1
|
Fernandez-Lopez L, Roda S, Robles-Martín A, Muñoz-Tafalla R, Almendral D, Ferrer M, Guallar V. Enhancing the Hydrolytic Activity of a Lipase towards Larger Triglycerides through Lid Domain Engineering. Int J Mol Sci 2023; 24:13768. [PMID: 37762071 PMCID: PMC10530837 DOI: 10.3390/ijms241813768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Lipases have valuable potential for industrial use, particularly those mostly active against water-insoluble substrates, such as triglycerides composed of long-carbon chain fatty acids. However, in most cases, engineered variants often need to be constructed to achieve optimal performance for such substrates. Protein engineering techniques have been reported as strategies for improving lipase characteristics by introducing specific mutations in the cap domain of esterases or in the lid domain of lipases or through lid domain swapping. Here, we improved the lipase activity of a lipase (WP_075743487.1, or LipMRD) retrieved from the Marine Metagenomics MarRef Database and assigned to the Actinoalloteichus genus. The improvement was achieved through site-directed mutagenesis and by substituting its lid domain (FRGTEITQIKDWLTDA) with that of Rhizopus delemar lipase (previously R. oryzae; UniProt accession number, I1BGQ3) (FRGTNSFRSAITDIVF). The results demonstrated that the redesigned mutants gain activity against bulkier triglycerides, such as glyceryl tridecanoate and tridodecanoate, olive oil, coconut oil, and palm oil. Residue W89 (LipMRD numbering) appears to be key to the increase in lipase activity, an increase that was also achieved with lid swapping. This study reinforces the importance of the lid domains and their amino acid compositions in determining the substrate specificity of lipases, but the generalization of the lid domain swapping between lipases or the introduction of specific mutations in the lid domain to improve lipase activity may require further investigation.
Collapse
Affiliation(s)
- Laura Fernandez-Lopez
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Sergi Roda
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
| | - Ana Robles-Martín
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Rubén Muñoz-Tafalla
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- PhD Programme, Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - David Almendral
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain; (L.F.-L.); (D.A.)
| | - Víctor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; (S.R.); (A.R.-M.); (R.M.-T.)
- Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
2
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Roda S, Terholsen H, Meyer JRH, Cañellas-Solé A, Guallar V, Bornscheuer U, Kazemi M. AsiteDesign: a Semirational Algorithm for an Automated Enzyme Design. J Phys Chem B 2023; 127:2661-2670. [PMID: 36944360 PMCID: PMC10068746 DOI: 10.1021/acs.jpcb.2c07091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
With advances in protein structure predictions, the number of available high-quality structures has increased dramatically. In light of these advances, structure-based enzyme engineering is expected to become increasingly important for optimizing biocatalysts for industrial processes. Here, we present AsiteDesign, a Monte Carlo-based protocol for structure-based engineering of active sites. AsiteDesign provides a framework for introducing new catalytic residues in a given binding pocket to either create a new catalytic activity or alter the existing one. AsiteDesign is implemented using pyRosetta and incorporates enhanced sampling techniques to efficiently explore the search space. The protocol was tested by designing an alternative catalytic triad in the active site of Pseudomonas fluorescens esterase (PFE). The designed variant was experimentally verified to be active, demonstrating that AsiteDesign can find alternative catalytic triads. Additionally, the AsiteDesign protocol was employed to enhance the hydrolysis of a bulky chiral substrate (1-phenyl-2-pentyl acetate) by PFE. The experimental verification of the designed variants demonstrated that F158L/F198A and F125A/F158L mutations increased the hydrolysis of 1-phenyl-2-pentyl acetate from 8.9 to 66.7 and 23.4%, respectively, and reversed the enantioselectivity of the enzyme from (R) to (S)-enantiopreference, with 32 and 55% enantiomeric excess (ee), respectively.
