1
|
Zhang Y, Tang H, Zou W. Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals. Int J Mol Sci 2025; 26:2821. [PMID: 40141462 PMCID: PMC11942716 DOI: 10.3390/ijms26062821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
As a crucial parameter in Mössbauer spectroscopy, nuclear quadrupole splitting (NQS) exhibits a strong dependence on quantum chemistry methods, which makes accurate theoretical predictions challenging. Meanwhile, the continuous emergence of new density functionals presents opportunities to advance current NQS research. In this study, we evaluate the performance of eleven hybrid density functionals and twelve double-hybrid density functionals, selected from widely used functionals and newly developed functionals, in predicting the NQS values of the 57Fe nuclide for 32 iron-containing molecules within about 70 atoms. The calculations have incorporated scalar relativistic effects using the exact two-component (X2C) Hamiltonian. In general, the double-hybrid functional PBE-0DH demonstrates superior performance compared to the experimental values, achieving a mean absolute error (MAE) of 0.20 mm/s. Meanwhile, rSCAN38 is the best hybrid functional for our database with an MAE = 0.25 mm/s, and it offers a significant advantage in computational efficiency over PBE-0DH. The +/- sign of NQS has also been considered in our error statistics when it has a clear physical meaning; if neglected, the errors of many functionals decrease, but PBE-0DH and rSCAN38 remain unaffected. Notably, when calculating ferrocene [Fe(C5H5)2], which involves strong static correlations, all hybrid functionals that incorporate more than 10% exact exchange fail, while several double-hybrid functionals continue to deliver reliable results. In addition, we encountered two particularly challenging species characterized by strong static correlations: [Fe(H2O)5NO]2+ and FeO2--porphyrin. Unfortunately, none of the density functionals tested in our study yielded satisfactory results for the two cases since the density functional theory (DFT) is a single-determinant approach, and it is imperative to explore large-scale multi-configurational methods for these species. This research offers valuable guidance for selecting density functionals in Mössbauer NQS calculations and serves as a reference point for the future development of new density functionals.
Collapse
Affiliation(s)
- Yihao Zhang
- Institute of Modern Physics, Northwest University, Xi’an 710127, China; (Y.Z.); (H.T.)
- School of Physics, Northwest University, Xi’an 710127, China
| | - Haonan Tang
- Institute of Modern Physics, Northwest University, Xi’an 710127, China; (Y.Z.); (H.T.)
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an 710127, China; (Y.Z.); (H.T.)
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China
| |
Collapse
|
2
|
Khan D, Price AJA, Huang B, Ach ML, von Lilienfeld OA. Adapting hybrid density functionals with machine learning. SCIENCE ADVANCES 2025; 11:eadt7769. [PMID: 39888985 PMCID: PMC11784814 DOI: 10.1126/sciadv.adt7769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 02/02/2025]
Abstract
Exact exchange contributions significantly affect electronic states, influencing covalent bond formation and breaking. Hybrid density functional approximations, which average exact exchange admixtures empirically, have achieved success but fall short of high-level quantum chemistry accuracy due to delocalization errors. We propose adaptive hybrid functionals, generating optimal exact exchange admixture ratios on the fly using data-efficient quantum machine learning models with negligible overhead. The adaptive Perdew-Burke-Ernzerhof hybrid density functional (aPBE0) improves energetics, electron densities, and HOMO-LUMO gaps in QM9, QM7b, and GMTKN55 benchmark datasets. A model uncertainty-based constraint reduces the method smoothly to PBE0 in extrapolative regimes, ensuring general applicability with limited training. By tuning exact exchange fractions for different spin states, aPBE0 effectively addresses the spin gap problem in open-shell systems such as carbenes. We also present a revised QM9 (revQM9) dataset with more accurate quantum properties, including stronger covalent binding, larger bandgaps, more localized electron densities, and larger dipole moments.
Collapse
Affiliation(s)
- Danish Khan
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Alastair J. A. Price
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Bing Huang
- Wuhan University, Department of Chemistry and Molecular Sciences, Wuhan 430072, China
| | - Maximilian L. Ach
- Department of Physics, University of Toronto, St. George Campus, Toronto, ON, Canada
- Department of Physics, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - O. Anatole von Lilienfeld
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Department of Physics, University of Toronto, St. George Campus, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, St. George Campus, Toronto, ON, Canada
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
- Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
| |
Collapse
|
3
|
Wibowo-Teale AM, Huynh BC, Helgaker T, Tozer DJ. Classical Reaction Barriers in DFT: An Adiabatic-Connection Perspective. J Chem Theory Comput 2025; 21:124-137. [PMID: 39715015 PMCID: PMC11736800 DOI: 10.1021/acs.jctc.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Classical reaction barriers in density-functional theory are considered from the perspective of the density-fixed adiabatic connection. A 'reaction adiabatic-connection integrand', R λ , is introduced, where λ is the electron-electron interaction strength, for which ∫ 0 1 R λ d λ equals the barrier, meaning the barrier can be easily visualized as the area under a plot of R λ vs λ. For five chemical reactions, plots of reference R λ , calculated from Lieb maximizations at the coupled-cluster level of theory, are compared with approximate R λ , calculated from common exchange-correlation functionals using coordinate scaling, for coupled-cluster densities. The comparison provides a simple way to visualize and understand functional-driven errors and trends in barriers from approximate functionals, while allowing a clean separation of the role of exchange and correlation contributions to the barrier. Specifically, the accuracy of R 0 is determined entirely by the accuracy of the exchange functional, while the shape of R λ is determined entirely by the correlation functional. The results clearly illustrate why the optimal amount of exact (orbital) exchange in hybrid functionals differs between reactions, including forward and reverse directions in the same reaction, and hence why simply introducing larger amounts of exact exchange may not be a reliable approach for improving barriers. Instead, the shape of R λ must be captured more accurately through more accurate correlation functionals, and the numerical data presented may be useful for this purpose. Density-driven errors are then considered, and possible cancellation with functional-driven errors in barriers─noted in prior studies when Hartree-Fock densities are used─is illustrated from the perspective of R λ .
Collapse
Affiliation(s)
- Andrew M. Wibowo-Teale
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, U.K.
| | - Bang C. Huynh
- School
of Chemistry, University of Nottingham,
University Park, Nottingham NG7 2RD, U.K.
| | - Trygve Helgaker
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - David J. Tozer
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
4
|
Feng R, Zhang IY, Xu X. A cross-entropy corrected hybrid multiconfiguration pair-density functional theory for complex molecular systems. Nat Commun 2025; 16:235. [PMID: 39747131 PMCID: PMC11695591 DOI: 10.1038/s41467-024-55524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Hybrid density functionals, such as B3LYP and PBE0, have achieved remarkable success by substantially improving over their parent methods, namely Hartree-Fock and the generalized gradient approximation, and generally outperforming the second-order Møller-Plesset perturbation theory (MP2) that is more expensive. Here, we extend the linear scheme of hybrid multiconfiguration pair-density functional theory (HMC-PDFT) by incorporating a cross-entropy ingredient to balance the description of static and dynamic correlation effects, leading to a consistent improvement on both exchange and correlation energies. The B3LYP-like translated on-top functional (tB4LYP) developed along this line not only surpasses the accuracy of its parent methods, the complete active space self-consistent field (CASSCF) and the original MC-PDFT functionals (tBLYP and tB3LYP), but also outperforms the widely used complete active space second-order perturbation theory (CASPT2). Remarkably, while remaining satisfactory for general purpose, tB4LYP shows superior accuracy for challenging cases like the Cr2 dissociation and the associated low-lying vibrational energies, the ethylene torsional rotation and the ethyne diabatic colinear dissociations, with the significantly lower computational cost than CASPT2.
