1
|
Wang X, Zhang X, Zhou J, Wang W, Wang X, Xu B. An in silico investigation of Kv2.1 potassium channel: Model building and inhibitors binding sites analysis. Mol Inform 2023; 42:e202300072. [PMID: 37793122 DOI: 10.1002/minf.202300072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Kv2.1 is widely expressed in brain, and inhibiting Kv2.1 is a potential strategy to prevent cell death and achieve neuroprotection in ischemic stroke. Herein, an in silico model of Kv2.1 tetramer structure was constructed by employing the AlphaFold-Multimer deep learning method to facilitate the rational discovery of Kv2.1 inhibitors. GaMD was utilized to create an ion transporting trajectory, which was analyzed with HMM to generate multiple representative receptor conformations. The binding site of RY785 and RY796(S) under the P-loop was defined with Fpocket program together with the competitive binding electrophysiology assay. The docking poses of the two inhibitors were predicted with the aid of the semi-empirical quantum mechanical calculation, and the IGMH results suggested that Met375, Thr376, and Thr377 of the P-helix and Ile405 of the S6 segment made significant contributions to the binding affinity. These results provided insights for rational molecular design to develop novel Kv2.1 inhibitors.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyuan Zhang
- Information Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Di Marino D, Conflitti P, Motta S, Limongelli V. Structural basis of dimerization of chemokine receptors CCR5 and CXCR4. Nat Commun 2023; 14:6439. [PMID: 37833254 PMCID: PMC10575954 DOI: 10.1038/s41467-023-42082-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are prominent drug targets responsible for extracellular-to-intracellular signal transduction. GPCRs can form functional dimers that have been poorly characterized so far. Here, we show the dimerization mechanism of the chemokine receptors CCR5 and CXCR4 by means of an advanced free-energy technique named coarse-grained metadynamics. Our results reproduce binding events between the GPCRs occurring in the minute timescale, revealing a symmetric and an asymmetric dimeric structure for each of the three investigated systems, CCR5/CCR5, CXCR4/CXCR4, and CCR5/CXCR4. The transmembrane helices TM4-TM5 and TM6-TM7 are the preferred binding interfaces for CCR5 and CXCR4, respectively. The identified dimeric states differ in the access to the binding sites of the ligand and G protein, indicating that dimerization may represent a fine allosteric mechanism to regulate receptor activity. Our study offers structural basis for the design of ligands able to modulate the formation of CCR5 and CXCR4 dimers and in turn their activity, with therapeutic potential against HIV, cancer, and immune-inflammatory diseases.
Collapse
Affiliation(s)
- Daniele Di Marino
- Department of Life and Environmental Sciences - New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paolo Conflitti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Vittorio Limongelli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland.
| |
Collapse
|
3
|
Hellemann E, Durrant JD. Worth the Weight: Sub-Pocket EXplorer (SubPEx), a Weighted Ensemble Method to Enhance Binding-Pocket Conformational Sampling. J Chem Theory Comput 2023; 19:5677-5689. [PMID: 37585617 PMCID: PMC10500992 DOI: 10.1021/acs.jctc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/18/2023]
Abstract
Structure-based virtual screening (VS) is an effective method for identifying potential small-molecule ligands, but traditional VS approaches consider only a single binding-pocket conformation. Consequently, they struggle to identify ligands that bind to alternate conformations. Ensemble docking helps address this issue by incorporating multiple conformations into the docking process, but it depends on methods that can thoroughly explore pocket flexibility. We here introduce Sub-Pocket EXplorer (SubPEx), an approach that uses weighted ensemble (WE) path sampling to accelerate binding-pocket sampling. As proof of principle, we apply SubPEx to three proteins relevant to drug discovery: heat shock protein 90, influenza neuraminidase, and yeast hexokinase 2. SubPEx is available free of charge without registration under the terms of the open-source MIT license: http://durrantlab.com/subpex/.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacob D. Durrant
- Department of Biological
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Hellemann E, Durrant JD. Worth the weight: Sub-Pocket EXplorer (SubPEx), a weighted-ensemble method to enhance binding-pocket conformational sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539330. [PMID: 37251500 PMCID: PMC10214482 DOI: 10.1101/2023.05.03.539330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Structure-based virtual screening (VS) is an effective method for identifying potential small-molecule ligands, but traditional VS approaches consider only a single binding-pocket conformation. Consequently, they struggle to identify ligands that bind to alternate conformations. Ensemble docking helps address this issue by incorporating multiple conformations into the docking process, but it depends on methods that can thoroughly explore pocket flexibility. We here introduce Sub-Pocket EXplorer (SubPEx), an approach that uses weighted ensemble (WE) path sampling to accelerate binding-pocket sampling. As proof of principle, we apply SubPEx to three proteins relevant to drug discovery: heat shock protein 90, influenza neuraminidase, and yeast hexokinase 2. SubPEx is available free of charge without registration under the terms of the open-source MIT license: http://durrantlab.com/subpex/.
