1
|
Datta J, Majumder S, Giri K. Computer aided design of inhibitor molecules against Vpr protein from different HIV-1 subtypes. In Silico Pharmacol 2025; 13:23. [PMID: 39931696 PMCID: PMC11807045 DOI: 10.1007/s40203-025-00318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
HIV-1 is a retrovirus that affects the human immune system and consequently leads to the development of AIDS. The high mutation rate in HIV-1 produces different subtypes which underscores the development of new therapeutics against it. This study aims to develop a novel small molecule that can be used as a potential inhibitor against the Vpr protein of all the subtypes of HIV-1. The druggable pockets of the Vpr protein of each subtype were identified and the conformational stability of these pockets was studied. The structure-based Drug Design method was used to design small molecules against the high-scoring pocket from each subtype individually using AutoGrow4 software. Molecules with strong binding affinity were selected from each subtype individually and binding affinity was checked for all the subtypes. Considering druggability and ADMET properties, we have identified two novel molecules that act as potential Vpr protein inhibitors. Both the molecules were shown to form stable complexes with the Vpr proteins of all the subtypes. The biological activity of both molecules was examined using DFT calculation. This study may provide some insight into developing of new therapies in HIV-1 treatment by interrupting protein-protein interaction. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00318-4.
Collapse
Affiliation(s)
- Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| |
Collapse
|
2
|
Domingos LTS, de Moraes DC, Santos MFC, Curvelo JAR, Bayona-Pacheco B, Marquez EA, Martinez AWB, Berlinck RGS, Ferreira-Pereira A. Batzelladine D, a Marine Natural Product, Reverses the Fluconazole Resistance Phenotype Mediated by Transmembrane Transporters in Candida albicans and Interferes with Its Biofilm: An In Vitro and In Silico Study. Mar Drugs 2024; 22:502. [PMID: 39590782 PMCID: PMC11595962 DOI: 10.3390/md22110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous Candida species are responsible for fungal infections; however, Candida albicans stands out among the others. Treatment with fluconazole is often ineffective due to the resistance phenotype mediated by transmembrane transporters and/or biofilm formation, mechanisms of resistance commonly found in C. albicans strains. A previous study by our group demonstrated that batzelladine D can inhibit the Pdr5p transporter in Saccharomyces cerevisiae. In the present study, our aim was to investigate the efficacy of batzelladine D in inhibiting the main efflux pumps of Candida albicans, CaCdr1p and CaCdr2p, as well as to evaluate the effect of the compound on C. albicans biofilm. Assays were conducted using a clinical isolate of Candida albicans expressing both transporters. Additionally, to allow the study of each transporter, S. cerevisiae mutant strains overexpressing CaCdr1p or CaCdr2p were used. Batzelladine D was able to reverse the fluconazole resistance phenotype by acting on both transporters. The compound synergistically improved the effect of fluconazole against the clinical isolate when tested in the Caenorhabditis elegans animal model. Moreover, the compound disrupted the preformed biofilm. Based on the obtained data, the continuation of batzelladine D studies as a potential new antifungal agent and/or chemosensitizer in Candida albicans infections can be suggested.
Collapse
Affiliation(s)
- Levy T. S. Domingos
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Daniel C. de Moraes
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Mário F. C. Santos
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, SP, Brazil
| | - José A. R. Curvelo
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Brayan Bayona-Pacheco
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, km 5, Vía Puerto Colombia, Área Metropolitana de Barranquilla, Barranquilla 081007, Colombia
| | - Edgar A. Marquez
- Departamento de Química y Biologia, Facultad de Ciencias Básicas, Universidad del Norte, km 5, Vía Puerto Colombia, Área Metropolitana de Barranquilla, Barranquilla 081007, Colombia
| | - Anthony W. B. Martinez
- Departamento de Química y Biologia, Facultad de Ciencias Básicas, Universidad del Norte, km 5, Vía Puerto Colombia, Área Metropolitana de Barranquilla, Barranquilla 081007, Colombia
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, SP, Brazil
| | - Antonio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| |
Collapse
|
3
|
Yashyanaik S, Venkatesh T, Ereshnaik, Vinuth M. Red-emitting 4-methyl coumarin fused barbituric acid as an electrochemical sensor for catechol detection and probe for latent fingerprints. LUMINESCENCE 2024; 39:e4825. [PMID: 38961763 DOI: 10.1002/bio.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (β) value of 1.8188 × 10-30 esu and 1.0470 × 10-30 esu for azo and hydrazone forms, respectively, which is approximately nine and five times greater than the magnitude of urea. 4-MCBA exhibited two absorption peaks in the range of 290-317 and 379-394 nm, and emission spectra were observed at 536 nm. CV study demonstrated that the modified 4-MCBA/MGC electrode exhibited excellent electrochemical sensitivity towards the detection of catechol and the detection limit is 9.39 μM under optimum conditions. The 4-MCBA employed as a fluorescent probe for the visualisation of LFPs on various surfaces exhibited Level-I to level-II LFPs, with low background interference.
