1
|
Song Y, Kim JS. Structure and dynamics of double-stranded DNA rotaxanes. NANOSCALE 2024; 16:4317-4324. [PMID: 38353661 DOI: 10.1039/d3nr05846h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A DNA rotaxane, with its unique mechanically interlocked architecture consisting of a circular DNA molecule threaded onto a linear DNA axle, holds promise as a fundamental component for nanoscale functional devices. Nevertheless, its structural and dynamic behaviors, essential for advancing molecular machinery, remain largely unexplored. Using extensive all-atom molecular dynamics simulations, we investigated the behaviors of double-stranded DNA (dsDNA) rotaxanes, concentrating on the effects of shape distortion induced by torsional stress in small circular dsDNA containing 70-90 base pairs. We analyzed structural characteristics, including shape, intermolecular distances, and tilt angles, while also exploring dynamic properties such as translational diffusion and toroidal rotation. Our results indicate that shape distortion brings the circular and linear dsDNA components into closer proximity and causes a slight increase in translational diffusion yet a minor decrease in toroidal rotation. Nevertheless, there is no apparent evidence of coupling between translation and rotation. Overall, the insights from this study indicate that such shape distortion does not significantly alter their structure and dynamics. This finding provides flexibility for the design of DNA rotaxanes in nanoscale applications.
Collapse
Affiliation(s)
- Yeonho Song
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jun Soo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Liebl K, Zacharias M. The development of nucleic acids force fields: From an unchallenged past to a competitive future. Biophys J 2023; 122:2841-2851. [PMID: 36540025 PMCID: PMC10398263 DOI: 10.1016/j.bpj.2022.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Molecular dynamics simulations have strongly matured as a method to study biomolecular processes. Their validity, however, is determined by the accuracy of the underlying force fields that describe the forces between all atoms. In this article, we review the development of nucleic acids force fields. We describe the early attempts in the 1990s and emphasize their strong influence on recent force fields. State-of-the-art force fields still use the same Lennard-Jones parameters derived 25 years ago in spite of the fact that these parameters were in general not fitted for nucleic acids. In addition, electrostatic parameters also are deprecated, which may explain some of the current force field deficiencies. We compare different force fields for various systems and discuss new tests of the recently developed Tumuc1 force field. The OL-force fields and Tumuc1 are arguably the best force fields to describe the DNA double helix. However, no force field is flawless. In particular, the description of sugar-puckering remains a problem for nucleic acids force fields. Future refinements are required, so we review methods for force field refinement and give an outlook to the future of force fields.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Liebl K, Zacharias M. Toward Force Fields with Improved Base Stacking Descriptions. J Chem Theory Comput 2023; 19:1529-1536. [PMID: 36795949 DOI: 10.1021/acs.jctc.2c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Recent DNA force fields indicate good performance in describing flexibility and structural stability of double-stranded B-DNA. However, it is not clear how accurately base stacking interactions are represented that are critical for simulating structure formation processes and conformational changes. Based on the equilibrium nucleoside association and base pair nicking, we find that the recent Tumuc1 force field improves the description of base stacking compared to previous state-of-the-art force fields. Nevertheless, base pair stacking is still overstabilized compared to experiment. We propose a rapid method to reweight calculated free energies of stacking upon force field modifications in order to generate improved parameters. A decrease of the Lennard-Jones attraction between nucleo-bases alone appears insufficient; however, adjustments in the partial charge distribution on base atoms could help to further improve the force field description of base stacking.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
4
|
Esmaeeli R, Bauzá A, Perez A. Structural predictions of protein-DNA binding: MELD-DNA. Nucleic Acids Res 2023; 51:1625-1636. [PMID: 36727436 PMCID: PMC9976882 DOI: 10.1093/nar/gkad013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein-DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein-DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein-DNA interactions).
