1
|
Mlýnský V, Kührová P, Pykal M, Krepl M, Stadlbauer P, Otyepka M, Banáš P, Šponer J. Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of the UUCG RNA Tetraloop and Other Systems. J Chem Theory Comput 2025; 21:4183-4202. [PMID: 39813107 PMCID: PMC12020377 DOI: 10.1021/acs.jctc.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Molecular dynamics (MD) simulations are an important and well-established tool for investigating RNA structural dynamics, but their accuracy relies heavily on the quality of the employed force field (ff). In this work, we present a comprehensive evaluation of widely used pair-additive and polarizable RNA ffs using the challenging UUCG tetraloop (TL) benchmark system. Extensive standard MD simulations, initiated from the NMR structure of the 14-mer UUCG TL, revealed that most ffs did not maintain the native state, instead favoring alternative loop conformations. Notably, three very recent variants of pair-additive ffs, OL3CP-gHBfix21, DES-Amber, and OL3R2.7, successfully preserved the native structure over a 10 × 20 μs time scale. To further assess these ffs, we performed enhanced sampling folding simulations of the shorter 8-mer UUCG TL, starting from the single-stranded conformation. Estimated folding free energies (ΔG°fold) varied significantly among these three ffs, with values of 0.0 ± 0.6, 2.4 ± 0.8, and 7.4 ± 0.2 kcal/mol for OL3CP-gHBfix21, DES-Amber, and OL3R2.7, respectively. The ΔG°fold value predicted by the OL3CP-gHBfix21 ff was closest to experimental estimates, ranging from -1.6 to -0.7 kcal/mol. In contrast, the higher ΔG°fold values obtained using DES-Amber and OL3R2.7 were unexpected, suggesting that key interactions are inaccurately described in the folded, unfolded, or misfolded ensembles. These discrepancies led us to further test DES-Amber and OL3R2.7 ffs on additional RNA and DNA systems, where further performance issues were observed. Our results emphasize the complexity of accurately modeling RNA dynamics and suggest that creating an RNA ff capable of reliably performing across a wide range of RNA systems remains extremely challenging. In conclusion, our study provides valuable insights into the capabilities of current RNA ffs and highlights key areas for future ff development.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Petra Kührová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Regional
Center of Advanced Technologies and Materials, The Czech Advanced
Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Martin Pykal
- Regional
Center of Advanced Technologies and Materials, The Czech Advanced
Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional
Center of Advanced Technologies and Materials, The Czech Advanced
Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations,
VSB−Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Pavel Banáš
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Regional
Center of Advanced Technologies and Materials, The Czech Advanced
Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations,
VSB−Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Paloncýová M, Valério M, Dos Santos RN, Kührová P, Šrejber M, Čechová P, Dobchev DA, Balsubramani A, Banáš P, Agarwal V, Souza PCT, Otyepka M. Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery. Mol Pharm 2025; 22:1110-1141. [PMID: 39879096 PMCID: PMC11881150 DOI: 10.1021/acs.molpharmaceut.4c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Mariana Valério
- Laboratoire
de Biologie et Modélisation de la Cellule, CNRS, UMR 5239,
Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre Blaise
Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
| | | | - Petra Kührová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Martin Šrejber
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Petra Čechová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | | | - Akshay Balsubramani
- mRNA Center
of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
| | - Pavel Banáš
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Vikram Agarwal
- mRNA Center
of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
| | - Paulo C. T. Souza
- Laboratoire
de Biologie et Modélisation de la Cellule, CNRS, UMR 5239,
Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre Blaise
Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
| | - Michal Otyepka
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations,
VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
3
|
Janeček M, Kührová P, Mlýnský V, Stadlbauer P, Otyepka M, Bussi G, Šponer J, Banáš P. Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space. J Comput Chem 2025; 46:e27535. [PMID: 39653644 PMCID: PMC11628365 DOI: 10.1002/jcc.27535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
Collapse
Affiliation(s)
- Michal Janeček
- Department of Physical Chemistry, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Petr Stadlbauer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSATriesteItaly
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| |
Collapse
|
4
|
Asediya VS, Anjaria PA, Mathakiya RA, Koringa PG, Nayak JB, Bisht D, Fulmali D, Patel VA, Desai DN. Vaccine development using artificial intelligence and machine learning: A review. Int J Biol Macromol 2024; 282:136643. [PMID: 39426778 DOI: 10.1016/j.ijbiomac.2024.136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The COVID-19 pandemic has underscored the critical importance of effective vaccines, yet their development is a challenging and demanding process. It requires identifying antigens that elicit protective immunity, selecting adjuvants that enhance immunogenicity, and designing delivery systems that ensure optimal efficacy. Artificial intelligence (AI) can facilitate this process by using machine learning methods to analyze large and diverse datasets, suggest novel vaccine candidates, and refine their design and predict their performance. This review explores how AI can be applied to various aspects of vaccine development, such as predicting immune response from protein sequences, discovering adjuvants, optimizing vaccine doses, modeling vaccine supply chains, and predicting protein structures. We also address the challenges and ethical issues that emerge from the use of AI in vaccine development, such as data privacy, algorithmic bias, and health data sensitivity. We contend that AI has immense potential to accelerate vaccine development and respond to future pandemics, but it also requires careful attention to the quality and validity of the data and methods used.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepanker Bisht
- Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | | |
Collapse
|
5
|
Muscat S, Martino G, Manigrasso J, Marcia M, De Vivo M. On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules. J Chem Theory Comput 2024. [PMID: 39150960 DOI: 10.1021/acs.jctc.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
RNA molecules play a vital role in biological processes within the cell, with significant implications for science and medicine. Notably, the biological functions exerted by specific RNA molecules are often linked to the RNA conformational ensemble. However, the experimental characterization of such three-dimensional RNA structures is challenged by the structural heterogeneity of RNA and by its multiple dynamic interactions with binding partners such as small molecules, proteins, and metal ions. Consequently, our current understanding of the structure-function relationship of RNA molecules is still limited. In this context, we highlight molecular dynamics (MD) simulations as a powerful tool to complement experimental efforts on RNAs. Despite the recognized limitations of current force fields for RNA MD simulations, examining the dynamics of selected RNAs has provided valuable functional insights into their structures.
