1
|
Rendulić T, Alves J, Azevedo-Silva J, Soares-Silva I, Casal M. New insights into the acetate uptake transporter (AceTr) family: Unveiling amino acid residues critical for specificity and activity. Comput Struct Biotechnol J 2021; 19:4412-4425. [PMID: 34471488 PMCID: PMC8379382 DOI: 10.1016/j.csbj.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
Substrate specificity of Ato1 was engineered by altering its pore size. The L219A and F98A substitutions enable succinic acid transport activity of Ato1. Ato1 E144A substitution causes dominant negative organic acid hypersensitivity. Organic acid hypersensitivity is caused by the hyperactive ATO1 transporter alleles. First report of a fully functional bacterial transporter (SatP) in yeast.
Aiming at improving the transport of biotechnologically relevant carboxylic acids in engineered microbial cell factories, the focus of this work was to study plasma membrane transporters belonging to the Acetate Uptake Transporter (AceTr) family. Ato1 and SatP, members of this family from Saccharomyces cerevisiae and Escherichia coli, respectively, are the main acetate transporters in these species. The analysis of conserved amino acid residues within AceTr family members combined with the study of Ato1 3D model based on SatP, was the rationale for selection of site-directed mutagenesis targets. The library of Ato1-GFP mutant alleles was functionally analysed in the S. cerevisiae IMX1000 strain which shows residual growth in all carboxylic acids tested. A gain of function phenotype was found for mutations in the residues F98 and L219 located at the central constrictive site of the pore, enabling cells to grow on lactic and on succinic acid. This phenotype was associated with an increased transport activity for these substrates. A dominant negative acetic acid hypersensitivity was induced in S. cerevisiae cells expressing the E144A mutant, which was associated with an increased acetic acid uptake. By utilizing computer-assisted 3D-modelling tools we highlight structural features that explain the acquired traits found in the analysed Ato1 mutants. Additionally, we achieved the proper expression of the Escherichia coli SatP, a homologue of Ato1, in S. cerevisiae. To our knowledge, this constitutes the first report of a fully functional bacterial plasma membrane transporter protein in yeast cells.
Collapse
Affiliation(s)
- Toni Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - João Alves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - João Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
| |
Collapse
|
2
|
Dong XQ, Lin JY, Wang PF, Li Y, Wang J, Li B, Liao J, Lu JX. Solid-State NMR Studies of the Succinate-Acetate Permease from Citrobacter Koseri in Liposomes and Native Nanodiscs. Life (Basel) 2021; 11:life11090908. [PMID: 34575058 PMCID: PMC8471396 DOI: 10.3390/life11090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
The succinate-acetate permease (SatP) is an anion channel with six transmembrane domains. It forms different oligomers, especially hexamers in the detergent as well as in the membrane. Solid-state NMR studies of SatP were carried out successfully on SatP complexes by reconstructing the protein into liposomes or retaining the protein in the native membrane of E. coli., where it was expressed. The comparison of 13C-13C 2D correlation spectra between the two samples showed great similarity, opening the possibility to further study the acetate transport mechanism of SatP in its native membrane environment. Solid-state NMR studies also revealed small chemical shift differences of SatP in the two different membrane systems, indicating the importance of the lipid environment in determining the membrane protein structures and dynamics. Combining different 2D SSNMR spectra, chemical shift assignments were made on some sites, consistent with the helical structures in the transmembrane domains. In the end, we pointed out the limitation in the sensitivity for membrane proteins with such a size, and also indicated possible ways to overcome it.
Collapse
Affiliation(s)
- Xing-Qi Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Yu Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
| | - Bing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
| | - Jun Liao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.-Q.D.); (J.-Y.L.); (P.-F.W.); (Y.L.); (J.W.); (B.L.); (J.L.)