Collapse
Affiliation(s)
- Surendranaik Yashyanaik
- Department of P.G. Studies and Research in Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, India
| | - Talavara Venkatesh
- Department of P.G. Studies and Research in Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, Karnataka, India
| | - Ereshnaik
- Department of P.G. Studies and Research in Industrial Chemistry, Sir. M.V. Govt. Science College, Bommanakatte, Bhadravathi, Karnataka, India
| | - Mirle Vinuth
- Department of Chemistry, The National Institute of Engineering, North campus, Mysore, Karnataka, India
| |
Collapse
|
4
|
Qiu Y, Gao Y, Huang B, Bai Q, Zhao Y. Transport mechanism of presynaptic high-affinity choline uptake by CHT1. Nat Struct Mol Biol 2024; 31:701-709. [PMID: 38589607 DOI: 10.1038/s41594-024-01259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/19/2024] [Indexed: 04/10/2024]
Abstract
Choline is a vital nutrient and a precursor for the biosynthesis of essential metabolites, including acetylcholine (ACh), that play a central role in fetal development, especially in the brain. In cholinergic neurons, the high-affinity choline transporter (CHT1) provides an extraordinarily efficient reuptake mechanism to reutilize choline derived from intrasynaptical ACh hydrolysis and maintain ACh synthesis in the presynapse. Here, we determined structures of human CHT1 in three discrete states: the outward-facing state bound with the competitive inhibitor hemicholinium-3 (HC-3); the inward-facing occluded state bound with the substrate choline; and the inward-facing apo open state. Our structures and functional characterizations elucidate how the inhibitor and substrate are recognized. Moreover, our findings shed light on conformational changes when transitioning from an outward-facing to an inward-facing state and establish a framework for understanding the transport cycle, which relies on the stabilization of the outward-facing state by a short intracellular helix, IH1.
Collapse
Affiliation(s)
- Yunlong Qiu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Kumar YB, Kumar N, John L, Mahanta HJ, Vaikundamani S, Nagamani S, Sastry GM, Sastry GN. Analyzing the cation-aromatic interactions in proteins: Cation-aromatic database V2.0. Proteins 2024; 92:179-191. [PMID: 37789571 DOI: 10.1002/prot.26600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
The cation-aromatic database (CAD) is a comprehensive repository of cation-aromatic motifs found in experimentally determined protein structures, first reported in 2007 [Proteins, 2007, 67, 1179]. The present article is an update of CAD that contains information of approximately 27.26 million cation-aromatic motifs. CAD uses three distance parameters (r, d1, and d2) to determine the position of the cation relative to the centroid of the aromatic residue and classifies the motifs as cation-π or cation-σ interactions. As of June 2023, about 193 936 protein structures were retrieved from Protein Data Bank, and this resulted in the identification of an impressive number of 27 255 817 cation-aromatic motifs. Among these motifs, spherical motifs constituted 94.09%, while cylindrical motifs made up the remaining 5.91%. When considering the interaction of metal ions with aromatic residues, 965 564 motifs are identified. Remarkably, 82.08% of these motifs involved the binding of metal ions to the amino acid HIS. Moreover, the analysis of binding preferences between cations and aromatic residues revealed that the HIS-HIS, PHE-ARG, and TRP-ARG pairs exhibited a preferential geometry. The motif pair HIS-HIS was the most prevalent, accounting for 19.87% of the total, closely followed by TYR-LYS at 10.17%. Conversely, the motif pair TRP-HIS had the lowest occurrence, representing only 4.20% of the total. The data generated help in revealing the characteristics and biological functions of cation-aromatic interactions in biological molecules. The updated version of CAD (Cation-Aromatic Database V2.0) can be accessed at https://acds.neist.res.in/cadv2.