Collapse
Affiliation(s)
- Stefano Muscat
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jacopo Manigrasso
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Mölndal, Sweden
| | - Marco Marcia
- European Molecular Biology Laboratory Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
6
|
Li Z, Song G, Zhu J, Mu J, Sun Y, Hong X, Choi T, Cui X, Chen HF. Excited-Ground-State Transition of the RNA Strand Slippage Mechanism Captured by the Base-Specific Force Field. J Chem Theory Comput 2024; 20:6082-6097. [PMID: 38980289 DOI: 10.1021/acs.jctc.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Excited-ground-state transition and strand slippage of RNA play key roles in transcription and translation of central dogma. Due to limitation of current experimental techniques, the dynamic structure ensembles of RNA remain inadequately understood. Molecular dynamics simulations offer a promising complementary approach, whose accuracy depends on the force field. Here, we develop the new version of RNA base-specific force field (BSFF2) to address underestimation of base pairing stability and artificial backbone conformations. Extensive evaluations on typical RNA systems have comprehensively confirmed the accuracy of BSFF2. Furthermore, BSFF2 demonstrates exceptional efficiency in de novo folding of tetraloops and reproducing base pair reshuffling transition between RNA excited and ground states. Then, we explored the RNA strand slippage mechanism with BSFF2. We conducted a comprehensive three-dimensional structural investigation into the strand slippage of the most complex r(G4C2)9 repeat element and presented the molecular details in the dynamic transition along with the underlying mechanism. Our results of capturing the strand slippage, excited-ground transition, de novo folding, and simulations for various typical RNA motifs indicate that BSFF2 should be one of valuable tools for dynamic conformation research and structure prediction of RNA, and a future contribution to RNA-targeted drug design as well as RNA therapy development.
Collapse
Affiliation(s)
- Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjie Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxi Mu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Taeyoung Choi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic Developmental Sciences, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Choi T, Li Z, Song G, Chen HF. Comprehensive Comparison and Critical Assessment of RNA-Specific Force Fields. J Chem Theory Comput 2024; 20:2676-2688. [PMID: 38447040 DOI: 10.1021/acs.jctc.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Molecular dynamics simulations play a pivotal role in elucidating the dynamic behaviors of RNA structures, offering a valuable complement to traditional methods such as nuclear magnetic resonance or X-ray. Despite this, the current precision of RNA force fields lags behind that of protein force fields. In this work, we systematically compared the performance of four RNA force fields (ff99bsc0χOL3, AMBERDES, ff99OL3_CMAP1, AMBERMaxEnt) across diverse RNA structures. Our findings highlight significant challenges in maintaining stability, particularly with regard to cross-strand and cross-loop hydrogen bonds. Furthermore, we observed the limitations in accurately describing the conformations of nonhelical structural motif, terminal nucleotides, and also base pairing and base stacking interactions by the tested RNA force fields. The identified deficiencies in existing RNA force fields provide valuable insights for subsequent force field development. Concurrently, these findings offer recommendations for selecting appropriate force fields in RNA simulations.
Collapse
Affiliation(s)
- Taeyoung Choi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Gilardoni I, Fröhlking T, Bussi G. Boosting Ensemble Refinement with Transferable Force-Field Corrections: Synergistic Optimization for Molecular Simulations. J Phys Chem Lett 2024; 15:1204-1210. [PMID: 38272001 DOI: 10.1021/acs.jpclett.3c03423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A novel method combining the force-field fitting approach and ensemble refinement by the maximum entropy principle is presented. Its formulation allows us to continuously interpolate between these two methods, which can thus be interpreted as two limiting cases. A cross-validation procedure enables us to correctly assess the relative weight of both of them, distinguishing scenarios in which the combined approach is meaningful from those in which either ensemble refinement or force-field fitting separately prevails. The efficacy of their combination is examined for a realistic case study of RNA oligomers. Within the new scheme, molecular dynamics simulations are integrated with experimental data provided by nuclear magnetic resonance measures. We show that force-field corrections are in general superior when applied to the appropriate force-field terms but are automatically discarded by the method when applied to inappropriate force-field terms.
Collapse
Affiliation(s)
- Ivan Gilardoni
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Thorben Fröhlking
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
9
|
Ormazábal A, Palma J, Pierdominici-Sottile G. Dynamics and Function of sRNA/mRNAs Under the Scrutiny of Computational Simulation Methods. Methods Mol Biol 2024; 2741:207-238. [PMID: 38217656 DOI: 10.1007/978-1-0716-3565-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Molecular dynamics simulations have proved extremely useful in investigating the functioning of proteins with atomic-scale resolution. Many applications to the study of RNA also exist, and their number increases by the day. However, implementing MD simulations for RNA molecules in solution faces challenges that the MD practitioner must be aware of for the appropriate use of this tool. In this chapter, we present the fundamentals of MD simulations, in general, and the peculiarities of RNA simulations, in particular. We discuss the strengths and limitations of the technique and provide examples of its application to elucidate small RNA's performance.
