCN-. The Lennard-Jones parameters of the anion are adjusted to best reproduce experimentally known hydration free energies and densities, which are matched to within a few percent for the final models irrespective of the electrostatic model. Molecular dynamics simulations of the eutectic mixtures with varying water content (between 0 and 100%) yield radial distribution functions and frequency correlation functions for the CN-stretch vibration. Comparison with experiments indicates that models based on fMDCM are considerably more consistent than those using multipoles. Computed viscosities from models M1 and M2 are within 30% of measured values and their change with increasing water content is consistent with experiments. This is not the case for model M0.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Eric Boittier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Mike Devereux
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Andrea Pasti
- Department of Chemistry, University of Zürich, CH-8000 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, CH-8000 Zürich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Zubeltzu J, Rezabal E. Structural insights into carboxylic-acid based DES across H-bond donor ratios: impact of CL&Pol refinement. Phys Chem Chem Phys 2024; 26:27486-27497. [PMID: 39450431 DOI: 10.1039/d4cp03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Deep eutectic solvents (DES) are of significant interest due to their eco-friendly nature and vast applications. Carboxylic-acid-based choline chloride (ChCl) DES are notable for their roles in electrochemical, drug delivery, and biomass processing applications, with efficiency influenced by the ChCl : carboxylic acid ratio. Understanding these mechanisms requires detailed knowledge of their structure. This study investigates the choline chloride-lactic acid (ChCl:LA) DES structure using ab initio molecular dynamics simulations to assess the accuracy of the transferable and polarizable CL&Pol force field. We observe that the CL&Pol force field qualitatively captures primary interactions within the system, despite numerical discrepancies due to its transferable nature. To refine the original force field, we incorporate two improvements: tuning the σ parameter of the strongest hydrogen-bond interactions and incorporating the Tang-Toennies damping function to correct chloride ion overpolarization. The first adjustment enhances the targeted interactions and significantly improves the short-range structure of the entire hydrogen-bond network. The second refinement, although minimally impacting the structure at low LA ratios, proves critical at higher ratios by correcting the oversegregation of ionic molecules in the original force field. Consequently, it becomes essential for reliably depicting the medium and long-range structure of the system, highlighting that the specific parameter of the force field to be refined depends on the structural scale under investigation. Notably, the long-range structure results from the competition between choline and carboxylic acid for chloride, rebalanced by the suggested modifications, especially the overpolarization correction.
Collapse
Affiliation(s)
- Jon Zubeltzu
- Gipuzkoako Ingeniaritza Eskola, Europa Plaza, 1, Donostia, 20018, Euskadi, Spain.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea, 4, Donostia, 20018, Euskadi, Spain
| | - Elixabete Rezabal
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea, 4, Donostia, 20018, Euskadi, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Manuel Lardizabal Ibilbidea, 3, Donostia, 20018, Euskadi, Spain
| |
Collapse
|
3
|
Kastinen T, Batys P, Tolmachev D, Laasonen K, Sammalkorpi M. Ion-Specific Effects on Ion and Polyelectrolyte Solvation. Chemphyschem 2024; 25:e202400244. [PMID: 38712639 DOI: 10.1002/cphc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ion-specific effects on aqueous solvation of monovalent counter ions, Na+ ${^+ }$ , K+ ${^+ }$ , Cl- ${^- }$ , and Br- ${^- }$ , and two model polyelectrolytes (PEs), poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) were here studied with ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations based on the OPLS-aa force-field which is an empirical fixed point-charge force-field. Ion-specific binding to the PE charge groups was also characterized. Both computational methods predict similar response for the solvation of the PEs but differ notably in description of ion solvation. Notably, AIMD captures the experimentally observed differences in Cl- ${^- }$ and Br- ${^- }$ anion solvation and binding with the PEs, while the classical MD simulations fail to differentiate the ion species response. Furthermore, the findings show that combining AIMD with the computationally less costly classical MD simulations allows benefiting from both the increased accuracy and statistics reach.
