1
|
Cabral TLG, Brussolo da Silva JP, Tormena CF, Stein M. Molecular Recognition and Chiral Discrimination from NMR and Multi-Scale Simulations. Chemistry 2025; 31:e202404694. [PMID: 40109029 PMCID: PMC12057608 DOI: 10.1002/chem.202404694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Chiral molecules are particularly interesting to the pharmaceutical and agrochemical sectors due to their chemical and physical properties. Separation and identification of enantiomers are critical for a broad range of compounds, and discriminating stereoisomers in solution remains a key analytical challenge. Nuclear Magnetic Resonance (NMR) with Matrix-Assisted Diffusion-Ordered Spectroscopy (MAD), in the presence of chiral resolving agents, has emerged as a tool to explore these chiral mixtures. However, insight into the intermolecular interactions that lead to chiral recognition is still limited. Here, we combine experimental MAD studies with computational approaches to investigate the enantioselective discrimination of Mandelic Acid (MA) enantiomers using (R)-BINOL and (S)-BINOL. Molecular dynamics simulations explain the differences in diffusion coefficients for heterochiral complexes. Furthermore, quantum mechanical calculations confirmed enantioselective binding preferences due to differences in Gibbs free energies, highlighting the fundamental interactions and structural criteria that explain the NMR shielding and the diffusion trends. This integrated approach bridges experimental and theoretical studies, offering a comprehensive understanding of chiral recognition mechanisms and elucidating the observed heterochiral preference of BINOL for MA enantiomers. Our findings advance the field of chiral analysis and lay a foundation for future developments for identifying stereoisomers and recognition modes underlying enantioselective binding.
Collapse
Affiliation(s)
- Tadeu Luiz Gomes Cabral
- Physical Organic Chemistry Lab, Chemistry InstituteUniversity of Campinas – UNICAMPCampinasSão Paulo13083–970Brazil
- Molecular Simulations and Design GroupMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburg39106Germany
| | - João Pedro Brussolo da Silva
- Physical Organic Chemistry Lab, Chemistry InstituteUniversity of Campinas – UNICAMPCampinasSão Paulo13083–970Brazil
| | - Claudio Francisco Tormena
- Physical Organic Chemistry Lab, Chemistry InstituteUniversity of Campinas – UNICAMPCampinasSão Paulo13083–970Brazil
| | - Matthias Stein
- Molecular Simulations and Design GroupMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburg39106Germany
| |
Collapse
|
2
|
Ketzel A, Hu Y, Li X, Li J, Lei X, Sun H. Heterophyllin B: Combining Isotropic and Anisotropic NMR for the Conformational Analysis of a Natural Occurring Cyclic Peptide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025; 63:417-423. [PMID: 40254898 PMCID: PMC12053296 DOI: 10.1002/mrc.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Heterophyllin B is a natural occurring cyclic peptide with diverse attributed bioactivities. NMR-based conformational analysis of cyclic peptides often poses a challenge due to limited isotropic solution-state NMR data. In this study, we combined isotropic and anisotropic NMR observables including J-coupling, NOEs, amide proton temperature coefficients, and residual dipolar couplings (RDCs), which enabled the determination of a minimal conformational ensemble of heterophyllin B in methanol at density functional theory (DFT) accuracy. For conformational sampling of a cyclic peptide with a high degree of conformational freedom, we proposed a computational strategy that combines the Conformer-Rotamer Ensemble Sampling Tool (CREST) with the Commandline Energetic SOrting (CENSO). This combined computational and NMR-based approach offers a robust framework for the conformational analysis of cyclic peptides.