Collapse
Affiliation(s)
- Sergi Roda
- Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Henrik Terholsen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jule Ruth Heike Meyer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Albert Cañellas-Solé
- Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1-3, Barcelona 08034, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - Uwe Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Masoud Kazemi
- Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell, 1-3, Barcelona 08034, Spain
- Biomatter Designs, Žirmu̅n̨ g. 139A, Vilnius 09120, Lithuania
| |
Collapse
|
4
|
Puch-Giner I, Molina A, Municoy M, Pérez C, Guallar V. Recent PELE Developments and Applications in Drug Discovery Campaigns. Int J Mol Sci 2022; 23:ijms232416090. [PMID: 36555731 PMCID: PMC9788188 DOI: 10.3390/ijms232416090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Computer simulation techniques are gaining a central role in molecular pharmacology. Due to several factors, including the significant improvements of traditional molecular modelling, the irruption of machine learning methods, the massive data generation, or the unlimited computational resources through cloud computing, the future of pharmacology seems to go hand in hand with in silico predictions. In this review, we summarize our recent efforts in such a direction, centered on the unconventional Monte Carlo PELE software and on its coupling with machine learning techniques. We also provide new data on combining two recent new techniques, aquaPELE capable of exhaustive water sampling and fragPELE, for fragment growing.
Collapse
Affiliation(s)
- Ignasi Puch-Giner
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
| | - Alexis Molina
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Martí Municoy
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Carles Pérez
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Nostrum Biodiscovery S.L., Av. de Josep Tarradellas, 8-10, 3-2, 08029 Barcelona, Spain
- Correspondence:
| |
Collapse
|
5
|
Derat E, Kamerlin SCL. Computational Advances in Protein Engineering and Enzyme Design. J Phys Chem B 2022; 126:2449-2451. [PMID: 35387452 DOI: 10.1021/acs.jpcb.2c01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Etienne Derat
- Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS, Sorbonne Université, 75005 Paris, France
| | | |
Collapse
|
6
|
Basciu A, Callea L, Motta S, Bonvin AM, Bonati L, Vargiu AV. No dance, no partner! A tale of receptor flexibility in docking and virtual screening. VIRTUAL SCREENING AND DRUG DOCKING 2022. [DOI: 10.1016/bs.armc.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Michael E, Simonson T. How much can physics do for protein design? Curr Opin Struct Biol 2021; 72:46-54. [PMID: 34461593 DOI: 10.1016/j.sbi.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/03/2023]
Abstract
Physics and physical chemistry are an important thread in computational protein design, complementary to knowledge-based tools. They provide molecular mechanics scoring functions that need little or no ad hoc parameter readjustment, methods to thoroughly sample equilibrium ensembles, and different levels of approximation for conformational flexibility. They led recently to the successful redesign of a small protein using a physics-based folded state energy. Adaptive Monte Carlo or molecular dynamics schemes were discovered where protein variants are populated as per their ligand-binding free energy or catalytic efficiency. Molecular dynamics have been used for backbone flexibility. Implicit solvent models have been refined, polarizable force fields applied, and many physical insights obtained.
Collapse
Affiliation(s)
- Eleni Michael
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128, Palaiseau, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128, Palaiseau, France.
| |
Collapse
|
8
|
Roda S, Robles-Martín A, Xiang R, Kazemi M, Guallar V. Structural-Based Modeling in Protein Engineering. A Must Do. J Phys Chem B 2021; 125:6491-6500. [PMID: 34106727 DOI: 10.1021/acs.jpcb.1c02545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biotechnological solutions will be a key aspect in our immediate future society, where optimized enzymatic processes through enzyme engineering might be an important solution for waste transformation, clean energy production, biodegradable materials, and green chemistry, for example. Here we advocate the importance of structural-based bioinformatics and molecular modeling tools in such developments. We summarize our recent experiences indicating a great prediction/success ratio, and we suggest that an early in silico phase should be performed in enzyme engineering studies. Moreover, we demonstrate the potential of a new technique combining Rosetta and PELE, which could provide a faster and more automated procedure, an essential aspect for a broader use.
Collapse
Affiliation(s)
- Sergi Roda
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | | | - Ruite Xiang
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Masoud Kazemi
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|