Collapse
Affiliation(s)
- Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
5
|
Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. A Guide to In Silico Drug Design. Pharmaceutics 2022; 15:pharmaceutics15010049. [PMID: 36678678 PMCID: PMC9867171 DOI: 10.3390/pharmaceutics15010049] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
The drug discovery process is a rocky path that is full of challenges, with the result that very few candidates progress from hit compound to a commercially available product, often due to factors, such as poor binding affinity, off-target effects, or physicochemical properties, such as solubility or stability. This process is further complicated by high research and development costs and time requirements. It is thus important to optimise every step of the process in order to maximise the chances of success. As a result of the recent advancements in computer power and technology, computer-aided drug design (CADD) has become an integral part of modern drug discovery to guide and accelerate the process. In this review, we present an overview of the important CADD methods and applications, such as in silico structure prediction, refinement, modelling and target validation, that are commonly used in this area.
Collapse
Affiliation(s)
- Yiqun Chang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Bryson A. Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W. Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David E. Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
6
|
Basciu A, Callea L, Motta S, Bonvin AM, Bonati L, Vargiu AV. No dance, no partner! A tale of receptor flexibility in docking and virtual screening. VIRTUAL SCREENING AND DRUG DOCKING 2022. [DOI: 10.1016/bs.armc.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Titov IY, Stroylov VS, Rusina P, Svitanko IV. Preliminary modelling as the first stage of targeted organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to present a classification and applicability analysis of methods for preliminary molecular modelling for targeted organic, catalytic and biocatalytic synthesis. The following three main approaches are considered as a primary classification of the methods: modelling of the target – ligand coordination without structural information on both the target and the resulting complex; calculations based on experimentally obtained structural information about the target; and dynamic simulation of the target – ligand complex and the reaction mechanism with calculation of the free energy of the reaction. The review is meant for synthetic chemists to be used as a guide for building an algorithm for preliminary modelling and synthesis of structures with specified properties.
The bibliography includes 353 references.
Collapse
|
8
|
Callea L, Bonati L, Motta S. Metadynamics-Based Approaches for Modeling the Hypoxia-Inducible Factor 2α Ligand Binding Process. J Chem Theory Comput 2021; 17:3841-3851. [PMID: 34082524 PMCID: PMC8280741 DOI: 10.1021/acs.jctc.1c00114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Several methods based
on enhanced-sampling molecular dynamics have
been proposed for studying ligand binding processes. Here, we developed
a protocol that combines the advantages of steered molecular dynamics
(SMD) and metadynamics. While SMD is proposed for investigating possible
unbinding pathways of the ligand and identifying the preferred one,
metadynamics, with the path collective variable (PCV) formalism, is
suggested to explore the binding processes along the pathway defined
on the basis of SMD, by using only two CVs. We applied our approach
to the study of binding of two known ligands to the hypoxia-inducible
factor 2α, where the buried binding cavity makes simulation
of the process a challenging task. Our approach allowed identification
of the preferred entrance pathway for each ligand, highlighted the
features of the bound and intermediate states in the free-energy surface,
and provided a binding affinity scale in agreement with experimental
data. Therefore, it seems to be a suitable tool for elucidating ligand
binding processes of similar complex systems.