Collapse
Affiliation(s)
- Anton F. Ketzel
- Research Unit of Structural Chemistry & Computational BiophysicsLeibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Strukturelle Chemische Biologie und Cheminformatik, Institut für ChemieTechnische Universität BerlinBerlinGermany
| | - Yang Hu
- Research Unit of Structural Chemistry & Computational BiophysicsLeibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Strukturelle Chemische Biologie und Cheminformatik, Institut für ChemieTechnische Universität BerlinBerlinGermany
| | - Xiao‐Lu Li
- Research Unit of Structural Chemistry & Computational BiophysicsLeibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institute of Medical ScienceThe Second Hospital of Shangdong UniversityJinanChina
| | - Jiaqian Li
- School of Pharmaceutical SciencesSouth Central University for NationalitiesWuhanChina
| | - Xinxiang Lei
- School of Pharmaceutical SciencesSouth Central University for NationalitiesWuhanChina
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina
| | - Han Sun
- Research Unit of Structural Chemistry & Computational BiophysicsLeibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Strukturelle Chemische Biologie und Cheminformatik, Institut für ChemieTechnische Universität BerlinBerlinGermany
| |
Collapse
|
3
|
Sbarbaro C, Márquez-Miranda V, Leal M, Pino-Rios R, Olivares P, González M, Díaz-Franulic I, González-Nilo F, Yáñez O, Duarte Y. Exploring the Mechanism of β-Cyclodextrin-Encased Phenolic Acids Functionalized with TPP for Antioxidant Activity and Targeting. Antioxidants (Basel) 2025; 14:465. [PMID: 40298777 PMCID: PMC12023939 DOI: 10.3390/antiox14040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidative stress on the mitochondria in a human cell is attributed to several life-risking conditions, and as such, the importance of molecular structures packed with antioxidant properties and structural characteristics to enter the cell to help prevent such stress has been substantially relevant in recent years. In this study, we investigated the antioxidant properties of triphenylphosphonium (TPP)-conjugated phenolic acids encapsulated in β-cyclodextrin (β-CD). We synthesized TPP conjugates of caffeic, coumaric, and cinnamic acids and formed inclusion complexes with β-CD. Our results showed successful encapsulation of TPP conjugates in β-CD with high efficiency. The TPP conjugates maintained antioxidant activity, with slight reductions observed in β-CD complexes. Furthermore, cell viability studies showed low cytotoxicity of the dds. Computational analyses revealed that TPP conjugation preserved the chemical reactivity of the phenolic acids. Molecular dynamics simulations demonstrated stable inclusion complexes with β-CD and the free energy calculations indicated that TPP conjugation significantly enhanced the ability of caffeic acid to translocate across mitochondrial membranes. These results highlight the potential of TPP-conjugated phenolic acids encapsulated in β-CD as effective antioxidants with improved mitochondrial targeting capabilities.
Collapse
Affiliation(s)
- Christopher Sbarbaro
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Matías Leal
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile;
| | - Ricardo Pino-Rios
- Instituto de Ciencias Exactas y Naturales (ICEN), Universidad Arturo Prat, Playa Brava 3256, Iquique 1111346, Chile;
| | - Pedro Olivares
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Makarena González
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Ignacio Díaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| | - Osvaldo Yáñez
- Centro de Modelación Ambiental y Dinámica de Sistemas (CEMADIS), Universidad de las Américas, Santiago 7500975, Chile;
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (C.S.); (V.M.-M.); (P.O.); (M.G.); (I.D.-F.); (F.G.-N.)
| |
Collapse
|
4
|
Gorges J, Grimme S. QCxMS2 - a program for the calculation of electron ionization mass spectra via automated reaction network discovery. Phys Chem Chem Phys 2025; 27:6899-6911. [PMID: 40052418 DOI: 10.1039/d5cp00316d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We present a new fully-automated computational workflow for the calculation of electron ionization mass spectra by automated reaction network discovery, transition state theory and Monte-Carlo simulations. Compared to its predecessor QCxMS [S. Grimme, Angew. Chem., Int. Ed., 52, 6306-6312] based on extensive molecular dynamics (MD) simulations, QCxMS2's more efficient approach of using stationary points on the potential energy surface (PES) enables the usage of accurate quantum chemical methods. Fragment geometries and reaction paths are optimized with fast semi-empirical quantum mechanical (SQM) methods and reaction barriers are refined at the density functional theory (DFT) level. This composite approach using GFN2-xTB geometries in combination with energies at the ωB97X-3c level proved to be an efficient combination. On a small but diverse test set of 16 organic and inorganic molecules, QCxMS2 spectra are more accurate than ones from QCxMS yielding on average a higher mass spectral matching of 0.700 compared to QCxMS with 0.622, and is more robust with a minimal matching of 0.498 versus 0.100. Further improvements were observed when both geometries and energies were computed at the ωB97X-3c level, yielding an average matching score of 0.730 and a minimal score of 0.527. Due to its higher accuracy and robustness while maintaining computational efficiency, we propose QCxMS2 as a complementary, more reliable and systematically improvable successor to QCxMS for elucidating fragmentation pathways and predicting electron ionization mass spectra of unknown chemical substances, e.g., in analytical chemistry applications. If coupled to currently developed improved SQM methods, QCxMS2 opens an efficient route to accurate, and routine mass spectra predictions. The QCxMS2 program suite is freely available on GitHub.