Collapse
Affiliation(s)
- Agustín Ormazábal
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Juliana Palma
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Gustavo Pierdominici-Sottile
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
10
|
Mlýnský V, Kührová P, Stadlbauer P, Krepl M, Otyepka M, Banáš P, Šponer J. Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations. J Chem Theory Comput 2023; 19:8423-8433. [PMID: 37944118 PMCID: PMC10687871 DOI: 10.1021/acs.jctc.3c00990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Molecular dynamics (MD) simulations represent an established tool to study RNA molecules. The outcome of MD studies depends, however, on the quality of the force field (ff). Here we suggest a correction for the widely used AMBER OL3 ff by adding a simple adjustment of the nonbonded parameters. The reparameterization of the Lennard-Jones potential for the -H8···O5'- and -H6···O5'- atom pairs addresses an intranucleotide steric clash occurring in the type 0 base-phosphate interaction (0BPh). The nonbonded fix (NBfix) modification of 0BPh interactions (NBfix0BPh modification) was tuned via a reweighting approach and subsequently tested using an extensive set of standard and enhanced sampling simulations of both unstructured and folded RNA motifs. The modification corrects minor but visible intranucleotide clash for the anti nucleobase conformation. We observed that structural ensembles of small RNA benchmark motifs simulated with the NBfix0BPh modification provide better agreement with experiments. No side effects of the modification were observed in standard simulations of larger structured RNA motifs. We suggest that the combination of OL3 RNA ff and NBfix0BPh modification is a viable option to improve RNA MD simulations.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| | - Petra Kührová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
- Czech
Advanced Technology and Research Institute, CATRIN, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
- Czech
Advanced Technology and Research Institute, CATRIN, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
- Czech
Advanced Technology and Research Institute, CATRIN, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| | - Michal Otyepka
- Czech
Advanced Technology and Research Institute, CATRIN, Křížkovského 511/8, Olomouc 779 00, Czech Republic
- IT4Innovations, VSB−Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Pavel Banáš
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
- Czech
Advanced Technology and Research Institute, CATRIN, Křížkovského 511/8, Olomouc 779 00, Czech Republic
- IT4Innovations, VSB−Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic
| |
Collapse
|
11
|
Liebl K, Zacharias M. The development of nucleic acids force fields: From an unchallenged past to a competitive future. Biophys J 2023; 122:2841-2851. [PMID: 36540025 PMCID: PMC10398263 DOI: 10.1016/j.bpj.2022.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Molecular dynamics simulations have strongly matured as a method to study biomolecular processes. Their validity, however, is determined by the accuracy of the underlying force fields that describe the forces between all atoms. In this article, we review the development of nucleic acids force fields. We describe the early attempts in the 1990s and emphasize their strong influence on recent force fields. State-of-the-art force fields still use the same Lennard-Jones parameters derived 25 years ago in spite of the fact that these parameters were in general not fitted for nucleic acids. In addition, electrostatic parameters also are deprecated, which may explain some of the current force field deficiencies. We compare different force fields for various systems and discuss new tests of the recently developed Tumuc1 force field. The OL-force fields and Tumuc1 are arguably the best force fields to describe the DNA double helix. However, no force field is flawless. In particular, the description of sugar-puckering remains a problem for nucleic acids force fields. Future refinements are required, so we review methods for force field refinement and give an outlook to the future of force fields.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Bernetti M, Bussi G. Integrating experimental data with molecular simulations to investigate RNA structural dynamics. Curr Opin Struct Biol 2023; 78:102503. [PMID: 36463773 DOI: 10.1016/j.sbi.2022.102503] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
Conformational dynamics is crucial for ribonucleic acid (RNA) function. Techniques such as nuclear magnetic resonance, cryo-electron microscopy, small- and wide-angle X-ray scattering, chemical probing, single-molecule Förster resonance energy transfer, or even thermal or mechanical denaturation experiments probe RNA dynamics at different time and space resolutions. Their combination with accurate atomistic molecular dynamics (MD) simulations paves the way for quantitative and detailed studies of RNA dynamics. First, experiments provide a quantitative validation tool for MD simulations. Second, available data can be used to refine simulated structural ensembles to match experiments. Finally, comparison with experiments allows for improving MD force fields that are transferable to new systems for which data is not available. Here we review the recent literature and provide our perspective on this field.
Collapse
Affiliation(s)
- Mattia Bernetti
- Computational and Chemical Biology, Italian Institute of Technology, 16152 Genova, Italy; Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
13
|
Kasprzak WK, Shapiro BA. Application of Molecular Dynamics to Expand Docking Program's Exploratory Capabilities and to Evaluate Its Predictions. Methods Mol Biol 2023; 2568:75-101. [PMID: 36227563 DOI: 10.1007/978-1-0716-2687-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recognition of the growing importance of RNA as a target for therapeutic or diagnostic ligands brings the importance of computational predictions of docking poses to such receptors to the forefront. Most docking programs have been optimized for protein targets, based on a relatively rich pool of known docked protein structures. Unfortunately, despite progress, numbers of known docked RNA complexes are low and the accuracy of the computational predictions trained on those inadequate samples lags behind that achieved for proteins. Compared to proteins, RNA structures generally have fewer docking pockets, have less diverse electrostatic surfaces, and are more flexible, raising the possibility of producing only transiently available good docking targets. We are presenting a docking prediction protocol that adds molecular dynamics simulations before and after the actual docking in order to explore the conformational space of the target RNA and then to reevaluate the stability of the predicted RNA-ligand complex. In this way we are attempting to overcome important limitations of the docking programs: the rigid (fully or mostly) target structure and imperfect nature of the docking scoring functions.
Collapse
Affiliation(s)
- Wojciech K Kasprzak
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
14
|
Krepl M, Pokorná P, Mlýnský V, Stadlbauer P, Šponer J. Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field. Nucleic Acids Res 2022; 50:12480-12496. [PMID: 36454011 PMCID: PMC9757038 DOI: 10.1093/nar/gkac1106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Recognition of single-stranded RNA (ssRNA) by RNA recognition motif (RRM) domains is an important class of protein-RNA interactions. Many such complexes were characterized using nuclear magnetic resonance (NMR) and/or X-ray crystallography techniques, revealing ensemble-averaged pictures of the bound states. However, it is becoming widely accepted that better understanding of protein-RNA interactions would be obtained from ensemble descriptions. Indeed, earlier molecular dynamics simulations of bound states indicated visible dynamics at the RNA-RRM interfaces. Here, we report the first atomistic simulation study of spontaneous binding of short RNA sequences to RRM domains of HuR and SRSF1 proteins. Using a millisecond-scale aggregate ensemble of unbiased simulations, we were able to observe a few dozen binding events. HuR RRM3 utilizes a pre-binding state to navigate the RNA sequence to its partially disordered bound state and then to dynamically scan its different binding registers. SRSF1 RRM2 binding is more straightforward but still multiple-pathway. The present study necessitated development of a goal-specific force field modification, scaling down the intramolecular van der Waals interactions of the RNA which also improves description of the RNA-RRM bound state. Our study opens up a new avenue for large-scale atomistic investigations of binding landscapes of protein-RNA complexes, and future perspectives of such research are discussed.
