1
|
Yu W, Weber DJ, MacKerell AD. Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation. J Chem Inf Model 2025; 65:3022-3034. [PMID: 39729368 PMCID: PMC11932794 DOI: 10.1021/acs.jcim.4c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA. In the current work, we present and implement a method to use SILCS to identify ligand dissociation pathways, termed "SILCS-Pathway." The A* pathfinding algorithm is utilized to enumerate ligand dissociation pathways between the ligand binding site and the surrounding bulk solvent environment defined on evenly spaced points around the protein based on a Fibonacci lattice. The cost function for the A* algorithm is calculated using the SILCS exclusion maps and the SILCS grid free energy scores, thereby identifying paths that account for local protein flexibility and potential favorable interactions with the ligand. By traversing all evenly distributed bulk solvent points around the protein, we located all possible dissociation pathways and clustered them to identify general ligand unbinding pathways. The procedure is verified by using proteins studied previously with enhanced sampling molecular dynamics (MD) techniques and is shown to be capable of capturing important ligand dissociation routes in a highly computationally efficient manner. The identified pathways will act as the foundation for determining ligand dissociation kinetics using SILCS free energy profiles, which will be described in a subsequent article.
Collapse
Affiliation(s)
- Wenbo Yu
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - David J. Weber
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, Maryland 20850, United States
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Liu H, Zhang H, IJzerman AP, Guo D. The translational value of ligand-receptor binding kinetics in drug discovery. Br J Pharmacol 2024; 181:4117-4129. [PMID: 37705429 DOI: 10.1111/bph.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The translation of in vitro potency of a candidate drug, as determined by traditional pharmacology metrics (such as EC50/IC50 and KD/Ki values), to in vivo efficacy and safety is challenging. Residence time, which represents the duration of drug-target interaction, can be part of a more comprehensive understanding of the dynamic nature of drug-target interactions in vivo, thereby enabling better prediction of drug efficacy and safety. As a consequence, a prolonged residence time may help in achieving sustained pharmacological activity, while transient interactions with shorter residence times may be favourable for targets associated with side effects. Therefore, integration of residence time into the early stages of drug discovery and development has yielded a number of clinical candidates with promising in vivo efficacy and safety profiles. Insights from residence time research thus contribute to the translation of in vitro potency to in vivo efficacy and safety. Further research and advances in measuring and optimizing residence time will bring a much-needed addition to the drug discovery process and the development of safer and more effective drugs. In this review, we summarize recent research progress on residence time, highlighting its importance from a translational perspective.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Herrington NB, Li YC, Stein D, Pandey G, Schlessinger A. A comprehensive exploration of the druggable conformational space of protein kinases using AI-predicted structures. PLoS Comput Biol 2024; 20:e1012302. [PMID: 39046952 PMCID: PMC11268620 DOI: 10.1371/journal.pcbi.1012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs that are related to the catalytic activity of the kinase. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the active or inactive kinase conformation(s) they bind. Modern AI-based structural modeling methods have the potential to expand upon the limited availability of experimentally determined kinase structures in inactive states. Here, we first explored the conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) and ESMFold, two prominent AI-based protein structure prediction methods. Our investigation of AF2's ability to explore the conformational diversity of the kinome at various multiple sequence alignment (MSA) depths showed a bias within the predicted structures of kinases in DFG-in conformations, particularly those controlled by the DFG motif, based on their overabundance in the PDB. We demonstrate that predicting kinase structures using AF2 at lower MSA depths explored these alternative conformations more extensively, including identifying previously unobserved conformations for 398 kinases. Ligand enrichment analyses for 23 kinases showed that, on average, docked models distinguished between active molecules and decoys better than random (average AUC (avgAUC) of 64.58), but select models perform well (e.g., avgAUCs for PTK2 and JAK2 were 79.28 and 80.16, respectively). Further analysis explained the ligand enrichment discrepancy between low- and high-performing kinase models as binding site occlusions that would preclude docking. The overall results of our analyses suggested that, although AF2 explored previously uncharted regions of the kinase conformational space and select models exhibited enrichment scores suitable for rational drug discovery, rigorous refinement of AF2 models is likely still necessary for drug discovery campaigns.