Collapse
Affiliation(s)
- Reza Esmaeeli
- Department of Chemistry, Quantum theory project, University of Florida, Gainesville, FL 32611, USA
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| | - Alberto Perez
- Department of Chemistry, Quantum theory project, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Wang Y, Shi N, He Y, Li Y, Zheng Q. A direct approach toward investigating DNA-ligand interactions via surface-enhanced Raman spectroscopy combined with molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:2153-2160. [PMID: 36562542 DOI: 10.1039/d2cp04566d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules that interfere with DNA replication can trigger genomic instability, which makes these molecules valuable in the search for anticancer drugs. Thus, interactions between DNA and its ligands at the molecular level are of great significance. In the present study, a new method based on surface-enhanced Raman spectroscopy (SERS) combined with molecular dynamics simulations has been proposed for analyzing the interactions between DNA and its ligands. The SERS signals of DNA hairpins (ST: d(CGACCAACGTGTCGCCTGGTCG), AP1: d(CGCACAACGTGTCGCCTGTGCG)), pure argininamide, and their complexes, were obtained, and the characteristic peak sites of the DNA secondary structure and argininamide ligand-binding region were analyzed. Molecular dynamics calculations predicted that argininamide binds to the 8C and 9G bases of AP1 via hydrogen bonding. Our method successfully detected the changes of SERS fingerprint peaks of hydrogen bonds and bases between argininamide and DNA hairpin bases, and their binding sites and action modes were consistent with the predicted results of the molecular dynamics simulations. This SERS technology combined with the molecular dynamics simulation detection platform provides a general analysis tool, with the advantage of effective, rapid, and sensitive detection. This platform can obtain sufficient molecular level conformational information to provide avenues for rapid drug screening and promote progress in several fields, including targeted drug design.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Yingying He
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| |
Collapse
|
6
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
7
|
Brandani GB, Gopi S, Yamauchi M, Takada S. Molecular dynamics simulations for the study of chromatin biology. Curr Opin Struct Biol 2022; 77:102485. [PMID: 36274422 DOI: 10.1016/j.sbi.2022.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
The organization of Eukaryotic DNA into chromatin has profound implications for the processing of genetic information. In the past years, molecular dynamics (MD) simulations proved to be a powerful tool to investigate the mechanistic basis of chromatin biology. We review recent all-atom and coarse-grained MD studies revealing how the structure and dynamics of chromatin underlie its biological functions. We describe the latest method developments; the structural fluctuations of nucleosomes and the various factors affecting them; the organization of chromatin fibers, with particular emphasis on its liquid-like character; the interactions and dynamics of transcription factors on chromatin; and how chromatin organization is modulated by molecular motors acting on DNA.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| |
Collapse
|
8
|
Pokorná P, Krepl M, Campagne S, Šponer J. Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:9207-9221. [PMID: 36348631 DOI: 10.1021/acs.jpcb.2c06168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 μs in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA-protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA-protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA-protein complexes.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Sébastien Campagne
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
9
|
Liu H, Fu H, Chipot C, Shao X, Cai W. Accurate Description of Solvent-Exposed Salt Bridges with a Non-polarizable Force Field Incorporating Solvent Effects. J Chem Inf Model 2022; 62:3863-3873. [PMID: 35920605 DOI: 10.1021/acs.jcim.2c00678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The strength of salt bridges resulting from the interaction of cations and anions is modulated by their environment. However, polarization of the solvent molecules by the charged moieties makes the accurate description of cation-anion interactions in an aqueous solution by means of a pairwise additive potential energy function and classical combination rules particularly challenging. In this contribution, aiming at improving the representation of solvent-exposed salt-bridge interactions with an all-atom non-polarizable force field, we put forth here a parametrization strategy. First, the interaction of a cation and an anion is characterized by hybrid quantum mechanical/molecular mechanics (QM/MM) potential of mean force (PMF) calculations, whereby constantly exchanging solvent molecules around the ions are treated at the quantum mechanical level. The Lennard-Jones (LJ) parameters describing the salt-bridge ion pairs are then optimized to match the reference QM/MM PMFs through the so-called nonbonded FIX, or NBFIX, feature of the CHARMM force field. We apply the new set of parameters, coined CHARMM36m-SBFIX, to the calculation of association constants for the ammonium-acetate and guanidinium-acetate complexes, the osmotic pressures for glycine zwitterions, guanidinium, and acetate ions, and to the simulation of both folded and intrinsically disordered proteins. Our findings indicate that CHARMM36m-SBFIX improves the description of solvent-exposed salt-bridge interactions, both structurally and thermodynamically. However, application of this force field to the standard binding free-energy calculation of a protein-ligand complex featuring solvent-excluded salt-bridge interactions leads to a poor reproduction of the experimental value, suggesting that the parameters optimized in an aqueous solution cannot be readily transferred to describe solvent-excluded salt-bridge interactions. Put together, owing to their sensitivity to the environment, modeling salt-bridge interactions by means of a single, universal set of LJ parameters remains a daunting theoretical challenge.