Collapse
Affiliation(s)
- Rulin Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
| |
Collapse
|
5
|
Bhattacharjee S, Koshi NA, Lee SC. Customizing PBE exchange-correlation functionals: a comprehensive approach for band gap prediction in diverse semiconductors. Phys Chem Chem Phys 2024; 26:26443-26452. [PMID: 39392109 DOI: 10.1039/d4cp03260h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Accurate band gap prediction in semiconductors is crucial for materials science and semiconductor technology advancements. This paper extends the Perdew-Burke-Ernzerhof (PBE) functional for a wide range of semiconductors, tackling the exchange and correlation enhancement factor complexities within density functional theory (DFT). Our customized functionals offer a clearer and more realistic alternative to DFT+U methods, which demand large negative U values for elements like sulfur (S), selenium (Se), and phosphorus (P). Moreover, these functionals are more cost-effective than GW or Heyd-Scuseria-Ernzerhof (HSE) hybrid functional methods, therefore, significantly facilitating the way for unified workflows in analyzing electronic structure, dielectric constants, effective masses, and further transport and elastic properties, allowing for seamless calculations across various properties. We point out that such development could be helpful in the creation of comprehensive databases of band gap and dielectric properties of the materials without expensive calculations. Furthermore, for the semiconductors studied, we show that these customized functionals and the strongly constrained and appropriately normed semilocal density functional (SCAN) perform similarly in terms of the band gap.
Collapse
Affiliation(s)
| | - Namitha Anna Koshi
- Indo-Korea Science and Technology Center (IKST), Bengaluru 560064, India.
| | - Seung-Cheol Lee
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, South Korea
| |
Collapse
|
6
|
Lee M, Kim B, Sim M, Sogal M, Kim Y, Yu H, Burke K, Sim E. Correcting Dispersion Corrections with Density-Corrected DFT. J Chem Theory Comput 2024. [PMID: 39120872 DOI: 10.1021/acs.jctc.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Almost all empirical parametrizations of dispersion corrections in DFT use only energy errors, thereby mixing functional and density-driven errors. We introduce density and dispersion-corrected DFT (D2C-DFT), a dual-calibration approach that accounts for density delocalization errors when parametrizing dispersion interactions. We simply exclude density-sensitive reactions from the training data. We find a significant reduction in both errors and variation among several semilocal functionals and their global hybrids when tailored dispersion corrections are employed with Hartree-Fock densities.
Collapse
Affiliation(s)
- Minhyeok Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Byeongjae Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mingyu Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mihira Sogal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Youngsam Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Hayoung Yu
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
7
|
Kaplan AD, Shahi C, Sah RK, Bhetwal P, Kanungo B, Gavini V, Perdew JP. How Does HF-DFT Achieve Chemical Accuracy for Water Clusters? J Chem Theory Comput 2024; 20:5517-5527. [PMID: 38937987 DOI: 10.1021/acs.jctc.4c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bolstered by recent calculations of exact functional-driven errors (FEs) and density-driven errors (DEs) of semilocal density functionals in the water dimer binding energy [Kanungo, B. J. Phys. Chem. Lett. 2024, 15, 323-328], we investigate approximate FEs and DEs in neutral water clusters containing up to 20 monomers, charged water clusters, and alkali- and halide-water clusters. Our proxy for the exact density is r2SCAN 50, a 50% global hybrid of exact exchange with r2SCAN, which may be less correct than r2SCAN for the compact water monomer but importantly more correct for long-range electron transfers in the noncompact water clusters. We show that SCAN makes substantially larger FEs for neutral water clusters than r2SCAN, while both make essentially the same DEs. Unlike the case for barrier heights, these FEs are small in a relative sense and become large in an absolute sense only due to an increase in cluster size. SCAN@HF, short for SCAN evaluated on the Hartree-Fock (HF) density, produces a cancellation of errors that makes it chemically accurate for predicting the absolute binding energies of water clusters. Likewise, adding a long-range dispersion correction to r2SCAN@HF, as in the composite method HF-r2SCAN-DC4, makes its FE more negative than in r2SCAN@HF, permitting a near-perfect cancellation of FE and DE. r2SCAN by itself (and even more so, r2SCAN evaluated on the r2SCAN 50 density), is almost perfect for the energy differences between water hexamers, and thus probably also for liquid water away from the boiling point. Thus, the accuracy of composite methods like SCAN@HF and HF-r2SCAN-DC4 is not due to the HF density being closer to the exact density, but to a compensation of errors from its greater degree of localization. We also give an argument for the approximate reliability of this unconventional error cancellation for diverse molecular properties. Finally, we confirm this unconventional error cancellation for the SCAN description of the water trimer via Kohn-Sham inversion of the CCSD(T) density.
Collapse
Affiliation(s)
- Aaron D Kaplan
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chandra Shahi
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Raj K Sah
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Pradeep Bhetwal
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Bikash Kanungo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vikram Gavini
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John P Perdew
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
8
|
Vysotskiy VP, Filippi C, Ryde U. Scalar Relativistic All-Electron and Pseudopotential Ab Initio Study of a Minimal Nitrogenase [Fe(SH) 4H] - Model Employing Coupled-Cluster and Auxiliary-Field Quantum Monte Carlo Many-Body Methods. J Phys Chem A 2024; 128:1358-1374. [PMID: 38324717 PMCID: PMC10895656 DOI: 10.1021/acs.jpca.3c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Nitrogenase is the only enzyme that can cleave the triple bond in N2, making nitrogen available to organisms. The detailed mechanism of this enzyme is currently not known, and computational studies are complicated by the fact that different density functional theory (DFT) methods give very different energetic results for calculations involving nitrogenase models. Recently, we designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S to mimic different possible protonation states of the nitrogenase active site. We showed that the energy difference between these two isomers (ΔE) is hard to estimate with quantum-mechanical methods. Based on nonrelativistic single-reference coupled-cluster (CC) calculations, we estimated that the ΔE is 101 kJ/mol. In this study, we demonstrate that scalar relativistic effects play an important role and significantly affect ΔE. Our best revised single-reference CC estimates for ΔE are 85-91 kJ/mol, including energy corrections to account for contributions beyond triples, core-valence correlation, and basis-set incompleteness error. Among coupled-cluster approaches with approximate triples, the canonical CCSD(T) exhibits the largest error for this problem. Complementary to CC, we also used phaseless auxiliary-field quantum Monte Carlo calculations (ph-AFQMC). We show that with a Hartree-Fock (HF) trial wave function, ph-AFQMC reproduces the CC results within 5 ± 1 kJ/mol. With multi-Slater-determinant (MSD) trials, the results are 82-84 ± 2 kJ/mol, indicating that multireference effects may be rather modest. Among the DFT methods tested, τ-HCTH, r2SCAN with 10-13% HF exchange with and without dispersion, and O3LYP/O3LYP-D4, and B3LYP*/B3LYP*-D4 generally perform the best. The r2SCAN12 (with 12% HF exchange) functional mimics both the best reference MSD ph-AFQMC and CC ΔE results within 2 kJ/mol.
Collapse
Affiliation(s)
- Victor P. Vysotskiy
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| | - Claudia Filippi
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Ulf Ryde
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| |
Collapse
|
9
|
Pavlak I, Matasović L, Buchanan EA, Michl J, Rončević I. Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene. J Am Chem Soc 2024; 146:3992-4000. [PMID: 38294407 PMCID: PMC10870706 DOI: 10.1021/jacs.3c12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Zinc porphene is a two-dimensional material made of fully fused zinc porphyrins in a tetragonal lattice. It has a fully conjugated π-system, making it similar to graphene. Zinc porphene has recently been synthesized, and a combination of rough conductivity measurements and infrared and Raman spectroscopies all suggested that it is a semiconductor (Magnera, T.F. et al. Porphene and Porphite as Porphyrin Analogs of Graphene and Graphite, Nat. Commun.2023, 14, 6308). This is in contrast with all previous predictions of its electronic structure, which indicated metallic conductivity. We show that the gap-opening in zinc porphene is caused by a Peierls distortion of its unit cell from square to rectangular, thus giving the first account of its electronic structure in agreement with the experiment. Accounting for this distortion requires proper treatment of electron delocalization, which can be done using hybrid functionals with a substantial amount of exact exchange. Such a functional, PBE38, is then applied to predict the properties of many first transition row metalloporphenes, some of which have already been prepared. We find that changing the metal strongly affects the electronic structure of metalloporphenes, resulting in a rich variety of both metallic conductors and semiconductors, which may be of great interest to molecular electronics and spintronics. Properties of these materials are mostly governed by the extent of the Peierls distortion and the number of electrons in their π-system, analogous to changes in aromaticity observed in cyclic conjugated molecules upon oxidation or reduction. These results give an account of how the concept of antiaromaticity can be extended to periodic systems.