Collapse
Affiliation(s)
- Johannes Gorges
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
5
|
Brauser M, Petzold K, Thiele CM. Investigating Interaction Dynamics of an Enantioselective Peptide-Catalyzed Acylation Reaction. Angew Chem Int Ed Engl 2025; 64:e202421062. [PMID: 39621941 DOI: 10.1002/anie.202421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 12/14/2024]
Abstract
Modern nuclear magnetic resonance (NMR) methods like carbon relaxation dispersion in the rotating frame (13C-R1ρ) and proton chemical exchange saturation transfer (1H-CEST) are key methods to investigate molecular recognition in biomacromolecules and to detect molecular motions on the μs to s timescale, revealing transient conformational states. Changes in kinetics can be linked to binding, folding, or catalytic events. Here, we investigated whether these methods allow detection of changes in the dynamics of a small, highly selective peptide catalyst during recognition of its enantiomeric substrates. The flexible tetrapeptide Boc-l-(π-Me)-His-AGly-l-Cha-l-Phe-OMe, used for the monoacetylation of cycloalkane-diols, is probed at natural abundance using 13C-R1ρ and 1H-CEST. Indeed, we detected differences in dynamics of the peptide upon interaction with the diol. Importantly, these differ depending on the enantiomer of the substrate used. These enantiospecific influences of the substrates on the dynamics of the peptide are rationalized using computational techniques. We find that even though one enantiomer reacts faster, as confirmed by reaction monitoring, the other is more tightly bound in DCM (as confirmed by 1H-saturation transfer difference (STD) measurements). These findings provide insights into the recognition of the substrates and explain the selectivity differences observed between the solvents toluene and DCM.
Collapse
Affiliation(s)
- Matthias Brauser
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str.16, 64287, Darmstadt, Germany
| | - Katja Petzold
- Biomedicinskt centrum (BMC), Husargatan 3, 752 37, Uppsala, Sweden
- Centre of Excellence for the Chemical Mechanisms of Life, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- Science for Life Laboratory, Uppsala Biomedical Centre, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str.16, 64287, Darmstadt, Germany
| |
Collapse
|
6
|
Choutka J, Kaminský J, Wang E, Parkan K, Pohl R. End-Point Affinity Estimation of Galectin Ligands by Classical and Semiempirical Quantum Mechanical Potentials. J Chem Inf Model 2025; 65:762-777. [PMID: 39754572 PMCID: PMC11776057 DOI: 10.1021/acs.jcim.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3. The docked poses were then used to systematically evaluate several modern force fields and semiempirical quantum mechanical (SQM) methods up to the tight-binding level under consistent computational workflow. Implicit solvation models available with the tested methods were used to simulate solvation effects. Overall, the best methods in this study achieved a Pearson correlation of 0.7-0.8 between the computed and experimental affinities. There were differences between the tested methods in their ability to rank ligands across the entire ligand set as well as within subsets of structurally similar ligands. A major discrepancy was observed for a subset of ligands that bind to the protein via a halogen bond, which was clearly challenging for all the tested methods. The inclusion of an entropic term calculated by the rigid-rotor-harmonic-oscillator approximation at SQM level slightly worsened correlation with experiment but brought the calculated affinities closer to experimental values. We also found that the success of the prediction strongly depended on the solvation model. Furthermore, we provide an in-depth analysis of the individual energy terms and their effect on the overall prediction accuracy.