Collapse
Affiliation(s)
- Han Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR n°7019, Université de Lorraine, F-54506 Vandœuvre-lès-Nancy, France.,Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois, United States.,Department of Biochemistry and Molecular Biology and Gordon Center for Integrative Science, The University of Chicago, Chicago 60637, Illinois, United States
| | - Xueguang Shao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
10
|
Gallardo A, Bogart BM, Dutagaci B. Protein-Nucleic Acid Interactions for RNA Polymerase II Elongation Factors by Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:3079-3089. [PMID: 35686985 DOI: 10.1021/acs.jcim.2c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA polymerase II (Pol II) forms a complex with elongation factors to proceed to the elongation stage of the transcription process. In this work, we studied the elongation factor SPT5 and explored the protein-nucleic acid interactions for the isolated systems of KOW1 and KOW4 domains of SPT5 with DNA and RNA, respectively. We performed molecular dynamics (MD) simulations using three commonly used force fields that are CHARMM c36m, AMBER ff14sb, and ff19sb. Simulations showed strong protein-nucleic acid interactions and low electrostatic binding free energies for all force fields used. RNA was found to be highly dynamic with all force fields, while DNA had relatively more stable conformations with the AMBER force fields compared to that with CHARMM. Furthermore, we performed MD simulations of the complete elongation complex using CHARMM c36m and AMBER ff19sb force fields to compare the dynamics and interactions with the isolated systems. Similarly, strong KOW1 and DNA interactions were observed in the complete elongation complex simulations and DNA was further stabilized by a network of interactions involving SPT5-KOW1, SPT4, and rpb2 of Pol II. Overall, our study showed that the differences between CHARMM and AMBER force fields strongly affect the dynamics of the nucleic acids. CHARMM provides highly flexible DNA, while AMBER largely stabilizes the DNA structure. Although the presence of the entire interaction network stabilized the DNA and decreased the differences in the results from the two force fields, the discrepancies of the force fields for smaller systems may reflect their problems in generating accurate dynamics of nucleic acids.
Collapse
Affiliation(s)
- Adan Gallardo
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Brandon M Bogart
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
11
|
Sharma A, Dey P. Novel insights into the structural changes induced by disease-associated mutations in TDP-43: a computational approach. J Biomol Struct Dyn 2022:1-11. [PMID: 35751132 DOI: 10.1080/07391102.2022.2092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Over the last two decades, the pathogenic aggregation of TAR DNA-binding protein 43 (TDP-43) is found to be strongly associated with several fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTD), etc. While the mutations and truncation in TDP-43 protein have been suggested to be responsible for TDP-43 pathogenesis by accelerating the aggregation process, the effects of these mutations on the bio-mechanism of pathological TDP-43 protein remained poorly understood. Investigating this at the molecular level, we formulized an integrated workflow of molecular dynamic simulation and machine learning models (MD-ML). By performing an extensive structural analysis of three disease-related mutations (i.e., I168A, D169G, and I168A-D169G) in the conserved RNA recognition motifs (RRM1) of TDP-43, we observed that the I168A-D169G double mutant delineates the highest packing of the protein inner core as compared to the other mutations, which may indicate more stability and higher chances of pathogenesis. Moreover, through our MD-ML workflow, we identified the biological descriptors of TDP-43 which includes the interacting residue pairs and individual protein residues that influence the stability of the protein and could be experimentally evaluated to develop potential therapeutic strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhibhav Sharma
- School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pinki Dey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Esmaeeli R, Andal B, Perez A. Searching for Low Probability Opening Events in a DNA Sliding Clamp. Life (Basel) 2022; 12:life12020261. [PMID: 35207548 PMCID: PMC8876151 DOI: 10.3390/life12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
The β subunit of E. coli DNA polymererase III is a DNA sliding clamp associated with increasing the processivity of DNA synthesis. In its free form, it is a circular homodimer structure that can accomodate double-stranded DNA in a nonspecific manner. An open state of the clamp must be accessible before loading the DNA. The opening mechanism is still a matter of debate, as is the effect of bound DNA on opening/closing kinetics. We use a combination of atomistic, coarse-grained, and enhanced sampling strategies in both explicit and implicit solvents to identify opening events in the sliding clamp. Such simulations of large nucleic acid and their complexes are becoming available and are being driven by improvements in force fields and the creation of faster computers. Different models support alternative opening mechanisms, either through an in-plane or out-of-plane opening event. We further note some of the current limitations, despite advances, in modeling these highly charged systems with implicit solvent.