Collapse
Affiliation(s)
- Tuuva Kastinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere University, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Dmitry Tolmachev
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| |
Collapse
|
4
|
Walz MM, Signorelli MRM, Caleman C, Costa LT, Björneholm O. The Surface of Ionic Liquids in Water: From an Ionic Tug of War to a Quasi-Ordered Two-Dimensional Layer. Chemphyschem 2024; 25:e202300551. [PMID: 37991256 DOI: 10.1002/cphc.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/19/2023] [Indexed: 11/23/2023]
Abstract
The sustainable development encompasses the search for new materials for energy storage, gas capture, separation, and solvents in industrial processes that can substitute conventional ones in an efficient and clean manner. Ionic liquids (ILs) emerged and have been advanced as alternative materials for such applications, but an obstacle is their hygroscopicity and the effects on their physical properties in the presence of humidity. Several industrial processes depend on the aqueous interfacial properties, and the main focus of this work is the water/IL interface. The behavior of the aqueous ionic liquids at the water-vacuum interface is representative for their water interfacial properties. Using X-ray photoelectron spectroscopy in combination with molecular dynamics simulations we investigate four aqueous IL systems, and provide molecular level insight on the interfacial behaviour of the ionic liquids, such as ion-pair formation, orientation and surface concentration. We find that ionic liquids containing a chloride anion have a lowered surface enrichment due to the low surface propensity of chloride. In contrast, the ionic liquids containing a bistriflimide anion are extremely surface-enriched due to cooperative surface propensity between the cations and anions, forming a two-dimensional ionic liquid on the water surface at low concentrations.
Collapse
Affiliation(s)
- Marie-Madeleine Walz
- Uppsala University, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics, Uppsala, Sweden
- Current address: Novavax AB, Kungsgatan 109, 753 18, Uppsala, Sweden
| | | | - Carl Caleman
- Uppsala University, Department of Physics and Astronomy, X-ray Photon Science, Uppsala, Sweden
- Deutches Elektronen-Synchrotron DESY, Center for Free-electron Laser Science, Hamburg, Germany
| | - Luciano T Costa
- Fluminense Federal University-Outeiro de São João Batista, Institute of Chemistry, MolMod-CS, Niteroi, RJ, Brazil
| | - Olle Björneholm
- Uppsala University, Department of Physics and Astronomy, X-ray Photon Science, Uppsala, Sweden
| |
Collapse
|
5
|
Fedotova VS, Sokolova MP, Vorobiov VK, Sivtsov EV, Lukasheva NV, Smirnov MA. Water Influence on the Physico-Chemical Properties and 3D Printability of Choline Acrylate-Bacterial Cellulose Inks. Polymers (Basel) 2023; 15:polym15092156. [PMID: 37177302 PMCID: PMC10181127 DOI: 10.3390/polym15092156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this work was to study the influence of water as a co-solvent on the interaction between a polymerizable ionic liquid-choline acrylate (ChA)-and bacterial cellulose. Bacterial cellulose dispersed in ChA is a new type of UV-curable biopolymer-based ink that is a prospective material for the 3D printing of green composite ion-gels. Higher cellulose content in inks is beneficial for the ecological and mechanical properties of materials, and leads to increased viscosity and the yield stress of such systems and hampers printability. It was found that the addition of water results in (1) a decrease in the solvent viscosity and yield stress; and (2) a decrease in the stability of dispersion toward phase separation under stress. In this work, an optimal composition in the range of 30-40 wt% water content demonstrating 97-160 Pa of yield stress was found that ensures the printability and stability of inks. The rheological properties of inks and mechanical characteristics (0.7-0.8 MPa strength and 1.1-1.2 MPa Young's modulus) were obtained. The mechanism of influence of the ratio ChA/water on the properties of ink was revealed with atomic force microscopy, wide-angle X-ray diffraction studies of bacterial cellulose after regeneration from solvent, and computer simulation of ChA/water mixtures and their interaction with the cellulose surface.