Collapse
Affiliation(s)
- Y Bhargav Kumar
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Nandan Kumar
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Lijo John
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Hridoy Jyoti Mahanta
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - S Vaikundamani
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Kumar YB, Kumar N, Vaikundamani S, Nagamani S, Mahanta HJ, Sastry GM, Sastry GN. Analyzing the aromatic-aromatic interactions in proteins: A 2ID 2.0. Int J Biol Macromol 2023; 253:127207. [PMID: 37797858 DOI: 10.1016/j.ijbiomac.2023.127207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/09/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The Aromatic-Aromatic Interactions Database (A2ID) is a comprehensive repository dedicated to documenting aromatic-aromatic (π-π) networks observed in experimentally determined protein structures. The first version of A2ID was reported in 2011 [Int J Biol Macromol, 2011, 48, 540]. It has undergone a series of significant updates, leading to its current version, which focuses on the identification and analysis of 3,444,619 π-π networks from proteins. The geometrical parameters such as centroid-centroid distances (r) and interplanar angles (ϕ) were used to identify and characterize π-π networks. It was observed that among the 84,500 proteins with at least one aromatic π-π network, about 92.50 % of the instances are found to be either 2π (77.34 %) or 3π (15.23 %) networks. The analysis of interacting amino acid pairs in 2π networks indicated a dominance of PHE residues followed by TYR. The updated version of A2ID incorporates analysis of π-π networks based on SCOP2 and ECOD classifiers, in addition to the existing SCOP, CATH, and EC classifications. This expanded scope allows researchers to explore the characteristics and functional implications of π-π networks in protein structures from multiple perspectives. The current version of A2ID along with its extensive dataset and detailed geometric information is publicly accessible using https://acds.neist.res.in/a2idv2.
Collapse
Affiliation(s)
- Y Bhargav Kumar
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U. P., India
| | - Nandan Kumar
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - S Vaikundamani
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U. P., India
| | - Hridoy Jyoti Mahanta
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U. P., India
| | - G Madhavi Sastry
- Schrödinger Inc., HITEC City, Hyderabad, Telangana 500081, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U. P., India.
| |
Collapse
|
7
|
Carlucci R, Lisa MN, Labadie GR. 1,2,3-Triazoles in Biomolecular Crystallography: A Geometrical Data-Mining Approach. J Med Chem 2023; 66:14377-14390. [PMID: 37903297 DOI: 10.1021/acs.jmedchem.3c01097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The 1,2,3-triazole scaffold has become very attractive to identify new chemical entities in drug discovery projects. Despite the widespread use of click chemistry to synthesize numerous 123Ts, there are few drugs on the market that incorporate this scaffold as a substructure. To investigate the true potential of 123Ts in protein-ligand interactions, we examined the noncovalent interactions between the 1,2,3-triazole ring and amino acids in protein-ligand cocrystals using a geometrical approach. For this purpose, we constructed a nonredundant database of 220 PDB IDs from available 123T-protein cocrystal structures. Subsequently, using the Protein Ligand Interaction Profiler web platform (PLIP), we determined whether 1,2,3-triazoles primarily act as linkers or if they can be considered interactive scaffolds. We then manually analyzed the geometrical descriptors from 333 interactions between 1,4-disubstituted 123T rings and amino acid residues in proteins. This study demonstrates that 1,2,3-triazoles exhibit diverse preferred interactions with amino acids, which contribute to protein-ligand binding.
Collapse
Affiliation(s)
- Renzo Carlucci
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
- Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, ARGENTINA
| |
Collapse
|
8
|
Ma W, Zhang W, Le Y, Shi X, Xu Q, Xiao Y, Dou Y, Wang X, Zhou W, Peng W, Zhang H, Huang B. Using macromolecular electron densities to improve the enrichment of active compounds in virtual screening. Commun Chem 2023; 6:173. [PMID: 37608192 PMCID: PMC10444862 DOI: 10.1038/s42004-023-00984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
The quest for effective virtual screening algorithms is hindered by the scarcity of training data, calling for innovative approaches. This study presents the use of experimental electron density (ED) data for improving active compound enrichment in virtual screening, supported by ED's ability to reflect the time-averaged behavior of ligands and solvents in the binding pocket. Experimental ED-based grid matching score (ExptGMS) was developed to score compounds by measuring the degree of matching between their binding conformations and a series of multi-resolution experimental ED grids. The efficiency of ExptGMS was validated using both in silico tests with the Directory of Useful Decoys-Enhanced dataset and wet-lab tests on Covid-19 3CLpro-inhibitors. ExptGMS improved the active compound enrichment in top-ranked molecules by approximately 20%. Furthermore, ExptGMS identified four active inhibitors of 3CLpro, with the most effective showing an IC50 value of 1.9 µM. We also developed an online database containing experimental ED grids for over 17,000 proteins to facilitate the use of ExptGMS for academic users.
Collapse
Affiliation(s)
- Wenzhi Ma
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, 510182, Guangzhou, China
- Innovation Center for Pathogen Research, Guangzhou Laboratory, 510320, Guangzhou, China
| | - Yuan Le
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Xiaoxuan Shi
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Qingbo Xu
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Yang Xiao
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Yueying Dou
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Xiaoman Wang
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Wenbiao Zhou
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China
| | - Wei Peng
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, 510182, Guangzhou, China
- Innovation Center for Pathogen Research, Guangzhou Laboratory, 510320, Guangzhou, China
| | - Hongbo Zhang
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China.