Collapse
Affiliation(s)
- Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
9
|
Large-Scale Virtual Screening Against the MET Kinase Domain Identifies a New Putative Inhibitor Type. Molecules 2020; 25:molecules25040938. [PMID: 32093126 PMCID: PMC7070486 DOI: 10.3390/molecules25040938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
By using an ensemble-docking strategy, we undertook a large-scale virtual screening campaign in order to identify new putative hits against the MET kinase target. Following a large molecular dynamics sampling of its conformational space, a set of 45 conformers of the kinase was retained as docking targets to take into account the flexibility of the binding site moieties. Our screening funnel started from about 80,000 chemical compounds to be tested in silico for their potential affinities towards the kinase binding site. The top 100 molecules selected—thanks to the molecular docking results—were further analyzed for their interactions, and 25 of the most promising ligands were tested for their ability to inhibit MET activity in cells. F0514-4011 compound was the most efficient and impaired this scattering response to HGF (Hepatocyte Growth Factor) with an IC50 of 7.2 μM. Interestingly, careful docking analysis of this molecule with MET suggests a possible conformation halfway between classical type-I and type-II MET inhibitors, with an additional region of interaction. This compound could therefore be an innovative seed to be repositioned from its initial antiviral purpose towards the field of MET inhibitors. Altogether, these results validate our ensemble docking strategy as a cost-effective functional method for drug development.
Collapse
|
10
|
Santos KB, Guedes IA, Karl ALM, Dardenne LE. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set. J Chem Inf Model 2020; 60:667-683. [PMID: 31922754 DOI: 10.1021/acs.jcim.9b00905] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-peptide interactions play a crucial role in many cellular and biological functions, which justify the increasing interest in the development of peptide-based drugs. However, predicting experimental binding modes and affinities in protein-peptide docking remains a great challenge for most docking programs due to some particularities of this class of ligands, such as the high degree of flexibility. In this paper, we present the performance of the DockThor program on the LEADS-PEP data set, a benchmarking set composed of 53 diverse protein-peptide complexes with peptides ranging from 3 to 12 residues and with up to 51 rotatable bonds. The DockThor performance for pose prediction on redocking studies was compared with some state-of-the-art docking programs that were also evaluated on the LEADS-PEP data set, AutoDock, AutoDock Vina, Surflex, GOLD, Glide, rDock, and DINC, as well as with the task-specific docking protocol HPepDock. Our results indicate that DockThor could dock 40% of the cases with an overall backbone RMSD below 2.5 Å when the top-scored docking pose was considered, exhibiting similar results to Glide and outperforming other protein-ligand docking programs, whereas rDock and HPepDock achieved superior results. Assessing the docking poses closest to the crystal structure (i.e., best-RMSD pose), DockThor achieved a success rate of 60% in pose prediction. Due to the great overall performance of handling peptidic compounds, the DockThor program can be considered as suitable for docking highly flexible and challenging ligands, with up to 40 rotatable bonds. DockThor is freely available as a virtual screening Web server at https://www.dockthor.lncc.br/ .
Collapse
Affiliation(s)
- Karina B Santos
- National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil
| | - Isabella A Guedes
- National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil
| | - Ana L M Karl
- National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil
| | - Laurent E Dardenne
- National Laboratory for Scientific Computing - LNCC , Petrópolis , Rio de Janeiro 25651-075 , Brazil
| |
Collapse
|
11
|
Basciu A, Malloci G, Pietrucci F, Bonvin AMJJ, Vargiu AV. Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape. J Chem Inf Model 2019; 59:1515-1528. [PMID: 30883122 DOI: 10.1021/acs.jcim.8b00730] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding molecular recognition of small molecules by proteins in atomistic detail is key for drug design. Molecular docking is a widely used computational method to mimic ligand-protein association in silico. However, predicting conformational changes occurring in proteins upon ligand binding is still a major challenge. Ensemble docking approaches address this issue by considering a set of different conformations of the protein obtained either experimentally or from computer simulations, e.g., molecular dynamics. However, holo structures prone to host (the correct) ligands are generally poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we introduce a computational approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a set of collective variables that effectively sample different shapes of the binding site, ultimately mimicking the steric effect due to the ligand. We assessed the method on three challenging proteins undergoing different extents of conformational changes upon ligand binding. In all cases our protocol generates a significant fraction of structures featuring a low RMSD from the experimental holo geometry. Moreover, ensemble docking calculations using those conformations yielded in all cases native-like poses among the top-ranked ones.