Collapse
Affiliation(s)
- Ivan Pavlak
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac 102A, Zagreb 10000, Croatia
| | - Lujo Matasović
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Eric A. Buchanan
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309-0215, United States
| | - Josef Michl
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309-0215, United States
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, Prague 6 16610, Czech Republic
| | - Igor Rončević
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, Prague 6 16610, Czech Republic
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K.
| |
Collapse
|
10
|
Kanungo B, Kaplan AD, Shahi C, Gavini V, Perdew JP. Unconventional Error Cancellation Explains the Success of Hartree-Fock Density Functional Theory for Barrier Heights. J Phys Chem Lett 2024; 15:323-328. [PMID: 38170179 DOI: 10.1021/acs.jpclett.3c03088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Energy barriers, which control the rates of chemical reactions, are seriously underestimated by computationally efficient semilocal approximations for the exchange-correlation energy. The accuracy of a semilocal density functional approximation is strongly boosted for reaction barrier heights by evaluating that approximation non-self-consistently on Hartree-Fock electron densities, which has been known for ∼30 years. The conventional explanation is that the Hartree-Fock theory yields the more accurate density. This work presents a benchmark Kohn-Sham inversion of accurate coupled-cluster densities for the reaction H2 + F → HHF → H + HF and finds a strong, understandable cancellation between positive (excessively overcorrected) density-driven and large negative functional-driven errors (expected from stretched radical bonds in the transition state) within this Hartree-Fock density functional theory. This confirms earlier conclusions (Kaplan, A. D., et al. J. Chem. Theory Comput. 2023, 19, 532-543) based on 76 barrier heights and three less reliable, but less expensive, fully nonlocal density functional proxies for the exact density.
Collapse
Affiliation(s)
- Bikash Kanungo
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron D Kaplan
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chandra Shahi
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Vikram Gavini
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John P Perdew
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
11
|
Hancock AC, Goerigk L. Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models. RSC Adv 2023; 13:35964-35984. [PMID: 38090083 PMCID: PMC10712016 DOI: 10.1039/d3ra07381e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 05/12/2024] Open
Abstract
Excimers are supramolecular systems whose binding strength is influenced by many factors that are ongoing challenges for computational methods, such as charge transfer, exciton coupling, and London dispersion interactions. Treating the various intricacies of excimer binding at an adequate level is expected to be particularly challenging for time-dependent Density Functional Theory (TD-DFT) methods. In addition to well-known limitations for some TD-DFT methods in the description of charge transfer or exciton coupling, the inherent London dispersion problem from ground-state DFT translates to TD-DFT. While techniques to appropriately treat dispersion in DFT are well-developed for electronic ground states, these dispersion corrections remain largely untested for excited states. Herein, we aim to shed light on current TD-DFT methods, including some of the newest developments. The binding of four model excimers is studied across nine density functionals with and without the application of additive dispersion corrections against a wave function reference of SCS-CC2/CBS(3,4) quality, which approximates select CCSDR(3)/CBS data adequately. To our knowledge, this is the first study that presents single-reference wave function dissociation curves at the complete basis set level for the assessed model systems. It is also the first time range-separated double-hybrid density functionals are applied to excimers. In fact, those functionals turn out to be the most promising for the description of excimer binding followed by global double hybrids. Range-separated and global hybrids-particularly with large fractions of Fock exchange-are outperformed by double hybrids and yield worse dissociation energies and inter-molecular equilibrium distances. The deviation between each assessed functional and reference increases with system size, most likely due to missing dispersion interactions. Additive dispersion corrections of the DFT-D3(BJ) and DFT-D4 types reduce the average errors for TD-DFT methods but do so inconsistently and therefore do not offer a black-box solution in their ground-state parametrised form. The lack of appropriate description of dispersion effects for TD-DFT methods is likely hindering the practical application of the herein identified more efficient methods. Dispersion corrections parametrised for excited states appear to be an important next step to improve the applicability of TD-DFT methods and we hope that our work assists with the future development of such corrections.
Collapse
Affiliation(s)
- Amy C Hancock
- School of Chemistry, The University of Melbourne Parkville Australia +61-(0)3-8344 6784
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne Parkville Australia +61-(0)3-8344 6784
| |
Collapse
|
12
|
Palos E, Caruso A, Paesani F. Consistent density functional theory-based description of ion hydration through density-corrected many-body representations. J Chem Phys 2023; 159:181101. [PMID: 37947509 DOI: 10.1063/5.0174577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Delocalization error constrains the accuracy of density functional theory in describing molecular interactions in ion-water systems. Using Na+ and Cl- in water as model systems, we calculate the effects of delocalization error in the SCAN functional for describing ion-water and water-water interactions in hydrated ions, and demonstrate that density-corrected SCAN (DC-SCAN) predicts n-body and interaction energies with an accuracy approaching coupled cluster theory. The performance of DC-SCAN is size-consistent, maintaining an accurate description of molecular interactions well beyond the first solvation shell. Molecular dynamics simulations at ambient conditions with many-body MB-SCAN(DC) potentials, derived from the many-body expansion, predict the solvation structure of Na+ and Cl- in quantitative agreement with reference data, while simultaneously reproducing the structure of liquid water. Beyond rationalizing the accuracy of density-corrected models of ion hydration, our findings suggest that our unified density-corrected MB formalism holds great promise for efficient DFT-based simulations of condensed-phase systems with chemical accuracy.
Collapse
Affiliation(s)
- Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Graf D, Thom AJW. Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost. J Chem Phys 2023; 159:174106. [PMID: 37921249 DOI: 10.1063/5.0168569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
We recently introduced an efficient methodology to perform density-corrected Hartree-Fock density functional theory [DC(HF)-DFT] calculations and an extension to it we called "corrected" HF DFT [C(HF)-DFT] [Graf and Thom, J. Chem. Theory Comput. 19 5427-5438 (2023)]. In this work, we take a further step and combine C(HF)-DFT, augmented with a straightforward orbital energy correction, with the random phase approximation (RPA). We refer to the resulting methodology as corrected HF RPA [C(HF)-RPA]. We evaluate the proposed methodology across various RPA methods: direct RPA (dRPA), RPA with an approximate exchange kernel, and RPA with second-order screened exchange. C(HF)-dRPA demonstrates very promising performance; for RPA with exchange methods, on the other hand, we often find over-corrections.
Collapse
Affiliation(s)
- Daniel Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Alex J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| |
Collapse
|
14
|
Iwanek W. Solvent and Substituent Size Influence on the Cyclochiral Rigidity of Aminomethylene Derivatives of Resorcin[4]arene. Molecules 2023; 28:7426. [PMID: 37959846 PMCID: PMC10649110 DOI: 10.3390/molecules28217426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Resorcin[4]arenes (R[4]A) are a group of macrocyclic compounds whose peculiar feature is the presence of eight hydroxyl groups in their structure. The directional formation of intramolecular hydrogen bonds with their participation leads to the formation of a cyclochiral racemic mixture of these compounds. Their stability strongly depends on the substituent and especially the environment in which they are located. The paper discusses the cyclochiral nature of aminomethylene derivatives of R[4]A (AMD-R[4]A). Their cyclochiral rigidity in non-polar solvents has been shown. The influence of the size of the alkyl groups in the amino substituents of AMD-R[4]A on their cyclochiral nature was noted. To calculate the reaction paths for their racemization, the nudged elastic band (NEB) method was employed using the semi-empirical DFT (GFN1-xTB) approach. The calculated activation barrier energies for their racemization in chloroform, obtained through various semi-empirical quantum chemical methods (SE), Hartree-Fock (HF), and density functionals theory (DFT), show good correlation with experimental observations. Among the tested methods, the B38LYP-D4 method is highly recommended due to its fast computational speed and accuracy, which is comparable to the time-consuming double-hybrid DH-revDSD-PBEP86 approach.