- Correspondence:
| |
Collapse
|
3
|
Jiang W, Lin YC, Botello-Smith W, Contreras JE, Harris AL, Maragliano L, Luo YL. Free energy and kinetics of cAMP permeation through connexin26 via applied voltage and milestoning. Biophys J 2021; 120:2969-2983. [PMID: 34214529 DOI: 10.1016/j.bpj.2021.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
The connexin family is a diverse group of highly regulated wide-pore channels permeable to biological signaling molecules. Despite the critical roles of connexins in mediating selective molecular signaling in health and disease, the basis of molecular permeation through these pores remains unclear. Here, we report the thermodynamics and kinetics of binding and transport of a second messenger, adenosine-3',5'-cyclophosphate (cAMP), through a connexin26 hemichannel (Cx26). First, inward and outward fluxes of cAMP molecules solvated in KCl solution were obtained from 4 μs of ± 200 mV simulations. These fluxes data yielded a single-channel permeability of cAMP and cAMP/K+ permeability ratio consistent with experimentally measured values. The results from voltage simulations were then compared with the potential of mean force (PMF) and the mean first passage times (MFPTs) of a single cAMP without voltage, obtained from a total of 16.5 μs of Voronoi-tessellated Markovian milestoning simulations. Both the voltage simulations and the milestoning simulations revealed two cAMP-binding sites, for which the binding constants KD and dissociation rates koff were computed from PMF and MFPTs. The protein dipole inside the pore produces an asymmetric PMF, reflected in unequal cAMP MFPTs in each direction once within the pore. The free energy profiles under opposite voltages were derived from the milestoning PMF and revealed the interplay between voltage and channel polarity on the total free energy. In addition, we show how these factors influence the cAMP dipole vector during permeation, and how cAMP affects the local and nonlocal pore diameter in a position-dependent manner.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Yi-Chun Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Wesley Botello-Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California.
| | - Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| | - Luca Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Yun Lyna Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
4
|
Ming T, Wu Y, Huan H, Jiang Q, Su C, Lu C, Zhou J, Li Y, Su X. Integrative proteomics and metabolomics profiling of the protective effects of Phascolosoma esculent ferritin on BMSCs in Cd(II) injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111995. [PMID: 33529923 DOI: 10.1016/j.ecoenv.2021.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Ferritin is the major intracellular iron storage protein and is essential for iron homeostasis and detoxification. Cadmium affects cellular homeostasis and induces cell toxicity via sophisticated mechanisms. Here, we aimed to explore the mechanisms of cytoprotective effect of Phascolosoma esculenta ferritin (PeFer) on Cd(II)-induced bone marrow mesenchymal stem cell (BMSC) injury. Herein, the effects of different treated groups on apoptosis and cell cycle were assessed using flow cytometric analysis. We further investigated the alterations of the three groups using integrative 2-DE-based proteomics and 1H NMR-based metabolomics profiles. The results indicate that PeFer reduces BMSC apoptosis induced by Cd(II) and delays G0/G1 cell cycle progression. A total of 19 proteins and 70 metabolites were significantly different among BMSC samples of the three groups. Notably, multiomics analysis revealed that Cd(II) might perturb the ER stress-mediated apoptosis pathway and disrupt biological processes related to the TCA cycle, amino acid metabolism, purine and pyrimidine metabolism, thereby suppressing the cell growth rate and initiating apoptosis; however, the addition of PeFer might protect BMSCs against cell apoptosis to improve cell survival by enhancing energy metabolism. This study provides a better understanding of the underlying molecular mechanisms of the protective effect of PeFer in BMSCs against Cd(II) injury.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, Zhejiang 315800, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
5
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
6
|
Abstract
Opportunistic pathogens such as Candida species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, we cover the physiology and regulation of these proteins and their potential role in Candida virulence. Opportunistic pathogens such as Candida species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, we cover the physiology and regulation of these proteins and their potential role in Candida virulence. This review also presents an evolutionary analysis of orthologues of the Saccharomyces cerevisiae Jen1 lactate and Ady2 acetate transporters, including a phylogenetic analysis of 101 putative carboxylate transporters in twelve medically relevant Candida species. These proteins are assigned to distinct clades according to their amino acid sequence homology and represent the major carboxylic acid uptake systems in yeast. While Jen transporters belong to the sialate:H+ symporter (SHS) family, the Ady2 homologue members are assigned to the acetate uptake transporter (AceTr) family. Here, we reclassify the later members as ATO (acetate transporter ortholog). The new nomenclature will facilitate the study of these transporters, as well as the analysis of their relevance for Candida pathogenesis.
Collapse
|
7
|
Wahab HA, Amaro RE, Cournia Z. A Celebration of Women in Computational Chemistry. J Chem Inf Model 2019; 59:1683-1692. [DOI: 10.1021/acs.jcim.9b00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 3234 Urey Hall, #0340, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|