Collapse
Affiliation(s)
- Andrea Basciu
- Dipartimento di Fisica , Università di Cagliari, Cittadella Universitaria , I- 09042 Monserrato (CA) , Italy
| | - Giuliano Malloci
- Dipartimento di Fisica , Università di Cagliari, Cittadella Universitaria , I- 09042 Monserrato (CA) , Italy
| | - Fabio Pietrucci
- Sorbonne Université , Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC , F-75005 Paris , France
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Attilio V Vargiu
- Dipartimento di Fisica , Università di Cagliari, Cittadella Universitaria , I- 09042 Monserrato (CA) , Italy.,Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
12
|
Zou R, Kuang G, Ågren H, Nordberg A, Långström B, Tu Y. Free Energy Profile for Penetration of Pittsburgh Compound-B into the Amyloid β Fibril. ACS Chem Neurosci 2019; 10:1783-1790. [PMID: 30698013 DOI: 10.1021/acschemneuro.8b00662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The amyloid β (Aβ) fibril is a hallmark of Alzheimer's disease (AD) and has therefore served as an important target for early diagnosis of AD. The Pittsburgh Compound-B (PiB) is one of the most famous positron emission tomography (PET) tracers commonly used for in vivo detection of Aβ fibrils. Many theoretical studies have predicted the existence of various core binding sites with different microenvironments for probes binding to the Aβ fibril. However, little attention has been devoted to how the probes actually penetrate into the different core binding sites. In this study, an integrated molecular modeling scheme is used to study the penetration of PiB into the core binding sites of the Aβ1-42 fibril structure recently obtained by cryogenic electron microscopy. We find that there are two core binding sites for PiB with dramatic differences in cavity size and microenvironment properties, and furthermore that the penetration of PiB into site-1 is energetically prohibitive, whereas the penetration into site-2 is much more favorable. Therefore, the binding capacity at site-2 may be larger than that at site-1 despite its lower binding affinity. Our results thus suggest that site-2 may be a major binding site for PiB binding to Aβ fibril and emphasize the importance to adopt a full dynamical picture when studying tracer-fibril binding problems in general, something that in turn can be used to guide the development of tracers with higher affinity and selectivity for the Aβ fibril.
Collapse
Affiliation(s)
- Rongfeng Zou
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91 Stockholm, Sweden
| | - Guanglin Kuang
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91 Stockholm, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91 Stockholm, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center of Alzheimer Research, Clinical Geriatrics, Neo and Theme Aging, Karolinska University Hospital, Karolinska Institute, 141 83 Huddinge, Sweden
| | - Bengt Långström
- Department of Chemistry—BMC, Physical Organic Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Ricci-López J, Vidal-Limon A, Zunñiga M, Jimènez VA, Alderete JB, Brizuela CA, Aguila S. Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein. PLoS One 2019; 14:e0213028. [PMID: 30875378 PMCID: PMC6420176 DOI: 10.1371/journal.pone.0213028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
High-risk strains of human papillomavirus (HPV) have been identified as the etiologic agent of some anogenital tract, head, and neck cancers. Although prophylactic HPV vaccines have been approved; it is still necessary a drug-based treatment against the infection and its oncogenic effects. The E6 oncoprotein is one of the most studied therapeutic targets of HPV, it has been identified as a key factor in cell immortalization and tumor progression in HPV-positive cells. E6 can promote the degradation of p53, a tumor suppressor protein, through the interaction with the cellular ubiquitin ligase E6AP. Therefore, preventing the formation of the E6-E6AP complex is one of the main strategies to inhibit the viability and proliferation of infected cells. Herein, we propose an in silico pipeline to identify small-molecule inhibitors of the E6-E6AP interaction. Virtual screening was carried out by predicting the ADME properties of the molecules and performing ensemble-based docking simulations to E6 protein followed by binding free energy estimation through MM/PB(GB)SA methods. Finally, the top-three compounds were selected, and their stability in the E6 docked complex and their effect in the inhibition of the E6-E6AP interaction was corroborated by molecular dynamics simulation. Therefore, this pipeline and the identified molecules represent a new starting point in the development of anti-HPV drugs.