Collapse
Affiliation(s)
- Jan Choutka
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences,
Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jakub Kaminský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences,
Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | | | - Kamil Parkan
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences,
Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Department
of Chemistry of Natural Compounds, University
of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech
Republic
| | - Radek Pohl
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences,
Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
7
|
Lei Y, Liu L, Zhang E. Calculation of Adsorbate Free Energy Using the Damping Function Method. J Chem Theory Comput 2025; 21:46-57. [PMID: 39699879 DOI: 10.1021/acs.jctc.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Adsorbate free energies are important parameters in surface chemistry and catalysis. Because of its simplicity, the harmonic oscillator (HO) model remains the most widely used method for calculating adsorbate free energy in many fields, including microkinetic modeling. However, it is well-known that the HO method is ineffective for weak adsorption. In this study, we propose a translational model with a diffusion barrier to calculate the state functions of near free translation. Furthermore, an effective mass is introduced in this model. To address hindered translation uniformly, a diffusion barrier-based damping function (DF) is proposed that effectively links the harmonic vibration and translation limits. Adsorbates are divided into three categories according to their adsorption strength and diffusion barrier height. Adsorbed hydrogen atoms have a strong binding energy and relatively high vibrational frequency but a low diffusion barrier. The HT and our proposed DF methods predict that the adsorbed hydrogen atoms behave as translation above room temperature, while the previous DF method predicts that they behave as vibration at any temperature. At last, the dehydrogenation reaction of propane on the Pt(111) surface was taken as an example to illustrate the influence of different methods on the thermodynamic functions.
Collapse
Affiliation(s)
- Yanhua Lei
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan 423000, P. R. China
| | - Lei Liu
- Department of Mathematics, Xiangnan University, Chenzhou, Hunan 423000, P. R. China
| | - Erjun Zhang
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan 423000, P. R. China
| |
Collapse
|
8
|
Chen LY, Chaudhury U, Wei S, Li J. Expanding the Repertoire of Large Scaffolds with Syn and Anti Macrocyclic Metacyclophanes. J Org Chem 2025; 90:374-384. [PMID: 39690104 PMCID: PMC12053573 DOI: 10.1021/acs.joc.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Understanding how changes in structure translate to changes in molecular shape is key to catalyst optimization and molecular design in medicinal chemistry and materials. One key contributor to the molecular shape is the relative orientation of substituents on a scaffold. Macrocyclic metacyclophanes display their two arenes in a parallel or antiparallel fashion, resulting in anti or syn conformations that lead to disparate relative orientations of the aryl substituents. This work reports the synthesis of new 14- and 16-membered metacyclophanes and the elucidation of their anti/syn preferences by 1H NMR and computational conformational analysis. Most metacyclophanes studied herein display a strong anti or syn preference and, thus, have well-defined substituent orientations. We propose that anti/syn conformational preferences arise from the minimization of torsional strain along the backbone of the macrocycle, which leads to the prediction that metacyclophanes with remote aryl substituents will adopt the same conformation as their unsubstituted counterparts. Exit vector analysis also reveals that anti-metacyclophanes project their substituents into regions in three-dimensional space that are not accessed by other common large scaffolds, e.g., [2.2]paracyclophanes and ferrocenes. This work also demonstrates how ring size and functional groups, two parameters commonly optimized in macrocycle design, can be used to tune molecular shape.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Udayan Chaudhury
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Shengkai Wei
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Junqi Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
Katsyuba SA, Grimme S. Structure and intermolecular interactions in ionic liquid 1-ethyl-3-methylimidazolium bromide and its aqueous solutions investigated by vibrational spectroscopy and quantum chemical computations. J Comput Chem 2024; 45:2719-2726. [PMID: 39139057 DOI: 10.1002/jcc.27472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 08/15/2024]
Abstract