Collapse
Affiliation(s)
| | - Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
15
|
Jing Z, Ren P. Molecular Dynamics Simulations of Protein RNA Complexes by Using an Advanced Electrostatic Model. J Phys Chem B 2022; 126:7343-7353. [PMID: 36107618 PMCID: PMC9530969 DOI: 10.1021/acs.jpcb.2c05278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-RNA interactions are integral to the biological functions of RNA. It is well recognized that molecular dynamics (MD) simulations of protein-RNA complexes are more challenging than those of each component. The difficulty arises from the strong electrostatic interactions and the delicate balance between various types of physical forces at the interface. Previously, MD simulations of protein-RNA complexes have predominantly employed fixed-charge force fields. Although force field modifications have been developed to address problems identified in the simulations, some protein-RNA structures are still hard to reproduce by simulations. Here, we present MD simulations of two representative protein-RNA complexes using the AMOEBA polarizable force field. The van der Waals parameters were refined to reproduce accurate quantum-mechanical data of base-base and base-amino acid interactions. It was found that the refined parameters produced a more stable hydrogen-bond network in the interface. One of the complexes remained stable during the short simulations, whereas it could quickly break down in previous simulations using fixed-charge force fields. There was reversible breaking and formation of hydrogen bonds that are observed in the crystal structure, which may indicate the difference in solution and crystal structures. While further improvement and validation of the force fields are still needed, this work demonstrates that polarizable force fields are promising for the study of protein-RNA complexes.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Base-specific RNA force field improving the dynamics conformation of nucleotide. Int J Biol Macromol 2022; 222:680-690. [PMID: 36167105 DOI: 10.1016/j.ijbiomac.2022.09.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
RNA plays a key role in numerous biological processes. Traditional experimental methods have difficulties capturing the structure and dynamic conformation of RNA. Thus, Molecular dynamic simulations (MDs) has become an essential complementary for RNA experiment. However, state-of-the-art RNA force fields have two major limitations of overestimation base stacking propensity and generation of a high ratio of intercalated conformations. Therefore, a two-step strategy was used to optimize the parameters of ff99bsc0χOL3 (named BSFF1) to improve these limitations, which as well adjusted the unbonded parameters of nucleobase heavy atoms and added ζ/α grid-based energy correction map energy term with reweighting. MD simulations of tetranucleotides indicate that BSFF1 can significantly decrease the ratio of intercalated conformations. Tests of single-strand RNA and kink-turn show that BSFF1 force field can reproduce more accurate conformers than ff99bsc0χOL3 force field. BSFF1 can also stabilize the conformers of duplex and riboswitch. The successful ab initio folding of tetraloop further supports the performance of BSFF1. These findings confirm that the newly developed force field BSFF1 can improve the conformer sampling of RNA.
Collapse
|
17
|
Chen YL, He W, Kirmizialtin S, Pollack L. Insights into the structural stability of major groove RNA triplexes by WAXS-guided MD simulations. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100971. [PMID: 35936555 PMCID: PMC9351628 DOI: 10.1016/j.xcrp.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA triple helices are commonly observed tertiary motifs that are associated with critical biological functions, including signal transduction. Because the recognition of their biological importance is relatively recent, their full range of structural properties has not yet been elucidated. The integration of solution wide-angle X-ray scattering (WAXS) with molecular dynamics (MD) simulations, described here, provides a new way to capture the structures of major-groove RNA triplexes that evade crystallographic characterization. This method yields excellent agreement between measured and computed WAXS profiles and allows for an atomically detailed visualization of these motifs. Using correlation maps, the relationship between well-defined features in the scattering profiles and real space characteristics of RNA molecules is defined, including the subtle conformational variations in the double-stranded RNA upon the incorporation of a third strand by base triples. This readily applicable approach has the potential to provide insight into interactions that stabilize RNA tertiary structure that enables function.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Department of Chemistry, New York University, New York, NY 10003, USA
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- These authors contributed equally
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Lead contact
| |
Collapse
|
18
|
Tucker MR, Piana S, Tan D, LeVine MV, Shaw DE. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. J Phys Chem B 2022; 126:4442-4457. [PMID: 35694853 PMCID: PMC9234960 DOI: 10.1021/acs.jpcb.1c10971] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although molecular
dynamics (MD) simulations have been used extensively
to study the structural dynamics of proteins, the role of MD simulation
in studies of nucleic acid based systems has been more limited. One
contributing factor to this disparity is the historically lower level
of accuracy of the physical models used in such simulations to describe
interactions involving nucleic acids. By modifying nonbonded and torsion
parameters of a force field from the Amber family of models, we recently
developed force field parameters for RNA that achieve a level of accuracy
comparable to that of state-of-the-art protein force fields. Here
we report force field parameters for DNA, which we developed by transferring
nonbonded parameters from our recently reported RNA force field and
making subsequent adjustments to torsion parameters. We have also
modified the backbone charges in both the RNA and DNA parameter sets
to make the treatment of electrostatics compatible with our recently
developed variant of the Amber protein and ion force field. We name
the force field resulting from the union of these three parameter
sets (the new DNA parameters, the revised RNA parameters, and the
existing protein and ion parameters) DES-Amber. Extensive
testing of DES-Amber indicates that it can describe the thermal stability
and conformational flexibility of single- and double-stranded DNA
systems with a level of accuracy comparable to or, especially for
disordered systems, exceeding that of state-of-the-art nucleic acid
force fields. Finally, we show that, in certain favorable cases, DES-Amber
can be used for long-timescale simulations of protein–nucleic
acid complexes.
Collapse
Affiliation(s)
| | - Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - Dazhi Tan
- D. E. Shaw Research, New York, New York 10036, United States
| | | | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
19
|
Fröhlking T, Mlýnský V, Janeček M, Kührová P, Krepl M, Banáš P, Šponer J, Bussi G. Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field. J Chem Theory Comput 2022; 18:4490-4502. [PMID: 35699952 PMCID: PMC9281393 DOI: 10.1021/acs.jctc.2c00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
The
capability of
current force fields to reproduce RNA structural
dynamics is limited. Several methods have been developed to take advantage
of experimental data in order to enforce agreement with experiments.