Collapse
Affiliation(s)
- Waldemar Iwanek
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
15
|
Yu H, Song S, Nam S, Burke K, Sim E. Density-Corrected Density Functional Theory for Open Shells: How to Deal with Spin Contamination. J Phys Chem Lett 2023; 14:9230-9237. [PMID: 37811877 DOI: 10.1021/acs.jpclett.3c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Density functional theory (DFT) is usually used self-consistently to predict chemical properties, but the use of the Hartree-Fock (HF) density improves energetics in certain, well-characterized cases. Density-corrected (DC) DFT provides the theory behind this, but unrestricted Hartree-Fock (UHF) densities yield poor energetics in cases of strong spin contamination. Here we compare with restricted open-shell HF (ROHF) across 13 different functionals and two DC-DFT methods. For significant spin contamination, ROHF densities outperform UHF densities by as much as a factor of 3, depending on the energy functional, and ROHF-DFT improves over self-consistent DFT for most of the tested functionals. We refine the DC(HF)-DFT algorithm to use ROHF densities in cases of severe spin contamination.
Collapse
Affiliation(s)
- Hayoung Yu
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Seungsoo Nam
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
16
|
Graf D, Thom AJW. Simple and Efficient Route toward Improved Energetics within the Framework of Density-Corrected Density Functional Theory. J Chem Theory Comput 2023; 19:5427-5438. [PMID: 37525457 PMCID: PMC10448722 DOI: 10.1021/acs.jctc.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Indexed: 08/02/2023]
Abstract
The crucial step in density-corrected Hartree-Fock density functional theory (DC(HF)-DFT) is to decide whether the density produced by the density functional for a specific calculation is erroneous and, hence, should be replaced by, in this case, the HF density. We introduce an indicator, based on the difference in noninteracting kinetic energies between DFT and HF calculations, to determine when the HF density is the better option. Our kinetic energy indicator directly compares the self-consistent density of the analyzed functional with the HF density, is size-intensive, reliable, and most importantly highly efficient. Moreover, we present a procedure that makes best use of the computed quantities necessary for DC(HF)-DFT by additionally evaluating a related hybrid functional and, in that way, not only "corrects" the density but also the functional itself; we call that procedure corrected Hartree-Fock density functional theory (C(HF)-DFT).
Collapse
Affiliation(s)
- Daniel Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Belleflamme F, Hutter J. Radicals in aqueous solution: assessment of density-corrected SCAN functional. Phys Chem Chem Phys 2023; 25:20817-20836. [PMID: 37497572 DOI: 10.1039/d3cp02517a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We study self-interaction effects in solvated and strongly-correlated cationic molecular clusters, with a focus on the solvated hydroxyl radical. To address the self-interaction issue, we apply the DC-r2SCAN method, with the auxiliary density matrix approach. Validating our method through simulations of bulk liquid water, we demonstrate that DC-r2SCAN maintains the structural accuracy of r2SCAN while effectively addressing spin density localization issues. Extending our analysis to solvated cationic molecular clusters, we find that the hemibonded motif in the [CH3S∴CH3SH]+ cluster is disrupted in the DC-r2SCAN simulation, in contrast to r2SCAN that preserves the (three-electron-two-center)-bonded motif. Similarly, for the [SH∴SH2]+ cluster, r2SCAN restores the hemibonded motif through spin leakage, while DC-r2SCAN predicts a weaker hemibond formation influenced by solvent-solute interactions. Our findings demonstrate the potential of DC-r2SCAN combined with the auxiliary density matrix method to improve electronic structure calculations, providing insights into the properties of solvated cationic molecular clusters. This work contributes to the advancement of self-interaction corrected electronic structure theory and offers a computational framework for modeling condensed phase systems with intricate correlation effects.
Collapse
Affiliation(s)
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Morgante P, Autschbach J. Density-Corrected Density Functional Theory for Molecular Properties. J Phys Chem Lett 2023:4983-4989. [PMID: 37220345 DOI: 10.1021/acs.jpclett.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Density-corrected (DC) density functional theory (DFT) has been proposed to overcome difficulties related to the self-interaction error. The procedure uses the Hartree-Fock electron density (matrix) non-self-consistently in conjunction with an approximate functional. DC-DFT has so far mainly been tested for total energy differences, whereas other types of molecular properties have not been evaluated systematically. This work focuses on the performance of DC-DFT for molecular properties, namely, dipole moments, static polarizabilities, and electric field gradients (EFGs) at atomic nuclei. Accurate reference data were generated from coupled-cluster theory to assess the performance of DC and self-consistent DFT calculations for twelve molecules, including diatomics with transition metals. DC-DFT does no harm in dipole moment calculations, but it negatively impacts the polarizability in at least one case. DC-DFT performs well for EFGs, even for the difficult case of CuCl.
Collapse
Affiliation(s)
- Pierpaolo Morgante
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
19
|
Rossomme E, Cunha LA, Li W, Chen K, McIsaac AR, Head-Gordon T, Head-Gordon M. The Good, the Bad, and the Ugly: Pseudopotential Inconsistency Errors in Molecular Applications of Density Functional Theory. J Chem Theory Comput 2023; 19:2827-2841. [PMID: 37156013 DOI: 10.1021/acs.jctc.3c00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The pseudopotential (PP) approximation is one of the most common techniques in computational chemistry. Despite its long history, the development of custom PPs has not tracked with the explosion of different density functional approximations (DFAs). As a result, the use of PPs with exchange/correlation models for which they were not developed is widespread, although this practice is known to be theoretically unsound. The extent of PP inconsistency errors (PPIEs) associated with this practice has not been systematically explored across the types of energy differences commonly evaluated in chemical applications. We evaluate PPIEs for a number of PPs and DFAs across 196 chemically relevant systems of both transition-metal and main-group elements, as represented by the W4-11, TMC34, and S22 data sets. Near the complete basis set limit, these PPs are found to cleanly approach all-electron (AE) results for noncovalent interactions but introduce root-mean-squared errors (RMSEs) upwards of 15 kcal mol-1 into predictions of covalent bond energies for a number of popular DFAs. We achieve significant improvements through the use of empirical atom- and DFA-specific PP corrections, indicating considerable systematicity of the PPIEs. The results of this work have implications for chemical modeling in both molecular contexts and for DFA design, which we discuss.
Collapse
Affiliation(s)
- Elliot Rossomme
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanlu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kaixuan Chen
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexandra R McIsaac
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Song S, Vuckovic S, Kim Y, Yu H, Sim E, Burke K. Extending density functional theory with near chemical accuracy beyond pure water. Nat Commun 2023; 14:799. [PMID: 36781855 PMCID: PMC9925738 DOI: 10.1038/s41467-023-36094-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Density functional simulations of condensed phase water are typically inaccurate, due to the inaccuracies of approximate functionals. A recent breakthrough showed that the SCAN approximation can yield chemical accuracy for pure water in all its phases, but only when its density is corrected. This is a crucial step toward first-principles biosimulations. However, weak dispersion forces are ubiquitous and play a key role in noncovalent interactions among biomolecules, but are not included in the new approach. Moreover, naïve inclusion of dispersion in HF-SCAN ruins its high accuracy for pure water. Here we show that systematic application of the principles of density-corrected DFT yields a functional (HF-r2SCAN-DC4) which recovers and not only improves over HF-SCAN for pure water, but also captures vital noncovalent interactions in biomolecules, making it suitable for simulations of solutions.
Collapse
Affiliation(s)
- Suhwan Song
- grid.15444.300000 0004 0470 5454Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722 Korea ,grid.266093.80000 0001 0668 7243Department of Chemistry, University of California, Irvine, CA 92697 USA
| | - Stefan Vuckovic
- grid.472716.10000 0004 1758 7362Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy ,grid.12380.380000 0004 1754 9227Departments of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Youngsam Kim
- grid.15444.300000 0004 0470 5454Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722 Korea
| | - Hayoung Yu
- grid.15444.300000 0004 0470 5454Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722 Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.