Collapse
Affiliation(s)
- Noah B. Herrington
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
4
|
Wujieti B, Feng X, Liu E, Li D, Hao M, Zhou L, Cui W. A theoretical study on the activity and selectivity of IDO/TDO inhibitors. Phys Chem Chem Phys 2024; 26:16747-16764. [PMID: 38818624 DOI: 10.1039/d3cp06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO) is a tryptophan (Trp) metabolic enzyme along the kynurenine (NFK) pathway. Under pathological conditions, IDO overexpressed by tumor cells causes depletion of tryptophan and the accumulation of metabolic products, which inhibit the local immune response and form immune escape. Therefore, the suppression of IDO activity is one of the strategies for tumor immunotherapy, and drug design for this target has been the focus of research for more than two decades. Apart from IDO, tryptophan dioxygenase (TDO) of the same family can also catalyze the same biochemical reaction in the human body, but it has different tissue distribution and substrate selectivity from IDO. Based on the principle of drug design with high potency and low cross-reactivity to specific targets, in this subject, the activity and selectivity of IDO and TDO toward small molecular inhibitors were studied from the perspective of thermodynamics and kinetics. The aim was to elucidate the structural requirements for achieving favorable biological activity and selectivity of IDO and TDO inhibitors. Specifically, the interactions of inhibitors from eight families with IDO and TDO were initially investigated through molecular docking and molecular dynamics simulations, and the thermodynamic data for binding of inhibitors were predicted by the molecular mechanics/generalized Born surface area (MM/GBSA) method. Secondly, we explored the free energy landscape of JKloops, the kinetic control element of IDO/TDO, using temperature replica exchange molecular dynamics (T-REMD) simulations and elucidated the connection between the rules of IDO/TDO conformational changes and the inhibitor selectivity mechanism. Furthermore, the binding and dissociation processes of the C1 inhibitor (NLG919) were simulated by the adaptive steering molecular dynamics (ASMD) method, which not only addressed the possible stable, metastable, and transition states for C1 inhibitor-IDO/TDO interactions, but also accurately predicted kinetic data for C1 inhibitor binding and dissociation. In conclusion, we have constructed a complete process from enzyme (IDO/TDO) conformational activation to inhibitor binding/dissociation and used the thermodynamic and kinetic data of each link as clues to verify the control mechanism of IDO/TDO on inhibitor selectivity. This is of great significance for us to understand the design principles of tumor immunotherapy drugs and to avoid drug resistance of immunotherapy drugs.
Collapse
Affiliation(s)
- Baerlike Wujieti
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Xinping Feng
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Erxia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Deqing Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Luqi Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| |
Collapse
|
5
|
Dong J, Wang S, Cui W, Sun X, Guo H, Yan H, Vogel H, Wang Z, Yuan S. Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction. J Chem Theory Comput 2024; 20:4499-4513. [PMID: 38394691 DOI: 10.1021/acs.jctc.3c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Time-lagged independent component analysis (tICA) and the Markov state model (MSM) have been extensively employed for extracting conformational dynamics and kinetic community networks from unbiased trajectory ensembles. However, these techniques may not be the optimal choice for elucidating transition mechanisms within low-dimensional representations, especially for intricate biosystems. Unraveling the association mechanism in such complex systems always necessitates permutations of several essential independent components or collective variables, a process that is inherently obscure and may require empirical knowledge for selection. To address these challenges, we have implemented an integrated unsupervised dimension reduction model: uniform manifold approximation and projection (UMAP) with hierarchy density-based spatial clustering of applications with noise (HDBSCAN). This approach effectively generates low-dimensional configurational embeddings. The hierarchical application of this architecture, in conjunction with MSM, reveals global kinetic connectivity while identifying local conformational states. Consequently, our methodology establishes a multiscale mechanistic elucidation framework. Leveraging the benefits of the uniform sample distribution and a denoising approach, our model demonstrates robustness in preserving global and local data structures compared to traditional dimension reduction methods in the field of MD analysis area. The interpretability of hyperparameter selection and compatibility with downstream tasks are cross-validated across various simulation data sets, utilizing both computational evaluation metrics and experimental kinetic observables. Furthermore, the predicted Mcl1-BH3 association kinetics (0.76 s-1) is in close agreement with surface plasmon resonance experiments (0.12 s-1), affirming the plausibility of the identified pathway composed of representative conformations. We anticipate that the devised workflow will serve as a foundational framework for studying recognition patterns in complex biological systems. Its contributions extend to the exploration of protein functional dynamics and rational drug design, offering a potent avenue for advancing research in these domains.