Here, we extend an existing framework which allows arbitrarily chosen
force-field correction terms to be fitted by quantification of the
discrepancy between observables back-calculated from simulation and
corresponding experiments. We apply a robust regularization protocol
to avoid overfitting and additionally introduce and compare a number
of different regularization strategies, namely, L1, L2, Kish size,
relative Kish size, and relative entropy penalties. The training set
includes a GACC tetramer as well as more challenging systems, namely,
gcGAGAgc and gcUUCGgc RNA tetraloops. Specific intramolecular hydrogen
bonds in the AMBER RNA force field are corrected with automatically
determined parameters that we call gHBfixopt. A validation
involving a separate simulation of a system present in the training
set (gcUUCGgc) and new systems not seen during training (CAAU and
UUUU tetramers) displays improvements regarding the native population
of the tetraloop as well as good agreement with NMR experiments for
tetramers when using the new parameters. Then, we simulate folded
RNAs (a kink–turn and L1 stalk rRNA) including hydrogen bond
types not sufficiently present in the training set. This allows a
final modification of the parameter set which is named gHBfix21 and
is suggested to be applicable to a wider range of RNA systems.
Collapse
Affiliation(s)
- Thorben Fröhlking
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste 34136, Italy
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 65, Czech Republic
| | - Michal Janeček
- Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, Olomouc 771 46, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 65, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 65, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
20
|
He W, Naleem N, Kleiman D, Kirmizialtin S. Refining the RNA Force Field with Small-Angle X-ray Scattering of Helix-Junction-Helix RNA. J Phys Chem Lett 2022; 13:3400-3408. [PMID: 35404614 PMCID: PMC9036580 DOI: 10.1021/acs.jpclett.2c00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The growing recognition of the functional and therapeutic roles played by RNA and the difficulties in gaining atomic-level insights by experiments are paving the way for all-atom simulations of RNA. One of the main impediments to the use of all-atom simulations is the imbalance between the energy terms of the RNA force fields. Through exhaustive sampling of an RNA helix-junction-helix (HJH) model using enhanced sampling, we critically assessed the select Amber force fields against small-angle X-ray scattering (SAXS) experiments. The tested AMBER99SB, DES-AMBER, and CUFIX force fields show deviations from measured profiles. First, we identified parameters leading to inconsistencies. Then, as a way to balance the forces governing RNA folding, we adopted strategies to refine hydrogen bonding, backbone, and base-stacking parameters. We validated the modified force field (HB-CUFIX) against SAXS data of the HJH model in different ionic strengths. Moreover, we tested a set of independent RNA systems to cross-validate the force field. Overall, HB-CUFIX demonstrates improved performance in studying thermodynamics and structural properties of realistic RNA motifs.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003United States
| | - Nawavi Naleem
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Diego Kleiman
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Mlýnský V, Janeček M, Kührová P, Fröhlking T, Otyepka M, Bussi G, Banáš P, Šponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J Chem Theory Comput 2022; 18:2642-2656. [PMID: 35363478 DOI: 10.1021/acs.jctc.1c01222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic molecular dynamics simulations represent an established technique for investigation of RNA structural dynamics. Despite continuous development, contemporary RNA simulations still suffer from suboptimal accuracy of empirical potentials (force fields, ffs) and sampling limitations. Development of efficient enhanced sampling techniques is important for two reasons. First, they allow us to overcome the sampling limitations, and second, they can be used to quantify ff imbalances provided they reach a sufficient convergence. Here, we study two RNA tetraloops (TLs), namely the GAGA and UUCG motifs. We perform extensive folding simulations and calculate folding free energies (ΔGfold°) with the aim to compare different enhanced sampling techniques and to test several modifications of the nonbonded terms extending the AMBER OL3 RNA ff. We demonstrate that replica-exchange solute tempering (REST2) simulations with 12-16 replicas do not show any sign of convergence even when extended to a timescale of 120 μs per replica. However, the combination of REST2 with well-tempered metadynamics (ST-MetaD) achieves good convergence on a timescale of 5-10 μs per replica, improving the sampling efficiency by at least 2 orders of magnitude. Effects of ff modifications on ΔGfold° energies were initially explored by the reweighting approach and then validated by new simulations. We tested several manually prepared variants of the gHBfix potential which improve stability of the native state of both TLs by ∼2 kcal/mol. This is sufficient to conveniently stabilize the folded GAGA TL while the UUCG TL still remains under-stabilized. Appropriate adjustment of van der Waals parameters for C-H···O5' base-phosphate interaction may further stabilize the native states of both TLs by ∼0.6 kcal/mol.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Janeček
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Thorben Fröhlking
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.,IT4Innovations, VSB─Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
22
|
Matoušková E, Dršata T, Pfeifferová L, Šponer J, Réblová K, Lankaš F. RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems. Biophys J 2022; 121:705-714. [PMID: 35122735 PMCID: PMC8943727 DOI: 10.1016/j.bpj.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022] Open
Abstract
Kink-turns are highly bent internal loop motifs commonly found in the ribosome and other RNA complexes. They frequently act as binding sites for proteins and mediate tertiary interactions in larger RNA structures. Kink-turns have been a topic of intense research, but their elastic properties in the folded state are still poorly understood. Here we use extensive all-atom molecular dynamics simulations to parameterize a model of kink-turn in which the two flanking helical stems are represented by effective rigid bodies. Time series of the full set of six interhelical coordinates enable us to extract minimum energy shapes and harmonic stiffness constants for kink-turns from different RNA functional classes. The analysis suggests that kink-turns exhibit isotropic bending stiffness but are highly anisotropic with respect to lateral displacement of the stems. The most flexible lateral displacement mode is perpendicular to the plane of the static bend. These results may help understand the structural adaptation and mechanical signal transmission by kink-turns in complex natural and artificial RNA structures.