| | - Kieron Burke
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California, Irvine, CA 92697 USA ,grid.266093.80000 0001 0668 7243Departments of Physics & Astronomy, University of California, Irvine, CA 92697 USA
| |
Collapse
|
21
|
Tsuzuki S, Kaneko T, Sodeyama K. Accuracy of Intermolecular interaction Energies, Particularly Those of Hetero Atom Containing Molecules Obtained by van der Waals DFT Calculations. ChemistrySelect 2023. [DOI: 10.1002/slct.202203754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Seiji Tsuzuki
- Department of Applied Physics The University of Tokyo 7-3-1 Hongo Tokyo 113 8656 Japan
- Advanced Chemical Energy Research Centre (ACERC) Institute of Advanced Sciences Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Tomoaki Kaneko
- Research and Services Division of Materials Data and Integrated System National Institute for Materials Science (NIMS) 1–1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Keitaro Sodeyama
- Research and Services Division of Materials Data and Integrated System National Institute for Materials Science (NIMS) 1–1 Namiki Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
22
|
Kaplan AD, Shahi C, Bhetwal P, Sah RK, Perdew JP. Understanding Density-Driven Errors for Reaction Barrier Heights. J Chem Theory Comput 2023; 19:532-543. [PMID: 36599075 DOI: 10.1021/acs.jctc.2c00953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Delocalization errors, such as charge-transfer and some self-interaction errors, plague computationally efficient and otherwise accurate density functional approximations (DFAs). Evaluating a semilocal DFA non-self-consistently on the Hartree-Fock (HF) density is often recommended as a computationally inexpensive remedy for delocalization errors. For sophisticated meta-GGAs like SCAN, this approach can achieve remarkable accuracy. This HF-DFT (also known as DFA@HF) is often presumed to work, when it significantly improves over the DFA, because the HF density is more accurate than the self-consistent DFA density in those cases. By applying the metrics of density-corrected density functional theory (DFT), we show that HF-DFT works for barrier heights by making a localizing charge-transfer error or density overcorrection, thereby producing a somewhat reliable cancellation of density- and functional-driven errors for the energy. A quantitative analysis of the charge-transfer errors in a few randomly selected transition states confirms this trend. We do not have the exact functional and electron densities that would be needed to evaluate the exact density- and functional-driven errors for the large BH76 database of barrier heights. Instead, we have identified and employed three fully nonlocal proxy functionals (SCAN 50% global hybrid, range-separated hybrid LC-ωPBE, and SCAN-FLOSIC) and their self-consistent proxy densities. These functionals are chosen because they yield reasonably accurate self-consistent barrier heights and because their self-consistent total energies are nearly piecewise linear in fractional electron number─two important points of similarity to the exact functional. We argue that density-driven errors of the energy in a self-consistent density functional calculation are second order in the density error and that large density-driven errors arise primarily from incorrect electron transfers over length scales larger than the diameter of an atom.
Collapse
Affiliation(s)
- Aaron D Kaplan
- Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Chandra Shahi
- Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Pradeep Bhetwal
- Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Raj K Sah
- Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States
| | - John P Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania19122, United States
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| |
Collapse
|
23
|
Santra G, Martin JM. Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer n-Alkane Chains. J Phys Chem A 2022; 126:9375-9391. [PMID: 36508714 PMCID: PMC9791657 DOI: 10.1021/acs.jpca.2c06407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Indexed: 12/14/2022]
Abstract
We report an update and enhancement of the ACONFL (conformer energies of large alkanes [J. Phys. Chem. A2022,126, 3521-3535]) dataset. For the ACONF12 (n-dodecane) subset, we report basis set limit canonical coupled-cluster with singles, doubles, and perturbative triples [i.e., CCSD(T)] reference data obtained from the MP2-F12/cc-pV{T,Q}Z-F12 extrapolation, [CCSD(F12*)-MP2-F12]/aug-cc-pVTZ-F12, and a (T) correction from conventional CCSD(T)/aug-cc-pV{D,T}Z calculations. Then, we explored the performance of a variety of single and composite localized-orbital CCSD(T) approximations, ultimately finding an affordable localized natural orbital CCSD(T) [LNO-CCSD(T)]-based post-MP2 correction that agrees to 0.006 kcal/mol mean absolute deviation with the revised canonical reference data. In tandem with canonical MP2-F12 complete basis set extrapolation, this was then used to re-evaluate the ACONF16 and ACONF20 subsets for n-hexadecane and n-icosane, respectively. Combining those with the revised canonical reference data for the dodecane conformers (i.e., ACONF12 subset), a revised ACONFL set was obtained. It was then used to assess the performance of different localized-orbital coupled-cluster approaches, such as pair natural orbital localized CCSD(T) [PNO-LCCSD(T)] as implemented in MOLPRO, DLPNO-CCSD(T0) and DLPNO-CCSD(T1) as implemented in ORCA, and LNO-CCSD(T) as implemented in MRCC, at their respective "Normal", "Tight", "vTight", and "vvTight" accuracy settings. For a given accuracy threshold and basis set, DLPNO-CCSD(T1) and DLPNO-CCSD(T0) perform comparably. With "VeryTightPNO" cutoffs, explicitly correlated DLPNO-CCSD(T1)-F12/VDZ-F12 is the best pick among all the DLPNO-based methods tested. To isolate basis set incompleteness from localized-orbital-related truncation errors (domain, LNOs), we have also compared the localized coupled-cluster approaches with canonical DF-CCSD(T)/aug-cc-pVTZ for the ACONF12 set. We found that gradually tightening the cutoffs improves the performance of LNO-CCSD(T), and using a composite scheme such as vTight + 0.50[vTight - Tight] improves things further. For DLPNO-CCSD(T1), "TightPNO" and "VeryTightPNO" offer a statistically similar accuracy, which gets slightly better when TCutPNO is extrapolated to the complete PNO space limit. Similar to Brauer et al.'s [Phys. Chem. Chem. Phys.2016,18 (31), 20905-20925] previous report for the S66x8 noncovalent interactions, the dispersion-corrected direct random phase approximation (dRPA)-based double hybrids perform remarkably well for the ACONFL set. While the revised reference data do not affect any conclusions on the less accurate methods, they may upend orderings for more accurate methods with error statistics on the same order as the difference between reference datasets.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and
Materials Science, Weizmann Institute of
Science, 7610001Reḥovot, Israel
| | - Jan M.L. Martin
- Department of Molecular Chemistry and
Materials Science, Weizmann Institute of
Science, 7610001Reḥovot, Israel
| |
Collapse
|
24
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
25
|
Rana B, Beran GJO, Herbert JM. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2138789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | | | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Santra G, Calinsky R, Martin JML. Benefits of Range-Separated Hybrid and Double-Hybrid Functionals for a Large and Diverse Data Set of Reaction Energies and Barrier Heights. J Phys Chem A 2022; 126:5492-5505. [PMID: 35930677 PMCID: PMC9393870 DOI: 10.1021/acs.jpca.2c03922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Indexed: 11/28/2022]
Abstract
To better understand the thermochemical kinetics and mechanism of a specific chemical reaction, an accurate estimation of barrier heights (forward and reverse) and reaction energies is vital. Because of the large size of reactants and transition state structures involved in real-life mechanistic studies (e.g., enzymatically catalyzed reactions), density functional theory remains the workhorse for such calculations. In this paper, we have assessed the performance of 91 density functionals for modeling the reaction energies and barrier heights on a large and chemically diverse data set (BH9) composed of 449 organic chemistry reactions. We have shown that range-separated hybrid functionals perform better than the global hybrids for BH9 barrier heights and reaction energies. Except for the PBE-based range-separated nonempirical double hybrids, range separation of the exchange term helps improve the performance for barrier heights and reaction energies. The 16-parameter Berkeley double hybrid, ωB97M(2), performs remarkably well for both properties. However, our minimally empirical range-separated double hybrid functionals offer marginally better accuracy than ωB97M(2) for BH9 barrier heights and reaction energies.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Rivka Calinsky
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
27
|