The recently developed efficient protocol to explicit quantum mechanical modeling of structure and IR spectra of liquids and solutions (S. A. Katsyuba, S. Spicher, T. P. Gerasimova, S. Grimme, J. Phys. Chem. B 2020, 124, 6664) is applied to ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide (EmimBr), its C2-deuterated analog [Emim-d]Br and its aqueous solutions. It is shown that the solvation strongly modifies frequencies and IR intensities of the CH/CD stretching vibrations (νCH/νCD) of the imidazolium ring. The main vibrational spectroscopic features of the neat IL are reproduced by the simulations for a cluster (EmimBr)9, in which all three imidazolium CH moieties of the solvated cation form short contacts with three Br- anions, and another two Br- anions are located on top and bottom of imidazolium ring. Cluster models of aqueous solutions reproduce the experimental vibrational frequencies of actual solutions, provided that the Br- anion of solvated contact ion pair (CIP) is situated on top of imidazolium ring, and CH/CD moieties of the latter participate in short contacts with surrounding water molecules. Both structural and spectroscopic analysis allow to interpret the short contacts CH/CD⋯Br- and CH/CD⋯OH2 as hydrogen bonds of approximately equal strength. Enthalpies of bonding of these liquid-state H-bonds, estimated with the use of empirical correlations, amount to ca. 1.4 kcal⋅mol-1, while the analogous estimates obtained for the gas-phase charged species [Emim]2Br+ increase to 5.6 kcal⋅mol-1. It is shown that formation of solvent-shared ion pair (SIP) in aqueous solution, where the counterions of IL are separated by two water molecules H-bonded to a Br- anion, produces frequency shifts ΔνCH/CD, strongly different from the case of CIP formation. This difference can be used for IR/Raman spectroscopic differentiation of the type of solvated ion pairs of EmimBr or other related ILs.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Kazan, Russia
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| |
Collapse
|
10
|
Lara-Cruz GA, Rose T, Grimme S, Jaramillo-Botero A. Reaction-Free Energies for Complexation of Carbohydrates by Tweezer Diboronic Acids. J Phys Chem B 2024; 128:9213-9223. [PMID: 39284008 DOI: 10.1021/acs.jpcb.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The accurate calculation of reaction-free energies (ΔrG°) for diboronic acids and carbohydrates is challenging due to reactant flexibility and strong solute-solvent interactions. In this study, these challenges are addressed with a semiautomatic workflow based on quantum chemistry methods to calculate conformational free energies, generate microsolvated solute structural ensembles, and compute ΔrG°. Workflow parameters were optimized for accuracy and precision while controlling computational costs. We assessed the accuracy by studying three reactions of diboronic acids with glucose and galactose, finding that the conformational entropy contributes significantly (by 3-5 kcal/mol at room temperature). Explicit solvent molecules improve the computed ΔrG° accuracy by about 4 kcal/mol compared to experimental data, though using 13 or more water molecules reduced precision and increased computational overhead. After fine-tuning, the workflow demonstrated remarkable accuracy, with an absolute error of about 2 kcal/mol compared to experimental ΔrG° and an average interquartile range of 2.4 kcal/mol. These results highlight the workflow's potential for designing and screening tweezer-like ligands with tailored selectivity for various carbohydrates.
Collapse
Affiliation(s)
- Gustavo Adolfo Lara-Cruz
- iOMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B-155, Santiago de Cali, Valle del Cauca 760031, Colombia
| | - Thomas Rose
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Andres Jaramillo-Botero
- iOMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B-155, Santiago de Cali, Valle del Cauca 760031, Colombia
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Mészáros B, Kubicskó K, Németh DD, Daru J. Emerging Conformational-Analysis Protocols from the RTCONF55-16K Reaction Thermochemistry Conformational Benchmark Set. J Chem Theory Comput 2024; 20:7385-7392. [PMID: 38899777 PMCID: PMC11498139 DOI: 10.1021/acs.jctc.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
RTCONF55-16K is a new, reactive conformational data set based on cost-efficient methods to assess different conformational analysis protocols. Our reference calculations underpinned the accuracy of the CENSO (Grimme et al. J. Phys. Chem. A, 2021, 125, 4039) procedure and resulted in alternative recipes with different cost-accuracy compromises. Our general-purpose and economical protocols (CENSO-light and zero, respectively) were found to be 10-30 times faster than the original algorithm, adding only 0.4-0.7 kcal/mol absolute error to the relative free energy estimates.