Collapse
Affiliation(s)
- Eva Matoušková
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Dršata
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Lucie Pfeifferová
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Centre of Molecular Biology and Genetics, University Hospital Brno, Czech Republic.
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
23
|
He W, Henning-Knechtel A, Kirmizialtin S. Visualizing RNA Structures by SAXS-Driven MD Simulations. FRONTIERS IN BIOINFORMATICS 2022; 2:781949. [PMID: 36304317 PMCID: PMC9580860 DOI: 10.3389/fbinf.2022.781949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
The biological role of biomolecules is intimately linked to their structural dynamics. Experimental or computational techniques alone are often insufficient to determine accurate structural ensembles in atomic detail. We use all-atom molecular dynamics (MD) simulations and couple it to small-angle X-ray scattering (SAXS) experiments to resolve the structural dynamics of RNA molecules. To accomplish this task, we utilize a set of re-weighting and biasing techniques tailored for RNA molecules. To showcase our approach, we study two RNA molecules: a riboswitch that shows structural variations upon ligand binding, and a two-way junction RNA that displays structural heterogeneity and sensitivity to salt conditions. Integration of MD simulations and experiments allows the accurate construction of conformational ensembles of RNA molecules. We observe a dynamic change of the SAM-I riboswitch conformations depending on its binding partners. The binding of SAM and Mg2+ cations stabilizes the compact state. The absence of Mg2+ or SAM leads to the loss of tertiary contacts, resulting in a dramatic expansion of the riboswitch conformations. The sensitivity of RNA structures to the ionic strength demonstrates itself in the helix junction helix (HJH). The HJH shows non-monotonic compaction as the ionic strength increases. The physics-based picture derived from the experimentally guided MD simulations allows biophysical characterization of RNA molecules. All in all, SAXS-guided MD simulations offer great prospects for studying RNA structural dynamics.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, NY, United States
| | - Anja Henning-Knechtel
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Chen J, Liu H, Cui X, Li Z, Chen HF. RNA-Specific Force Field Optimization with CMAP and Reweighting. J Chem Inf Model 2022; 62:372-385. [PMID: 35021622 DOI: 10.1021/acs.jcim.1c01148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA plays a key role in a variety of cell activities. However, it is difficult to capture its structure dynamics by the traditional experimental methods because of the inherent limitations. Molecular dynamics simulation has become a valuable complement to the experimental methods. Previous studies have indicated that the current force fields cannot accurately reproduce the conformations and structural dynamics of RNA. Therefore, an RNA-specific force field was developed to improve the conformation sampling of RNA. The distribution of ζ/α dihedrals of tetranucleotides was optimized by a reweighting method, and the grid-based energy correction map (CMAP) term was first introduced into the Amber RNA force field of ff99bsc0χOL3, named ff99OL3_CMAP1. Extensive validations of tetranucleotides and tetraloops show that ff99OL3_CMAP1 can significantly decrease the population of an incorrect structure, increase the consistency between the simulation results and experimental values for tetranucleotides, and improve the stability of tetraloops. ff99OL3_CMAP1 can also precisely reproduce the conformation of a duplex and riboswitches. These findings confirm that the newly developed force field ff99OL3_CMAP1 can improve the conformer sampling of RNA.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 20024 Shanghai, China.,Shanghai Center for Bioinformation Technology, 200240 Shanghai, China
| |
Collapse
|
25
|
Zhao J, Kennedy SD, Turner DH. Nuclear Magnetic Resonance Spectra and AMBER OL3 and ROC-RNA Simulations of UCUCGU Reveal Force Field Strengths and Weaknesses for Single-Stranded RNA. J Chem Theory Comput 2022; 18:1241-1254. [PMID: 34990548 DOI: 10.1021/acs.jctc.1c00643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-stranded regions of RNA are important for folding of sequences into 3D structures and for design of therapeutics targeting RNA. Prediction of ensembles of 3D structures for single-stranded regions often involves classical mechanical approximations of interactions defined by quantum mechanical calculations on small model systems. Nuclear magnetic resonance (NMR) spectra and molecular dynamics (MD) simulations of short single strands provide tests for how well the approximations model many of the interactions. Here, the NMR spectra for UCUCGU at 2, 15, and 30 °C are compared to simulations with the AMBER force fields, OL3 and ROC-RNA. This is the first such comparison to an oligoribonucleotide containing an internal guanosine nucleotide (G). G is particularly interesting because of its many H-bonding groups, large dipole moment, and proclivity for both syn and anti conformations. Results reveal formation of a G amino to phosphate non-bridging oxygen H-bond. The results also demonstrate dramatic differences in details of the predicted structures. The variations emphasize the dependence of predictions on individual parameters and their balance with the rest of the force field. The NMR data can serve as a benchmark for future force fields.