Dasgupta S, Shahi C, Bhetwal P, Perdew JP, Paesani F. How Good Is the Density-Corrected SCAN Functional for Neutral and Ionic Aqueous Systems, and What Is So Right about the Hartree-Fock Density? J Chem Theory Comput 2022; 18:4745-4761. [PMID: 35785808 DOI: 10.1021/acs.jctc.2c00313] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory (DFT) is the most widely used electronic structure method, due to its simplicity and cost effectiveness. The accuracy of a DFT calculation depends not only on the choice of the density functional approximation (DFA) adopted but also on the electron density produced by the DFA. SCAN is a modern functional that satisfies all known constraints for meta-GGA functionals. The density-driven errors, defined as energy errors arising from errors of the self-consistent DFA electron density, can hinder SCAN from achieving chemical accuracy in some systems, including water. Density-corrected DFT (DC-DFT) can alleviate this shortcoming by adopting a more accurate electron density which, in most applications, is the electron density obtained at the Hartree-Fock level of theory due to its relatively low computational cost. In this work, we present extensive calculations aimed at determining the accuracy of the DC-SCAN functional for various aqueous systems. DC-SCAN (SCAN@HF) shows remarkable consistency in reproducing reference data obtained at the coupled cluster level of theory, with minimal loss of accuracy. Density-driven errors in the description of ionic aqueous clusters are thoroughly investigated. By comparison with the orbital-optimized CCD density in the water dimer, we find that the self-consistent SCAN density transfers a spurious fraction of an electron across the hydrogen bond to the hydrogen atom (H*, covalently bound to the donor oxygen atom) from the acceptor (OA) and donor (OD) oxygen atoms, while HF makes a much smaller spurious transfer in the opposite direction, consistent with DC-SCAN (SCAN@HF) reduction of SCAN overbinding due to delocalization error. While LDA seems to be the conventional extreme of density delocalization error, and HF the conventional extreme of (usually much smaller) density localization error, these two densities do not quite yield the conventional range of density-driven error in energy differences. Finally, comparisons of the DC-SCAN results with those obtained with the Fermi-Löwdin orbital self-interaction correction (FLOSIC) method show that DC-SCAN represents a more accurate approach to reducing density-driven errors in SCAN calculations of ionic aqueous clusters. While the HF density is superior to that of SCAN for noncompact water clusters, the opposite is true for the compact water molecule with exactly 10 electrons.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Chandra Shahi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Pradeep Bhetwal
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - John P Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States.,Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
28
|
Bryenton KR, Adeleke AA, Dale SG, Johnson ER. Delocalization error: The greatest outstanding challenge in density‐functional theory. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle R. Bryenton
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
| | | | - Stephen G. Dale
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| | - Erin R. Johnson
- Department of Physics and Atmospheric Science Dalhousie University Halifax Nova Scotia Canada
- Department of Chemistry Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
29
|
Effects of non-local exchange functionals in the density functional theories for the description of molecular vibrations. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Rana B, Coons MP, Herbert JM. Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT. J Phys Chem Lett 2022; 13:5275-5284. [PMID: 35674719 DOI: 10.1021/acs.jpclett.2c01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree-Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marc P Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Abstract
Kohn–Sham density-functional theory (DFT), the predominant framework for electronic structure computations in chemistry today, has undergone considerable evolution in the past few decades. The earliest DFT approximations were based on uniform electron gas models completely free of empirical parameters. Tremendous improvements were made by incorporating density gradients and a small number of parameters, typically one or two, obtained from fits to atomic data. Incorporation of exact exchange and fitting to molecular data, such as experimental heats of formation, allowed even further improvements. This, however, opened a Pandora’s Box of fitting possibilities, given the limitless choices of chemical reactions that can be fit. The result is a recent explosion of DFT approximations empirically fit to hundreds, or thousands, of chemical reference data. These fitted density functionals may contain several dozen empirical parameters. What has been lost in this fitting trend is physical modeling based on theory. In this work, we present a density functional comprising our best efforts to model exchange–correlation in DFT using good theory. We compare its performance to that of heavily fit density functionals using the GMTKN55 chemical reference data of Goerigk and co-workers [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. Our density-functional theory, using only a handful of physically motivated pre-factors, competes with the best heavily fit Kohn–Sham functionals in the literature.
Collapse
Affiliation(s)
- Axel D. Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
32
|
Palos E, Lambros E, Swee S, Hu J, Dasgupta S, Paesani F. Assessing the Interplay between Functional-Driven and Density-Driven Errors in DFT Models of Water. J Chem Theory Comput 2022; 18:3410-3426. [PMID: 35506889 DOI: 10.1021/acs.jctc.2c00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the interplay between functional-driven and density-driven errors in different density functional approximations within density functional theory (DFT) and the implications of these errors for simulations of water with DFT-based data-driven potentials. Specifically, we quantify density-driven errors in two widely used dispersion-corrected functionals derived within the generalized gradient approximation (GGA), namely BLYP-D3 and revPBE-D3, and two modern meta-GGA functionals, namely strongly constrained and appropriately normed (SCAN) and B97M-rV. The effects of functional-driven and density-driven errors on the interaction energies are first assessed for the water clusters of the BEGDB dataset. Further insights into the nature of functional-driven errors are gained from applying the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) to the interaction energies, which demonstrates that functional-driven errors are strongly correlated with the nature of the interactions. We discuss cases where density-corrected DFT (DC-DFT) models display higher accuracy than the original DFT models and cases where reducing the density-driven errors leads to larger deviations from the reference energies due to the presence of large functional-driven errors. Finally, molecular dynamics simulations are performed with data-driven many-body potentials derived from DFT and DC-DFT data to determine the effect that minimizing density-driven errors has on the description of liquid water. Besides rationalizing the performance of widely used DFT models of water, we believe that our findings unveil fundamental relations between the shortcomings of some common DFT approximations and the requirements for accurate descriptions of molecular interactions, which will aid the development of a consistent, DFT-based framework for the development of data-driven and machine-learned potentials for simulations of condensed-phase systems.
Collapse
Affiliation(s)
- Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Steven Swee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
33
|
Hancock AC, Goerigk L. Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models. RSC Adv 2022; 12:13014-13034. [PMID: 35520129 PMCID: PMC9062889 DOI: 10.1039/d2ra01703b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023] Open
Abstract
Excimers are supramolecular systems whose binding strength is influenced by many factors that are ongoing challenges for computational methods, such as charge transfer, exciton coupling, and London dispersion interactions. Treating the various intricacies of excimer binding at an adequate level is expected to be particularly challenging for Time-Dependent Density Functional Theory (TD-DFT) methods. In addition to well-known limitations for some TD-DFT methods in the description of charge transfer or exciton coupling, the inherent London dispersion problem from ground-state DFT translates to TD-DFT. While techniques to appropriately treat dispersion in DFT are well-developed for electronic ground states, these dispersion corrections remain largely untested for excited states. Herein, we aim to shed light on current TD-DFT methods, including some of the newest developments. The binding of four model excimers is studied across nine density functionals with and without the application of additive dispersion corrections against a wave function reference of SCS-CC2/CBS(3,4) quality, which approximates select CCSDR(3)/CBS data adequately. To our knowledge, this is the first study that presents single-reference wave function dissociation curves at the complete basis set level for the assessed model systems. It is also the first time range-separated double-hybrid density functionals are applied to excimers. In fact, those functionals turn out to be the most promising for the description of excimer binding followed by global double hybrids. Range-separated and global hybrids-particularly with large fractions of Fock exchange-are outperformed by double hybrids and yield worse dissociation energies and inter-molecular equilibrium distances. The deviation between each assessed functional and reference increases with system size, most likely due to missing dispersion interactions. Additive dispersion corrections of the DFT-D3(BJ) and DFT-D4 types reduce the average errors for TD-DFT methods but do so inconsistently and therefore do not offer a black-box solution in their ground-state parametrised form. The lack of appropriate description of dispersion effects for TD-DFT methods is likely hindering the practical application of the herein identified more efficient methods. Dispersion corrections parametrised for excited states appear to be an important next step to improve the applicability of TD-DFT methods and we hope that our work assists with the future development of such corrections.