Collapse
|
13
|
Yoo J, Park S, Maffeo C, Ha T, Aksimentiev A. DNA sequence and methylation prescribe the inside-out conformational dynamics and bending energetics of DNA minicircles. Nucleic Acids Res 2021; 49:11459-11475. [PMID: 34718725 PMCID: PMC8599915 DOI: 10.1093/nar/gkab967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic genome and methylome encode DNA fragments' propensity to form nucleosome particles. Although the mechanical properties of DNA possibly orchestrate such encoding, the definite link between 'omics' and DNA energetics has remained elusive. Here, we bridge the divide by examining the sequence-dependent energetics of highly bent DNA. Molecular dynamics simulations of 42 intact DNA minicircles reveal that each DNA minicircle undergoes inside-out conformational transitions with the most likely configuration uniquely prescribed by the nucleotide sequence and methylation of DNA. The minicircles' local geometry consists of straight segments connected by sharp bends compressing the DNA's inward-facing major groove. Such an uneven distribution of the bending stress favors minimum free energy configurations that avoid stiff base pair sequences at inward-facing major grooves. Analysis of the minicircles' inside-out free energy landscapes yields a discrete worm-like chain model of bent DNA energetics that accurately account for its nucleotide sequence and methylation. Experimentally measuring the dependence of the DNA looping time on the DNA sequence validates the model. When applied to a nucleosome-like DNA configuration, the model quantitatively reproduces yeast and human genomes' nucleosome occupancy. Further analyses of the genome-wide chromatin structure data suggest that DNA bending energetics is a fundamental determinant of genome architecture.
Collapse
Affiliation(s)
- Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christopher Maffeo
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD 21218, USA
| | - Aleksei Aksimentiev
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Bie LH, Fei JW, Gao J. Molecular mechanism of methyl-dependent and spatial-specific DNA recognition of c-Jun homodimer. J Mol Model 2021; 27:227. [PMID: 34264385 DOI: 10.1007/s00894-021-04840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
DNA methylation is important in regulation of gene expression and normal development because it alters the interplay between protein and DNA. Experiments have shown that a single 5-methylcytosine at different CpG sites (mCpG) might have different effects on specific recognition, but the atomistic origin and dynamic details are largely unclear. In this work, we investigated the mechanism of monomethylation at different CpG sites in the cognate motif and the cooperativity of full methylation. By constructing four models of c-Jun/Jun protein binding to the 5[Formula: see text]-XGAGTCA-3[Formula: see text] (X represents C or methylated C) motif, we characterized the dynamics of the contact interface using the all-atom molecular dynamics method. Free energy analysis of MM/GBSA suggests that regardless of whether the C12pG13 site of the bottom strand is methylated, the effects from mC25 of the top strand are dominant and can moderately enhance the binding by [Formula: see text] 31 kcal/mol, whereas mC12 showed a relatively small contribution, in agreement with the experimental data. Remarkably, we found that this spatial-specific influence was induced by different regulatory rules. The influence of the mC25 site is mainly mediated by steric hindrance. The additional methyl group leads to the conformational changes in nearby residues and triggers an obvious structural bending in the protein, which results in the formation of a new T-Asn-C triad that enhances the specific recognition of TCA half-sites. The substitution of the methyl group at the mC12 site of the bottom strand breaks the original H-bonds directly. Such changes in electrostatic interactions also lead to the remote allosteric effects of protein by multifaceted interactions but have negligible contributions to binding. Although these two influence modes are different, they can both fine-tune the local environment, which might produce remote allosteric effects through protein-protein interactions. Further analysis reveals that the discrepancies in these two modes are primarily due to their location. Moreover, when both sites are methylated, the major determinant of binding specificity depends on the context and the location of the methylation site, which is the result of crosstalk and cooperativity.