Collapse
Affiliation(s)
- Junlin Dong
- Research Center for Computer-Aided Drug Discovery, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyu Wang
- Research Center for Computer-Aided Drug Discovery, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- AlphaMol Science Ltd, Shenzhen 518055, China
| | - Wenqiang Cui
- Research Center for Computer-Aided Drug Discovery, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Sun
- Research Center for Computer-Aided Drug Discovery, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haojie Guo
- Research Center for Computer-Aided Drug Discovery, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hailu Yan
- School of Biological Sciences, College of Science and Engineering, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Horst Vogel
- Research Center for Computer-Aided Drug Discovery, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhi Wang
- Artificial Intelligence Department, Zhejiang Financial College, Hangzhou 310018, China
| | - Shuguang Yuan
- Research Center for Computer-Aided Drug Discovery, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- AlphaMol Science Ltd, Shenzhen 518055, China
| |
Collapse
|
6
|
Chen J, Wang W, Sun H, He W. Roles of Accelerated Molecular Dynamics Simulations in Predictions of Binding Kinetic Parameters. Mini Rev Med Chem 2024; 24:1323-1333. [PMID: 38265367 DOI: 10.2174/0113895575252165231122095555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Rational predictions on binding kinetics parameters of drugs to targets play significant roles in future drug designs. Full conformational samplings of targets are requisite for accurate predictions of binding kinetic parameters. In this review, we mainly focus on the applications of enhanced sampling technologies in calculations of binding kinetics parameters and residence time of drugs. The methods involved in molecular dynamics simulations are applied to not only probe conformational changes of targets but also reveal calculations of residence time that is significant for drug efficiency. For this review, special attention are paid to accelerated molecular dynamics (aMD) and Gaussian aMD (GaMD) simulations that have been adopted to predict the association or disassociation rate constant. We also expect that this review can provide useful information for future drug design.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Weikai He
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| |
Collapse
|
7
|
Herrington NB, Stein D, Li YC, Pandey G, Schlessinger A. Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555779. [PMID: 37693436 PMCID: PMC10491245 DOI: 10.1101/2023.08.31.555779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs, which enable kinases to adopt various conformational states. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the kinase conformation(s) they bind. However, the limited availability of experimentally determined structural data for kinases in inactive states restricts drug discovery efforts for this major protein family. Modern AI-based structural modeling methods hold potential for exploring the previously experimentally uncharted druggable conformational space for kinases. Here, we first evaluated the currently explored conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) (1) and ESMFold (2), two prominent AI-based structure prediction methods. We then investigated AF2's ability to predict kinase structures in different conformations at various multiple sequence alignment (MSA) depths, based on this parameter's ability to explore conformational diversity. Our results showed a bias within the PDB and predicted structural models generated by AF2 and ESMFold toward structures of kinases in the active state over alternative conformations, particularly those conformations controlled by the DFG motif. Finally, we demonstrate that predicting kinase structures using AF2 at lower MSA depths allows the exploration of the space of these alternative conformations, including identifying previously unobserved conformations for 398 kinases. The results of our analysis of structural modeling by AF2 create a new avenue for the pursuit of new therapeutic agents against a notoriously difficult-to-target family of proteins. Significance Statement Greater abundance of kinase structural data in inactive conformations, currently lacking in structural databases, would improve our understanding of how protein kinases function and expand drug discovery and development for this family of therapeutic targets. Modern approaches utilizing artificial intelligence and machine learning have potential for efficiently capturing novel protein conformations. We provide evidence for a bias within AlphaFold2 and ESMFold to predict structures of kinases in their active states, similar to their overrepresentation in the PDB. We show that lowering the AlphaFold2 algorithm's multiple sequence alignment depth can help explore kinase conformational space more broadly. It can also enable the prediction of hundreds of kinase structures in novel conformations, many of whose models are likely viable for drug discovery.