Collapse
Affiliation(s)
- Amy C Hancock
- School of Chemistry, The University of Melbourne Parkville Australia +61-3-8344-6784
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne Parkville Australia +61-3-8344-6784
| |
Collapse
|
34
|
Bursch M, Neugebauer H, Ehlert S, Grimme S. Dispersion corrected r 2SCAN based global hybrid functionals: r 2SCANh, r 2SCAN0, and r 2SCAN50. J Chem Phys 2022; 156:134105. [PMID: 35395897 DOI: 10.1063/5.0086040] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The regularized and restored semilocal meta-generalized gradient approximation (meta-GGA) exchange-correlation functional r2SCAN [Furness et al., J. Phys. Chem. Lett. 11, 8208-8215 (2020)] is used to create three global hybrid functionals with varying admixtures of Hartree-Fock "exact" exchange (HFX). The resulting functionals r2SCANh (10% HFX), r2SCAN0 (25% HFX), and r2SCAN50 (50% HFX) are combined with the semi-classical D4 London dispersion correction. The new functionals are assessed for the calculation of molecular geometries, main-group, and metalorganic thermochemistry at 26 comprehensive benchmark sets. These include the extensive GMTKN55 database, ROST61, and IONPI19 sets. It is shown that a moderate admixture of HFX leads to relative improvements of the mean absolute deviations for thermochemistry of 11% (r2SCANh-D4), 16% (r2SCAN0-D4), and 1% (r2SCAN50-D4) compared to the parental semi-local meta-GGA. For organometallic reaction energies and barriers, r2SCAN0-D4 yields an even larger mean improvement of 35%. The computation of structural parameters (geometry optimization) does not systematically profit from the HFX admixture. Overall, the best variant r2SCAN0-D4 performs well for both main-group and organometallic thermochemistry and is better or on par with well-established global hybrid functionals, such as PW6B95-D4 or PBE0-D4. Regarding systems prone to self-interaction errors (SIE4x4), r2SCAN0-D4 shows reasonable performance, reaching the quality of the range-separated ωB97X-V functional. Accordingly, r2SCAN0-D4 in combination with a sufficiently converged basis set [def2-QZVP(P)] represents a robust and reliable choice for general use in the calculation of thermochemical properties of both main-group and organometallic chemistry.
Collapse
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
35
|
Chalcogen Bonding in the Molecular Dimers of WCh 2 (Ch = S, Se, Te): On the Basic Understanding of the Local Interfacial and Interlayer Bonding Environment in 2D Layered Tungsten Dichalcogenides. Int J Mol Sci 2022; 23:ijms23031263. [PMID: 35163185 PMCID: PMC8835845 DOI: 10.3390/ijms23031263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/28/2023] Open
Abstract
Layered two-dimensional transition metal dichalcogenides and their heterostructures are of current interest, owing to the diversity of their applications in many areas of materials nanoscience and technologies. With this in mind, we have examined the three molecular dimers of the tungsten dichalcogenide series, (WCh2)2 (Ch = S, Se, Te), using density functional theory to provide insight into which interactions, and their specific characteristics, are responsible for the interfacial/interlayer region in the room temperature 2H phase of WCh2 crystals. Our calculations at various levels of theory suggested that the Te···Te chalcogen bonding in (WTe2)2 is weak, whereas the Se···Se and S···S bonding interactions in (WSe2)2 and (WS2)2, respectively, are of the van der Waals type. The presence and character of Ch···Ch chalcogen bonding interactions in the dimers of (WCh2)2 are examined with a number of theoretical approaches and discussed, including charge-density-based approaches, such as the quantum theory of atoms in molecules, interaction region indicator, independent gradient model, and reduced density gradient non-covalent index approaches. The charge-density-based topological features are shown to be concordant with the results that originate from the extrema of potential on the electrostatic surfaces of WCh2 monomers. A natural bond orbital analysis has enabled us to suggest a number of weak hyperconjugative charge transfer interactions between the interacting monomers that are responsible for the geometry of the (WCh2)2 dimers at equilibrium. In addition to other features, we demonstrate that there is no so-called van der Waals gap between the monolayers in two-dimensional layered transition metal tungsten dichalcogenides, which are gapless, and that the (WCh2)2 dimers may be prototypes for a basic understanding of the physical chemistry of the chemical bonding environments associated with the local interfacial/interlayer regions in layered 2H-WCh2 nanoscale systems.
Collapse
|
36
|
Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. Construction of meta-GGA functionals through restoration of exact constraint adherence to regularized SCAN functionals. J Chem Phys 2022; 156:034109. [DOI: 10.1063/5.0073623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- James W. Furness
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - Aaron D. Kaplan
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jinliang Ning
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
37
|
Song S, Vuckovic S, Sim E, Burke K. Density-Corrected DFT Explained: Questions and Answers. J Chem Theory Comput 2022; 18:817-827. [DOI: 10.1021/acs.jctc.1c01045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Stefan Vuckovic
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce, 73100, Italy
- Department of Chemistry&Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam, 1081HV, The Netherlands
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
38
|
Landeros-Rivera B, Gallegos M, Munarriz J, Laplaza R, Contreras García J. New venues in electron density analysis. Phys Chem Chem Phys 2022; 24:21538-21548. [DOI: 10.1039/d2cp01517j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a comprehensive overview of the chemical information within the electron density: how to extract information, but also how to obtain and how to assess the quality of the...
Collapse
|
39
|
Brémond É, Tognetti V, Chermette H, Sancho-García JC, Joubert L, Adamo C. Electronic Energy and Local Property Errors at QTAIM Critical Points while Climbing Perdew's Ladder of Density-Functional Approximations. J Chem Theory Comput 2021; 18:293-308. [PMID: 34958205 DOI: 10.1021/acs.jctc.1c00981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the relationships between electron-density and electronic-energy errors produced by modern exchange-correlation density-functional approximations belonging to all of the rungs of Perdew's ladder. To this aim, a panel of relevant (semi)local properties evaluated at critical points of the electron-density field (as defined within the framework of Bader's atoms-in-molecules theory) are computed on a large selection of molecular systems involved in thermodynamic, kinetic, and noncovalent interaction chemical databases using density functionals developed in a nonempirical and minimally and highly parametrized fashion. The comparison of their density- and energy-based performance, also discussed in terms of density-driven errors, casts light on the strengths and weaknesses of the most recent and efficient density-functional approximations.
Collapse
Affiliation(s)
- Éric Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Vincent Tognetti
- Normandy University, COBRA UMR 6014 and FR 3038, Université de Rouen INSA Rouen, CNRS, F-76821 Mont St Aignan, France
| | - Henry Chermette
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Laurent Joubert
- Normandy University, COBRA UMR 6014 and FR 3038, Université de Rouen INSA Rouen, CNRS, F-76821 Mont St Aignan, France
| | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), UMR 8060, F-75005 Paris, France.,Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
40
|
Santra G, Martin JML. Pure and Hybrid SCAN, rSCAN, and r 2SCAN: Which One Is Preferred in KS- and HF-DFT Calculations, and How Does D4 Dispersion Correction Affect This Ranking? Molecules 2021; 27:141. [PMID: 35011372 PMCID: PMC8746565 DOI: 10.3390/molecules27010141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
Using the large and chemically diverse GMTKN55 dataset, we have tested the performance of pure and hybrid KS-DFT and HF-DFT functionals constructed from three variants of the SCAN meta-GGA exchange-correlation functional: original SCAN, rSCAN, and r2SCAN. Without any dispersion correction involved, HF-SCANn outperforms the two other HF-DFT functionals. In contrast, among the self-consistent variants, SCANn and r2SCANn offer essentially the same performance at lower percentages of HF-exchange, while at higher percentages, SCANn marginally outperforms r2SCANn and rSCANn. However, with D4 dispersion correction included, all three HF-DFT-D4 variants perform similarly, and among the self-consistent counterparts, r2SCANn-D4 outperforms the other two variants across the board. In view of the much milder grid dependence of r2SCAN vs. SCAN, r2SCAN is to be preferred across the board, also in HF-DFT and hybrid KS-DFT contexts.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | | |
Collapse
|
41
|
Pure and Hybrid SCAN, rSCAN, and r2SCAN: Which One Is Preferred in KS- and HF-DFT Calculations, and How Does D4 Dispersion Correction Affect This Ranking? Molecules 2021. [DOI: 10.3390/molecules27010141 https://www.mdpi.com/1420-3049/27/1/141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Using the large and chemically diverse GMTKN55 dataset, we have tested the performance of pure and hybrid KS-DFT and HF-DFT functionals constructed from three variants of the SCAN meta-GGA exchange-correlation functional: original SCAN, rSCAN, and r2SCAN. Without any dispersion correction involved, HF-SCANn outperforms the two other HF-DFT functionals. In contrast, among the self-consistent variants, SCANn and r2SCANn offer essentially the same performance at lower percentages of HF-exchange, while at higher percentages, SCANn marginally outperforms r2SCANn and rSCANn. However, with D4 dispersion correction included, all three HF-DFT-D4 variants perform similarly, and among the self-consistent counterparts, r2SCANn-D4 outperforms the other two variants across the board. In view of the much milder grid dependence of r2SCAN vs. SCAN, r2SCAN is to be preferred across the board, also in HF-DFT and hybrid KS-DFT contexts.