Collapse
|
26
|
Zerze GH, Piaggi PM, Debenedetti PG. A Computational Study of RNA Tetraloop Thermodynamics, Including Misfolded States. J Phys Chem B 2021; 125:13685-13695. [PMID: 34890201 DOI: 10.1021/acs.jpcb.1c08038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An important characteristic of RNA folding is the adoption of alternative configurations of similar stability, often referred to as misfolded configurations. These configurations are considered to compete with correctly folded configurations, although their rigorous thermodynamic and structural characterization remains elusive. Tetraloop motifs found in large ribozymes are ideal systems for an atomistically detailed computational quantification of folding free energy landscapes and the structural characterization of their constituent free energy basins, including nonnative states. In this work, we studied a group of closely related 10-mer tetraloops using a combined parallel tempering and metadynamics technique that allows a reliable sampling of the free energy landscapes, requiring only knowledge that the stem folds into a canonical A-RNA configuration. We isolated and analyzed unfolded, folded, and misfolded populations that correspond to different free energy basins. We identified a distinct misfolded state that has a stability very close to that of the correctly folded state. This misfolded state contains a predominant population that shares the same structural features across all tetraloops studied here and lacks the noncanonical A-G base pair in its loop portion. Further analysis performed with biased trajectories showed that although this competitive misfolded state is not an essential intermediate, it is visited in most of the transitions from unfolded to correctly folded states. Moreover, the tetraloops can transition from this misfolded state to the correctly folded state without requiring extensive unfolding.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo M Piaggi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Mráziková K, Šponer J, Mlýnský V, Auffinger P, Kruse H. Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids. J Chem Inf Model 2021; 61:5644-5657. [PMID: 34738826 DOI: 10.1021/acs.jcim.1c01047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lone-pair···π (lp···π) (deoxy)ribose···nucleobase stacking is a recurring interaction in Z-DNA and RNAs that is characterized by sub-van der Waals lp···π contacts (<3.0 Å). It is a part of the structural signature of CpG Z-step motifs in Z-DNA and r(UNCG) tetraloops that are known to behave poorly in molecular dynamics (MD) simulations. Although the exact origin of the MD simulation issues remains unclear, a significant part of the problem might be due to an imbalanced description of nonbonded interactions, including the characteristic lp···π stacking. To gain insights into the links between lp···π stacking and MD, we present an in-depth comparison between accurate large-basis-set double-hybrid Kohn-Sham density functional theory calculations DSD-BLYP-D3/ma-def2-QZVPP (DHDF-D3) and data obtained with the nonbonded potential of the AMBER force field (AFF) for NpN Z-steps (N = G, A, C, and U). Among other differences, we found that the AFF overestimates the DHDF-D3 lp···π distances by ∼0.1-0.2 Å, while the deviation between the DHDF-D3 and AFF descriptions sharply increases in the short-range region of the interaction. Based on atom-in-molecule polarizabilities and symmetry-adapted perturbation theory analysis, we inferred that the DHDF-D3 versus AFF differences partly originate in identical nucleobase carbon atom Lennard-Jones (LJ) parameters despite the presence/absence of connected electron-withdrawing groups that lead to different effective volumes or vdW radii. Thus, to precisely model the very short CpG lp···π contact distances, we recommend revision of the nucleobase atom LJ parameters. Additionally, we suggest that the large discrepancy between DHDF-D3 and AFF short-range repulsive part of the interaction energy potential may significantly contribute to the poor performances of MD simulations of nucleic acid systems containing Z-steps. Understanding where, and if possible why, the point-charge-type effective potentials reach their limits is vital for developing next-generation FFs and for addressing specific issues in contemporary MD simulations.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27, 783 71 Olomouc-Holice, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27, 783 71 Olomouc-Holice, Czech Republic
| | - Pascal Auffinger
- Architecture and Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS, 67084 Strasbourg, France
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
28
|
Liebl K, Zacharias M. Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. J Chem Theory Comput 2021; 17:7096-7105. [PMID: 34662102 DOI: 10.1021/acs.jctc.1c00682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An accurate molecular mechanics force field forms the basis of Molecular Dynamics simulations to obtain a realistic view of the structure and dynamics of biomolecules such as DNA. Although frequently updated to improve agreement with available experimental data, DNA force fields still rely in part on parameters introduced more than 20 years ago. We have developed an entirely new DNA force field, Tumuc1, derived from quantum mechanical calculations to obtain a consistent set of bonded parameters and partial atomic charges. The performance of the force field was extensively tested on a variety of DNA molecules. It excels in accuracy of B-DNA simulations but also performs very well on other types of DNA structures and structure formation processes such as hairpin folding, duplex formation, and dynamics of DNA-protein complexes. It can complement existing force fields in order to provide an increasingly accurate description of the structure and dynamics of DNA during simulation studies.
Collapse
Affiliation(s)
- Korbinian Liebl
- Physics Department and Center of Protein Assemblies, Technical University of Munich, James-Franck-Str. 1, Garching 85748, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, James-Franck-Str. 1, Garching 85748, Germany
| |
Collapse
|
29
|
Krepl M, Damberger FF, von Schroetter C, Theler D, Pokorná P, Allain FHT, Šponer J. Recognition of N6-Methyladenosine by the YTHDC1 YTH Domain Studied by Molecular Dynamics and NMR Spectroscopy: The Role of Hydration. J Phys Chem B 2021; 125:7691-7705. [PMID: 34258996 DOI: 10.1021/acs.jpcb.1c03541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The YTH domain of YTHDC1 belongs to a class of protein "readers", recognizing the N6-methyladenosine (m6A) chemical modification in mRNA. Static ensemble-averaged structures revealed details of N6-methyl recognition via a conserved aromatic cage. Here, we performed molecular dynamics (MD) simulations along with nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) to examine how dynamics and solvent interactions contribute to the m6A recognition and negative selectivity toward an unmethylated substrate. The structured water molecules surrounding the bound RNA and the methylated substrate's ability to exclude bulk water molecules contribute to the YTH domain's preference for m6A. Intrusions of bulk water deep into the binding pocket disrupt binding of unmethylated adenosine. The YTHDC1's preference for the 5'-Gm6A-3' motif is partially facilitated by a network of water-mediated interactions between the 2-amino group of the guanosine and residues in the m6A binding pocket. The 5'-Im6A-3' (where I is inosine) motif can be recognized too, but disruption of the water network lowers affinity. The D479A mutant also disrupts the water network and destabilizes m6A binding. Our interdisciplinary study of the YTHDC1 protein-RNA complex reveals an unusual physical mechanism by which solvent interactions contribute toward m6A recognition.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Fred Franz Damberger
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Dominik Theler
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc 783 71, Czech Republic
| |
Collapse
|
30
|
Role and Perspective of Molecular Simulation-Based Investigation of RNA-Ligand Interaction: From Small Molecules and Peptides to Photoswitchable RNA Binding. Molecules 2021; 26:molecules26113384. [PMID: 34205049 PMCID: PMC8199858 DOI: 10.3390/molecules26113384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.