Collapse
Affiliation(s)
- Veronika S Fedotova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia
| | - Maria P Sokolova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia
| | - Vitaly K Vorobiov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia
| | - Eugene V Sivtsov
- Saint Petersburg State Institute of Technology, Moskovsky Prospekt 24-26/49, 190013 St. Petersburg, Russia
| | - Natalia V Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia
| | - Michael A Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia
| |
Collapse
|
6
|
Tolmachev D, Nazarychev V, Fedotova V, Vorobiov V, Lukasheva N, Smirnov M, Karttunen M. Investigation of structure and properties of polymerizable deep eutectic solvent based on choline chloride and acrylic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Engelbrecht LDV, Ji X, Carbonaro CM, Laaksonen A, Mocci F. MD simulations explain the excess molar enthalpies in pseudo-binary mixtures of a choline chloride-based deep eutectic solvent with water or methanol. Front Chem 2022; 10:983281. [DOI: 10.3389/fchem.2022.983281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The addition of molecular liquid cosolvents to choline chloride (ChCl)-based deep eutectic solvents (DESs) is increasingly investigated for reducing the inherently high bulk viscosities of the latter, which represent a major obstacle for potential industrial applications. The molar enthalpy of mixing, often referred to as excess molar enthalpy HE—a property reflecting changes in intermolecular interactions upon mixing—of the well-known ChCl/ethylene glycol (1:2 molar ratio) DES mixed with either water or methanol was recently found to be of opposite sign at 308.15 K: Mixing of the DES with water is strongly exothermic, while methanol mixtures are endothermic over the entire mixture composition range. Knowledge of molecular-level liquid structural changes in the DES following cosolvent addition is expected to be important when selecting such “pseudo-binary” mixtures for specific applications, e.g., solvents. With the aim of understanding the reason for the different behavior of selected DES/water or methanol mixtures, we performed classical MD computer simulations to study the changes in intermolecular interactions thought to be responsible for the observed HE sign difference. Excess molar enthalpies computed from our simulations reproduce, for the first time, the experimental sign difference and composition dependence of the property. We performed a structural analysis of simulation configurations, revealing an intriguing difference in the interaction modes of the two cosolvents with the DES chloride anion: water molecules insert between neighboring chloride anions, forming ionic hydrogen-bonded bridges that draw the anions closer, whereas dilution of the DES with methanol results in increased interionic separation. Moreover, the simulated DES/water mixtures were found to contain extended hydrogen-bonded structures containing water-bridged chloride pair arrangements, the presence of which may have important implications for solvent applications.
Collapse
|
8
|
Reis GSA, de Souza RM, Ribeiro MCC. Molecular Dynamics Simulation Study of the Far-Infrared Spectrum of a Deep Eutectic Solvent. J Phys Chem B 2022; 126:5695-5705. [PMID: 35858287 DOI: 10.1021/acs.jpcb.2c03277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deep eutectic solvents (DESs) are similar to ionic liquids (IL) in terms of physicochemical properties and technical uses. In ILs, far-infrared (FIR) spectroscopy has been utilized to reveal ionic interactions and even to produce a signature of the strengthening of the cation-anion hydrogen bond. However, for the situation of the DES, where the mixing of a salt and a molecular species makes the interplay between multiple intermolecular interactions even more complex, a full investigation of FIR spectra is still absent. In this work, the FIR spectrum of the DES, often referred to as ethaline, which is a 1:2 mixture of choline chloride and ethylene glycol, is calculated using classical molecular dynamics (MD) simulations and compared to experimental data. To explore the induced dipole effect on the computed FIR spectrum, MD simulations were run with both nonpolarizable and polarizable models. The calculation satisfactorily reproduces the position of the peak at ∼110 cm-1 and the bandwidth seen in the experimental FIR spectrum of ethaline. The MD simulations show that the charge current is the most important contributor to the FIR spectrum, but the cross-correlation between the charge current and dipole reorientation also plays a role in the polarizable model. The dynamics of the chloride-ethylene glycol correlation span a wide frequency range, with a maximum at ∼150 cm-1, but it participates as a direct mechanism only in the charge current-dipole reorientation cross-term. Anion correlations, whose dynamics are regulated via correlation with both ethylene glycol and choline, make the most significant contribution to the charge current mechanism. The MD simulations were also utilized to investigate the effect on the FIR spectrum of adding water to the DES and switching to a 1:1 composition.
Collapse
Affiliation(s)
- Gabriela S A Reis
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, São Paulo, Brazil
| | - Rafael M de Souza
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, São Paulo, Brazil
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Forero-Martinez NC, Cortes-Huerto R, Benedetto A, Ballone P. Thermoresponsive Ionic Liquid/Water Mixtures: From Nanostructuring to Phase Separation. Molecules 2022; 27:1647. [PMID: 35268747 PMCID: PMC8912101 DOI: 10.3390/molecules27051647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/10/2022] Open
Abstract
The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.
Collapse
Affiliation(s)
- Nancy C. Forero-Martinez
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany;
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Antonio Benedetto
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy
| | - Pietro Ballone
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
| |
Collapse
|
10
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|