Collapse
|
42
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- John P Perdew
- Departments of Physics and Chemistry, Temple University, Philadelphia, PA 19122
| |
Collapse
|
43
|
Altun A, Ghosh S, Riplinger C, Neese F, Bistoni G. Addressing the System-Size Dependence of the Local Approximation Error in Coupled-Cluster Calculations. J Phys Chem A 2021; 125:9932-9939. [PMID: 34730360 PMCID: PMC8607505 DOI: 10.1021/acs.jpca.1c09106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last two decades, the local approximation has been successfully used to extend the range of applicability of the "gold standard" singles and doubles coupled-cluster method with perturbative triples CCSD(T) to systems with hundreds of atoms. The local approximation error grows in absolute value with the increasing system size, i.e., by increasing the number of electron pairs in the system. In this study, we demonstrate that the recently introduced two-point extrapolation scheme for approaching the complete pair natural orbital (PNOs) space limit in domain-based pair natural orbital CCSD(T) calculations drastically reduces the dependence of the error on the system size, thus opening up unprecedented opportunities for the calculation of benchmark quality relative energies for large systems.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Soumen Ghosh
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
44
|
Dasgupta S, Lambros E, Perdew JP, Paesani F. Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism. Nat Commun 2021; 12:6359. [PMID: 34737311 PMCID: PMC8569147 DOI: 10.1038/s41467-021-26618-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
Density functional theory (DFT) has been extensively used to model the properties of water. Albeit maintaining a good balance between accuracy and efficiency, no density functional has so far achieved the degree of accuracy necessary to correctly predict the properties of water across the entire phase diagram. Here, we present density-corrected SCAN (DC-SCAN) calculations for water which, minimizing density-driven errors, elevate the accuracy of the SCAN functional to that of "gold standard" coupled-cluster theory. Building upon the accuracy of DC-SCAN within a many-body formalism, we introduce a data-driven many-body potential energy function, MB-SCAN(DC), that quantitatively reproduces coupled cluster reference values for interaction, binding, and individual many-body energies of water clusters. Importantly, molecular dynamics simulations carried out with MB-SCAN(DC) also reproduce the properties of liquid water, which thus demonstrates that MB-SCAN(DC) is effectively the first DFT-based model that correctly describes water from the gas to the liquid phase.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - John P Perdew
- Department of Physics, Temple University, Philadelphia, PA, 19122, USA
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
45
|
Lambros E, Dasgupta S, Palos E, Swee S, Hu J, Paesani F. General Many-Body Framework for Data-Driven Potentials with Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. J Chem Theory Comput 2021; 17:5635-5650. [PMID: 34370954 DOI: 10.1021/acs.jctc.1c00541] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a general framework for the development of data-driven many-body (MB) potential energy functions (MB-QM PEFs) that represent the interactions between small molecules at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of MB-QM PEFs for water is rigorously derived from density functionals belonging to different rungs across Jacob's ladder of approximations within density functional theory (MB-DFT) and from Møller-Plesset perturbation theory (MB-MP2). Through a systematic analysis of individual MB contributions to the interaction energies of water clusters, we demonstrate that all MB-QM PEFs preserve the same accuracy as the corresponding ab initio calculations, with the exception of those derived from density functionals within the generalized gradient approximation (GGA). The differences between the DFT and MB-DFT results are traced back to density-driven errors that prevent GGA functionals from accurately representing the underlying molecular interactions for different cluster sizes and hydrogen-bonding arrangements. We show that this shortcoming may be overcome, within the MB formalism, by using density-corrected functionals (DC-DFT) that provide a more consistent representation of each individual MB contribution. This is demonstrated through the development of a MB-DFT PEF derived from DC-PBE-D3 data, which more accurately reproduce the corresponding ab initio results.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Steven Swee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
46
|
Alipour M, Karimi N. Spin-Opposite-Scaled Range-Separated Exchange Double-Hybrid Models (SOS-RSX-DHs): Marriage Between DH and RSX/SOS-RSX Is Not Always a Happy Match. J Chem Theory Comput 2021; 17:4077-4091. [PMID: 34085815 DOI: 10.1021/acs.jctc.1c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The range-separated version of double-hybrid density functional theory (DH-DFT) with a remarkable efficiency for both ground-state and excited-state characteristics has recently come into spotlight. In this work, based on theoretical arguments, several variants of spin-opposite-scaled range-separated exchange double-hybrid models (SOS-RSX-DHs) have been proposed and validated. More specifically, we first extend the RSX-DHs to design some other related models. Next, the SOS version of the resulting approximations is constructed and thoroughly evaluated using standard benchmark compilations of various properties. It is shown that although there are properties for which the RSX-DH and SOS-RSX-DH frameworks are rival, there are still some problems particularly prone to the self-interaction error issues where our proposed models seem to be beneficial. Furthermore, some of the presented models devoid of any additional corrections can also surpass the recently proposed approximations from different rungs of "Jacob's Ladder". Nonetheless, perusing the results of different methods and detailed comparisons with the predecessors discloses that all things may not necessarily be well with the RSX and SOS-RSX schemes, where the parent DHs as well as their SOS counterparts can still come into play.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Niloofar Karimi
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
47
|
Janesko BG. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev 2021; 50:8470-8495. [PMID: 34060549 DOI: 10.1039/d0cs01074j] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory (DFT) is the most widely-used electronic structure approximation across chemistry, physics, and materials science. Every year, thousands of papers report hybrid DFT simulations of chemical structures, mechanisms, and spectra. Unfortunately, hybrid DFT's accuracy is ultimately limited by tradeoffs between over-delocalization and under-binding. This review summarizes these tradeoffs, and introduces six modern attempts to go beyond them while maintaining hybrid DFT's relatively low computational cost: DFT+U, self-interaction corrections, localized orbital scaling corrections, local hybrid functionals, real-space nondynamical correlation, and our rung-3.5 approach. The review concludes with practical suggestions for DFT users to identify and mitigate these tradeoffs' impact on their simulations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Dr, Fort Worth, TX 76129, USA.
| |
Collapse
|
48
|
Najibi A, Casanova-Páez M, Goerigk L. Analysis of Recent BLYP- and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J Phys Chem A 2021; 125:4026-4035. [DOI: 10.1021/acs.jpca.1c02549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Asim Najibi
- School of Chemistry, The University of Melbourne, Parkville 3010, Australia
| | | | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
49
|
Mehta N, Fellowes T, White JM, Goerigk L. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? J Chem Theory Comput 2021; 17:2783-2806. [PMID: 33881869 DOI: 10.1021/acs.jctc.1c00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the CHAL336 benchmark set-the most comprehensive database for the assessment of chalcogen-bonding (CB) interactions. After careful selection of suitable systems and identification of three high-level reference methods, the set comprises 336 dimers each consisting of up to 49 atoms and covers both σ- and π-hole interactions across four categories: chalcogen-chalcogen, chalcogen-π, chalcogen-halogen, and chalcogen-nitrogen interactions. In a subsequent study of DFT methods, we re-emphasize the need for using proper London dispersion corrections when treating noncovalent interactions. We also point out that the deterioration of results and systematic overestimation of interaction energies for some dispersion-corrected DFT methods does not hint at problems with the chosen dispersion correction but is a consequence of large density-driven errors. We conclude this work by performing the most detailed DFT benchmark study for CB interactions to date. We assess 109 variations of dispersion-corrected and dispersion-uncorrected DFT methods and carry out a detailed analysis of 80 of them. Double-hybrid functionals are the most reliable approaches for CB interactions, and they should be used whenever computationally feasible. The best three double hybrids are SOS0-PBE0-2-D3(BJ), revDSD-PBEP86-D3(BJ), and B2NCPLYP-D3(BJ). The best hybrids in this study are ωB97M-V, PW6B95-D3(0), and PW6B95-D3(BJ). We do not recommend using the popular B3LYP functional nor the MP2 approach, which have both been frequently used to describe CB interactions in the past. We hope to inspire a change in computational protocols surrounding CB interactions that leads away from the commonly used, popular methods to the more robust and accurate ones recommended herein. We would also like to encourage method developers to use our set for the investigation and reduction of density-driven errors in new density functional approximations.
Collapse
Affiliation(s)
- Nisha Mehta
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Thomas Fellowes
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|