Collapse
|
8
|
Sohraby F, Nunes-Alves A. Advances in computational methods for ligand binding kinetics. Trends Biochem Sci 2022; 48:437-449. [PMID: 36566088 DOI: 10.1016/j.tibs.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Binding kinetic parameters can be correlated with drug efficacy, which in recent years led to the development of various computational methods for predicting binding kinetic rates and gaining insight into protein-drug binding paths and mechanisms. In this review, we introduce and compare computational methods recently developed and applied to two systems, trypsin-benzamidine and kinase-inhibitor complexes. Methods involving enhanced sampling in molecular dynamics simulations or machine learning can be used not only to predict kinetic rates, but also to reveal factors modulating the duration of residence times, selectivity, and drug resistance to mutations. Methods which require less computational time to make predictions are highlighted, and suggestions to reduce the error of computed kinetic rates are presented.
Collapse
Affiliation(s)
- Farzin Sohraby
- Institute of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
9
|
Nunes-Alves A, Ormersbach F, Wade RC. Prediction of the Drug-Target Binding Kinetics for Flexible Proteins by Comparative Binding Energy Analysis. J Chem Inf Model 2021; 61:3708-3721. [PMID: 34197096 DOI: 10.1021/acs.jcim.1c00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is growing consensus that the optimization of the kinetic parameters for drug-protein binding leads to improved drug efficacy. Therefore, computational methods have been developed to predict kinetic rates and to derive quantitative structure-kinetic relationships (QSKRs). Many of these methods are based on crystal structures of ligand-protein complexes. However, a drawback is that each ligand-protein complex is usually treated as having a single structure. Here, we present a modification of COMparative BINding Energy (COMBINE) analysis, which uses the structures of ligand-protein complexes to predict binding parameters. We introduce the option of using multiple structures to describe each ligand-protein complex in COMBINE analysis and apply this to study the effects of protein flexibility on the derivation of dissociation rate constants (koff) for inhibitors of p38 mitogen-activated protein (MAP) kinase, which has a flexible binding site. Multiple structures were obtained for each ligand-protein complex by performing docking to an ensemble of protein configurations obtained from molecular dynamics simulations. Coefficients to scale ligand-protein interaction energies determined from energy-minimized structures of ligand-protein complexes were obtained by partial least squares regression, and they allowed for the computation of koff values. The QSKR model obtained using single, energy-minimized crystal structures for each ligand-protein complex had higher predictive power than the QSKR model obtained with multiple structures from ensemble docking. However, incorporation of ligand-protein flexibility helped to highlight additional ligand-protein interactions that lead to longer residence times, such as interactions with residues Arg67 and Asp168, which are close to the ligand in many crystal structures. These results show that COMBINE analysis is a promising method to guide the design of compounds that bind to flexible proteins with improved binding kinetics.
Collapse
Affiliation(s)
- Ariane Nunes-Alves
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Fabian Ormersbach
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Umezawa K, Kii I. Druggable Transient Pockets in Protein Kinases. Molecules 2021; 26:molecules26030651. [PMID: 33513739 PMCID: PMC7865889 DOI: 10.3390/molecules26030651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Drug discovery using small molecule inhibitors is reaching a stalemate due to low selectivity, adverse off-target effects and inevitable failures in clinical trials. Conventional chemical screening methods may miss potent small molecules because of their use of simple but outdated kits composed of recombinant enzyme proteins. Non-canonical inhibitors targeting a hidden pocket in a protein have received considerable research attention. Kii and colleagues identified an inhibitor targeting a transient pocket in the kinase DYRK1A during its folding process and termed it FINDY. FINDY exhibits a unique inhibitory profile; that is, FINDY does not inhibit the fully folded form of DYRK1A, indicating that the FINDY-binding pocket is hidden in the folded form. This intriguing pocket opens during the folding process and then closes upon completion of folding. In this review, we discuss previously established kinase inhibitors and their inhibitory mechanisms in comparison with FINDY. We also compare the inhibitory mechanisms with the growing concept of “cryptic inhibitor-binding sites.” These sites are buried on the inhibitor-unbound surface but become apparent when the inhibitor is bound. In addition, an alternative method based on cell-free protein synthesis of protein kinases may allow the discovery of small molecules that occupy these mysterious binding sites. Transitional folding intermediates would become alternative targets in drug discovery, enabling the efficient development of potent kinase inhibitors.
Collapse
Affiliation(s)
- Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-Minowa, Kami-ina, Nagano 399-4598, Japan;
| | - Isao Kii
- Laboratory for Drug Target Research, Faculty & Graduate School of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-ina, Nagano 399-4598, Japan
- Correspondence: ; Tel.: +81-265-77-1521
| |
Collapse
|