Collapse
Affiliation(s)
- Li-Hua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jun-Wen Fei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
15
|
Liu C, Lv C, Yao YY, Du X, Zhao DX, Yang ZZ. Water-Mediated Oxidation of Guanine by a Repair Enzyme: Simulation Using the ABEEM Polarizable Force Field. J Chem Theory Comput 2021; 17:3525-3538. [PMID: 34018392 DOI: 10.1021/acs.jctc.1c00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recognition mechanism of oxidative damage in organisms has long been a research hotspot. Water is an important medium in the recognition process, but its specific role remains unknown. There is a need to develop a suitable force field that can adequately describe the electrostatic, hydrogen bond, and other interactions among the molecules in the complex system of the repair enzyme and oxidized base. The developing ABEEM polarizable force field (PFF) has been used to simulate the repaired enzyme hOGG1 and oxidized DNA (PDB ID: 1EBM) in a biological environment, and the corresponding results are better than those of the fixed-charge force fields OPLS/AA and AMBER OL15. 8-Oxo-G is recognized by Gln315 of hOGG1 mainly through hydrogen bonds mediated by continuous exchange of 2 water molecules. Phe319 and Cys253 are stacked on both sides of the π planes of bases to form sandwich structures. The charge polarization effect gives an important signal to drive the exchange of water molecules and maintains the recognition of oxidation bases by enzymes. The mediated main water molecule A and mediated auxiliary water molecule B together pull Gln315 to recognize 8-oxo-G by hydrogen bond interactions. Then, the charge polarization signal of solvent water molecule C with a large absolute charge causes the absolute charge of O atoms in water molecule A or B to increase by approximately 0.2 e, and water molecule A or B leaves Gln315 and 8-oxo-G. The other water molecule and water molecule C synergistically recognize 8-oxo-G with Gln315. Even though the water molecules between Gln315 and 8-oxo-G are removed, the MD simulation results show that water molecules appear between Gln315 and 8-oxo-G in a very short time (<2 ps). The dwell time of each water molecule is approximately 60 ps. The radial distribution function and dwell time support the correctness of the above mechanism. These polarization effects and hydrogen bonding interactions cannot be simulated by a fixed-charge force field.
Collapse
Affiliation(s)
- Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Change Lv
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yu-Ying Yao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Xue Du
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
16
|
Bigman LS, Greenblatt HM, Levy Y. What Are the Molecular Requirements for Protein Sliding along DNA? J Phys Chem B 2021; 125:3119-3131. [PMID: 33754737 PMCID: PMC8041311 DOI: 10.1021/acs.jpcb.1c00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
DNA-binding proteins rely on linear
diffusion along the longitudinal
DNA axis, supported by their nonspecific electrostatic affinity for
DNA, to search for their target recognition sites. One may therefore
expect that the ability to engage in linear diffusion along DNA is
universal to all DNA-binding proteins, with the detailed biophysical
characteristics of that diffusion differing between proteins depending
on their structures and functions. One key question is whether the
linear diffusion mechanism is defined by translation coupled with
rotation, a mechanism that is often termed sliding. We conduct coarse-grained
and atomistic molecular dynamics simulations to investigate the minimal
requirements for protein sliding along DNA. We show that coupling,
while widespread, is not universal. DNA-binding proteins that slide
along DNA transition to uncoupled translation–rotation (i.e.,
hopping) at higher salt concentrations. Furthermore, and consistently
with experimental reports, we find that the sliding mechanism is the
less dominant mechanism for some DNA-binding proteins, even at low
salt concentrations. In particular, the toroidal PCNA protein is shown
to follow the hopping rather than the sliding mechanism.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sevastyan O. Rabdano
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Sergei A. Izmailov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Rudra N. Purusottam
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | | | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
- Department of Chemistry Purdue University West Lafayette IN 47906 USA
| | | |
Collapse
|
18
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021; 60:6480-6487. [PMID: 33522067 DOI: 10.1002/anie.202012046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022]
Abstract
The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2-μs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short-lived salt bridges and hydrogen bonds, which persists at low ionic strength (0-100 mM NaCl).
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | - Matthew D Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Rudra N Purusottam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation.,Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
19
|
Yoo J, Winogradoff D, Aksimentiev A. Molecular dynamics simulations of DNA-DNA and DNA-protein interactions. Curr Opin Struct Biol 2020; 64:88-96. [PMID: 32682257 DOI: 10.1016/j.sbi.2020.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
The all-atom molecular dynamics method can characterize the molecular-level interactions in DNA and DNA-protein systems with unprecedented resolution. Recent advances in computational technologies have allowed the method to reveal the unbiased behavior of such systems at the microseconds time scale, whereas enhanced sampling approaches have matured enough to characterize the interaction free energy with quantitative precision. Here, we describe recent progress toward increasing the realism of such simulations by refining the accuracy of the molecular dynamics force field, and we highlight recent application of the method to systems of outstanding biological interest.
Collapse
Affiliation(s)
- Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea.
| | - David Winogradoff
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|