Collapse
|
31
|
Krepl M, Dendooven T, Luisi BF, Sponer J. MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes. J Biol Chem 2021; 296:100656. [PMID: 33857481 PMCID: PMC8121710 DOI: 10.1016/j.jbc.2021.100656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023] Open
Abstract
The conserved protein Hfq is a key factor in the RNA-mediated control of gene expression in most known bacteria. The transient intermediates Hfq forms with RNA support intricate and robust regulatory networks. In Pseudomonas, Hfq recognizes repeats of adenine–purine–any nucleotide (ARN) in target mRNAs via its distal binding side, and together with the catabolite repression control (Crc) protein, assembles into a translation–repression complex. Earlier experiments yielded static, ensemble-averaged structures of the complex, but details of its interface dynamics and assembly pathway remained elusive. Using explicit solvent atomistic molecular dynamics simulations, we modeled the extensive dynamics of the Hfq–RNA interface and found implications for the assembly of the complex. We predict that syn/anti flips of the adenine nucleotides in each ARN repeat contribute to a dynamic recognition mechanism between the Hfq distal side and mRNA targets. We identify a previously unknown binding pocket that can accept any nucleotide and propose that it may serve as a ‘status quo’ staging point, providing nonspecific binding affinity, until Crc engages the Hfq–RNA binary complex. The dynamical components of the Hfq–RNA recognition can speed up screening of the pool of the surrounding RNAs, participate in rapid accommodation of the RNA on the protein surface, and facilitate competition among different RNAs. The register of Crc in the ternary assembly could be defined by the recognition of a guanine-specific base–phosphate interaction between the first and last ARN repeats of the bound RNA. This dynamic substrate recognition provides structural rationale for the stepwise assembly of multicomponent ribonucleoprotein complexes nucleated by Hfq–RNA binding.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Tom Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; MRC-LMB, Cambridge, United Kingdom
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
32
|
Mráziková K, Mlýnský V, Kührová P, Pokorná P, Kruse H, Krepl M, Otyepka M, Banáš P, Šponer J. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. J Chem Theory Comput 2020; 16:7601-7617. [PMID: 33215915 DOI: 10.1021/acs.jctc.0c00801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (ff's) remains far from satisfactory even after decades of development, as apparent from a problematic structural description of some important RNA motifs. Actually, some of the smallest RNA molecules belong to the most challenging systems for MD simulations and, among them, the UUCG tetraloop is saliently difficult. We report a detailed analysis of UUCG MD simulations, depicting the sequence of events leading to the loss of the UUCG native state during MD simulations. The total amount of MD simulation data analyzed in this work is close to 1.3 ms. We identify molecular interactions, backbone conformations, and substates that are involved in the process. Then, we unravel specific ff deficiencies using diverse quantum mechanical/molecular mechanical (QM/MM) and QM calculations. Comparison between the MM and QM methods shows discrepancies in the description of the 5'-flanking phosphate moiety and both signature sugar-base interactions. Our work indicates that poor behavior of the UUCG tetraloop in simulations is a complex issue that cannot be attributed to one dominant and straightforwardly correctable factor. Instead, there is a concerted effect of multiple ff inaccuracies that are coupled and amplifying each other. We attempted to improve the simulation behavior by some carefully tailored interventions, but the results were still far from satisfactory, underlying the difficulties in development of accurate nucleic acid ff's.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
33
|
Langer M, Paloncýová M, Medved' M, Otyepka M. Molecular Fluorophores Self-Organize into C-Dot Seeds and Incorporate into C-Dot Structures. J Phys Chem Lett 2020; 11:8252-8258. [PMID: 32805121 DOI: 10.1021/acs.jpclett.0c01873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various molecular fluorophores have been identified to be present during carbon-dot (C-dot) syntheses. However, the organization of such fluorophores in C-dots is still unknown. We study the self-assembly of 5-oxo-1,2,3,5-tetrahydroimidazo-[1,2-α]-pyridine-7-carboxylic acid (IPCA), a molecular fluorophore present during the synthesis of C-dots from citric acid and ethylenediamine. Both forms of IPCA (neutral and anionic) show a tendency to self-assemble into stacked systems, forming seeds of C-dots during their synthesis. IPCA also interacts with graphitic C-dot building blocks, fragments easily, and incorporates into their structures via π-π stacking. Both IPCA forms are able to create adlayers internally stabilized by an extensive hydrogen bonding network, with an arrangement of layers similar to that in ordinary graphitic C-dots. The results show the tendency of molecular fluorophores to form organized stacked seeds of C-dots and incorporate into C-dot structures. Such noncovalent structures can be further covalently interlinked via the carbonization process during C-dot growth.
Collapse
Affiliation(s)
- Michal Langer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Medved'
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
34
|
Salsbury AM, Lemkul JA. Recent developments in empirical atomistic force fields for nucleic acids and applications to studies of folding and dynamics. Curr Opin Struct Biol 2020; 67:9-17. [PMID: 32950937 DOI: 10.1016/j.sbi.2020.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/24/2023]
Abstract
Nucleic acids play critical roles in carrying genetic information, participating in catalysis, and preserving chromosomal structure. Despite over a century of study, efforts to understand the dynamics and structure-function relationships of DNA and RNA at the atomic level are still ongoing. Molecular dynamics (MD) simulations augment experiments by providing atomistic resolution and quantitative relationships between structure and conformational energy. Steady advancements in computer hardware, software, and atomistic force fields (FFs) over 40 years have facilitated new discoveries. Here, we review nucleic acid FF development with emphasis on recent refinements that have improved descriptions of important nucleic acid properties. We then discuss several key examples of successes and challenges in modeling nucleic acid structure and dynamics using the latest FFs.
Collapse
Affiliation(s)
- Alexa M Salsbury
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
35
|
Fröhlking T, Bernetti M, Calonaci N, Bussi G. Toward empirical force fields that match experimental observables. J Chem Phys 2020; 152:230902. [PMID: 32571067 DOI: 10.1063/5.0011346] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biomolecular force fields have been traditionally derived based on a mixture of reference quantum chemistry data and experimental information obtained on small fragments. However, the possibility to run extensive molecular dynamics simulations on larger systems achieving ergodic sampling is paving the way to directly using such simulations along with solution experiments obtained on macromolecular systems. Recently, a number of methods have been introduced to automatize this approach. Here, we review these methods, highlight their relationship with machine learning methods, and discuss the open challenges in the field.
Collapse
Affiliation(s)
- Thorben Fröhlking
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Mattia Bernetti
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Nicola Calonaci
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|