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, 100080, Beijing, China.
| |
Collapse
|
9
|
Novoa T, Laplaza R, Peccati F, Fuster F, Contreras-García J. The NCIWEB Server: A Novel Implementation of the Noncovalent Interactions Index for Biomolecular Systems. J Chem Inf Model 2023; 63:4483-4489. [PMID: 37537899 DOI: 10.1021/acs.jcim.3c00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
It is well-known that the activity and function of proteins is strictly correlated with their secondary, tertiary, and quaternary structures. Their biological role is regulated by their conformational flexibility and global fold, which, in turn, is largely governed by complex noncovalent interaction networks. Because of the large size of proteins, the analysis of their noncovalent interaction networks is challenging, but can provide insights into the energetics of conformational changes or protein-protein and protein-ligand interactions. The noncovalent interaction (NCI) index, based on the reduced density gradient, is a well-established tool for the detection of weak contacts in biological systems. In this work, we present a web-based application to expand the use of this index to proteins, which only requires a molecular structure as input and provides a mapping of the number, type, and strength of noncovalent interactions. Structure preparation is automated and allows direct importing from the PDB database, making this server (https://nciweb.dsi.upmc.fr) accessible to scientists with limited experience in bioinformatics. A quick overview of this tool and concise instructions are presented, together with an illustrative application.
Collapse
Affiliation(s)
- Trinidad Novoa
- Laboratoire de Chimie Théorique, LCT, Sorbonne Université, CNRS, F-75005 Paris, France
- Laboratoire Jacques-Louis Lions, LJLL, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Rubén Laplaza
- Laboratoire de Chimie Théorique, LCT, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Francesca Peccati
- Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Franck Fuster
- Laboratoire de Chimie Théorique, LCT, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
10
|
Fan J, Hu L, Yue Z, Liao D, Guo F, Ke H, Jiang D, Yang Y, Lei X. Structural basis of TRPV3 inhibition by an antagonist. Nat Chem Biol 2023; 19:81-90. [PMID: 36302896 DOI: 10.1038/s41589-022-01166-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022]
Abstract
The TRPV3 channel plays vital roles in skin physiology. Dysfunction of TRPV3 causes skin diseases, including Olmsted syndrome. However, the lack of potent and selective inhibitors impedes the validation of TRPV3 as a therapeutic target. In this study, we identified Trpvicin as a potent and subtype-selective inhibitor of TRPV3. Trpvicin exhibits pharmacological potential in the inhibition of itch and hair loss in mouse models. Cryogenic electron microscopy structures of TRPV3 and the pathogenic G573S mutant complexed with Trpvicin reveal detailed ligand-binding sites, suggesting that Trpvicin inhibits the TRPV3 channel by stabilizing it in a closed state. Our G573S mutant structures demonstrate that the mutation causes a dilated pore, generating constitutive opening activity. Trpvicin accesses additional binding sites inside the central cavity of the G573S mutant to remodel the channel symmetry and block the channel. Together, our results provide mechanistic insights into the inhibition of TRPV3 by Trpvicin and support TRPV3-related drug development.
Collapse
Affiliation(s)
- Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Linghan Hu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
11
|
A pocket-based 3D molecule generative model fueled by experimental electron density. Sci Rep 2022; 12:15100. [PMID: 36068257 PMCID: PMC9448726 DOI: 10.1038/s41598-022-19363-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
We report for the first time the use of experimental electron density (ED) as training data for the generation of drug-like three-dimensional molecules based on the structure of a target protein pocket. Similar to a structural biologist building molecules based on their ED, our model functions with two main components: a generative adversarial network (GAN) to generate the ligand ED in the input pocket and an ED interpretation module for molecule generation. The model was tested on three targets: a kinase (hematopoietic progenitor kinase 1), protease (SARS-CoV-2 main protease), and nuclear receptor (vitamin D receptor), and evaluated with a reference dataset composed of over 8000 compounds that have their activities reported in the literature. The evaluation considered the chemical validity, chemical space distribution-based diversity, and similarity with reference active compounds concerning the molecular structure and pocket-binding mode. Our model can generate molecules with similar structures to classical active compounds and novel compounds sharing similar binding modes with active compounds, making it a promising tool for library generation supporting high-throughput virtual screening. The ligand ED generated can also be used to support fragment-based drug design. Our model is available as an online service to academic users via https://edmg.stonewise.cn/#/create .
Collapse
|