Collapse
Affiliation(s)
- Joel Ricci-López
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mèxico, Ensenada, Baja California, México
| | - Abraham Vidal-Limon
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mèxico, Ensenada, Baja California, México
| | - Matías Zunñiga
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Chile
| | - Verónica A. Jimènez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | | | - Sergio Aguila
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mèxico, Ensenada, Baja California, México
| |
Collapse
|
14
|
Ahinko M, Niinivehmas S, Jokinen E, Pentikäinen OT. Suitability ofMMGBSAfor the selection of correct ligand binding modes from docking results. Chem Biol Drug Des 2018; 93:522-538. [DOI: 10.1111/cbdd.13446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Mira Ahinko
- Department of Biological and Environmental Science & Nanoscience CenterUniversity of Jyvaskyla, MedChem.fi Jyvaskyla Finland
| | - Sanna Niinivehmas
- Department of Biological and Environmental Science & Nanoscience CenterUniversity of Jyvaskyla, MedChem.fi Jyvaskyla Finland
- Institute of Biomedicine, Integrative Physiology and PharmacologyUniversity of Turku, MedChem.fi Turku Finland
| | - Elmeri Jokinen
- Institute of Biomedicine, Integrative Physiology and PharmacologyUniversity of Turku, MedChem.fi Turku Finland
| | - Olli T. Pentikäinen
- Department of Biological and Environmental Science & Nanoscience CenterUniversity of Jyvaskyla, MedChem.fi Jyvaskyla Finland
- Institute of Biomedicine, Integrative Physiology and PharmacologyUniversity of Turku, MedChem.fi Turku Finland
| |
Collapse
|
15
|
Xie B, Clark JD, Minh DDL. Efficiency of Stratification for Ensemble Docking Using Reduced Ensembles. J Chem Inf Model 2018; 58:1915-1925. [PMID: 30114370 PMCID: PMC6338335 DOI: 10.1021/acs.jcim.8b00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular docking can account for receptor flexibility by combining the docking score over multiple rigid receptor conformations, such as snapshots from a molecular dynamics simulation. Here, we evaluate a number of common snapshot selection strategies using a quality metric from stratified sampling, the efficiency of stratification, which compares the variance of a selection strategy to simple random sampling. We also extend the metric to estimators of exponential averages (which involve an exponential transformation, averaging, and inverse transformation) and minima. For docking sets of over 500 ligands to four different proteins of varying flexibility, we observe that, for estimating ensemble averages and exponential averages, many clustering algorithms have similar performance trends: for a few snapshots (less than 25), medoids are the most efficient, while, for a larger number, optimal (the allocation that minimizes the variance) and proportional (to the size of each cluster) allocation become more efficient. Proportional allocation appears to be the most consistently efficient for estimating minima.
Collapse
Affiliation(s)
- Bing Xie
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - John D. Clark
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
16
|
Berishvili VP, Voronkov AE, Radchenko EV, Palyulin VA. Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors. Mol Inform 2018; 37:e1800030. [DOI: 10.1002/minf.201800030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/28/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Vladimir P. Berishvili
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1/3 Moscow 119991 Russia
| | - Andrew E. Voronkov
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1/3 Moscow 119991 Russia
- Digital BioPharm Ltd.; Hovseterveien 42 A, H0301 Oslo 0768 Norway
| | - Eugene V. Radchenko
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1/3 Moscow 119991 Russia
| | - Vladimir A. Palyulin
- Department of Chemistry; Lomonosov Moscow State University; Leninskie gory 1/3 Moscow 119991 Russia
| |
Collapse
|
17
|
Petrović D, Bokel A, Allan M, Urlacher VB, Strodel B. Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation. J Chem Inf Model 2018. [PMID: 29522682 DOI: 10.1021/acs.jcim.8b00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Engineering high chemo-, regio-, and stereoselectivity is a prerequisite for enzyme usage in organic synthesis. Cytochromes P450 can oxidize a broad range of substrates, including macrocycles, which are becoming popular scaffolds for therapeutic agents. However, a large conformational space explored by macrocycles not only reduces the selectivity of oxidation but also impairs computational enzyme design strategies based on docking and molecular dynamics (MD) simulations. We present a novel design workflow that uses enhanced-sampling Hamiltonian replica exchange (HREX) MD and focuses on quantifying the substrate binding for suggesting the mutations to be made. This computational approach is applied to P450 BM3 with the aim to shift regioselectively toward one of the numerous possible positions during β-cembrenediol oxidation. The predictions are experimentally tested and the resulting product distributions validate our design strategy, as single mutations led up to 5-fold regioselectivity increases. We thus conclude that the HREX-MD-based workflow is a promising tool for the identification of positions for mutagenesis aiming at P450 enzymes with improved regioselectivity.
Collapse
Affiliation(s)
- Dušan Petrović
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Ansgar Bokel
- Institute of Biochemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Matthew Allan
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany.,Schreyer Honors College , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Vlada B Urlacher
- Institute of Biochemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| |
Collapse
|