Collapse
Affiliation(s)
- Bence
Balázs Mészáros
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| | - Károly Kubicskó
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| | - Dávid Dorián Németh
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| | - János Daru
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| |
Collapse
|
12
|
Wang J, Zhuang L, Gao E, Zhang H, Wan J, Huang C. Dissociation of HBr in Water Clusters Based on a Hybrid Density Functional Approach. J Phys Chem A 2024; 128:7364-7374. [PMID: 39118485 DOI: 10.1021/acs.jpca.4c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The dissociation of acidic molecules within a microscopic water environment is crucial for understanding intermolecular interactions such as hydrogen bonding. This study explores the optimal configurations of HBr(H2O)n=1-7 using hybrid density functional theory. According to the different mixed cluster structures, the corresponding HBr bond lengths, single-point energies, and introduced proton-transfer parameters are computed and analyzed. The findings indicate that a minimum of three water molecules is necessary for the dissociation of HBr. Subsequently, this conclusion is reinforced through the decomposition of energy components between the acid molecule and water clusters, calculation of hydrogen bonding energies, and analysis of vibrational infrared spectroscopy.
Collapse
Affiliation(s)
- Jing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Lei Zhuang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Enze Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Heng Zhang
- School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianguo Wan
- School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chuanfu Huang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
13
|
Jameel F, Stein M. Chemical accuracy for ligand-receptor binding Gibbs energies through multi-level SQM/QM calculations. Phys Chem Chem Phys 2024; 26:21197-21203. [PMID: 39073067 PMCID: PMC11305096 DOI: 10.1039/d4cp01529k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Calculating the Gibbs energies of binding of ligand-receptor systems with a thermochemical accuracy of ± 1 kcal mol-1 is a challenge to computational approaches. After exploration of the conformational space of the host, ligand and their resulting complexes upon coordination by semi-empirical GFN2 MD and meta-MD simulations, the systematic refinement through a multi-level improvement of binding modes in terms of electronic energies and solvation is able to give Gibbs energies of binding of drug molecules to CB[8] and β-CD macrocyclic receptors with such an accuracy. The accurate treatment of a small number of structures outperforms system-specific force-matching and alchemical transfer model approaches without an extensive sampling and integration.
Collapse
Affiliation(s)
- Froze Jameel
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| |
Collapse
|
14
|
Riebe J, Bädorf B, Löffelsender S, Gutierrez Suburu ME, Rivas Aiello MB, Strassert CA, Grimme S, Niemeyer J. Molecular folding governs switchable singlet oxygen photoproduction in porphyrin-decorated bistable rotaxanes. Commun Chem 2024; 7:171. [PMID: 39112693 PMCID: PMC11306352 DOI: 10.1038/s42004-024-01247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Rotaxanes are mechanically interlocked molecules where a ring (macrocycle) is threaded onto a linear molecule (thread). The position of the macrocycle on different stations on the thread can be controlled in response to external stimuli, making rotaxanes applicable as molecular switches. Here we show that bistable rotaxanes based on the combination of a Zn(II) tetraphenylporphyrin photosensitizer, attached to the macrocycle, and a black-hole-quencher, attached to the thread, are capable of singlet oxygen production which can be switched on/off by the addition of base/acid. However, we found that only a sufficiently long linker between both stations on the thread enabled switchability, and that the direction of switching was inversed with regard to the original design. This unexpected behavior was attributed to intramolecular folding of the rotaxanes, as indicated by extensive theoretical calculations. This evidences the importance to take into account the conformational flexibility of large molecular structures when designing functional switchable systems.
Collapse
Affiliation(s)
- Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Benedikt Bädorf
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sarah Löffelsender
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Matias E Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - María Belén Rivas Aiello
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany.
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany.
| |
Collapse
|
15
|
Puello-Silva J, Alí-Torres J. Computational 3D Models of Fe 2+/3+-Aβ 1-42 Complexes Associated with Alzheimer's Disease. J Phys Chem B 2024; 128:7022-7032. [PMID: 39016210 DOI: 10.1021/acs.jpcb.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The interaction between iron and amyloid-beta (Aβ) peptides has received significant attention in Alzheimer's disease (AD) research due to its potential implications in developing this pathology. However, the coordination preferences of iron and Aβ1-42 have not been thoroughly investigated or remain unknown. This study employs a computational protocol that combines homology modeling techniques with quantum mechanics (DTF-xTB) calculations to build and evaluate several 3D models of Fe2+/3+-Aβ1-42. Our results reveal well-defined complexes for both the metal and peptide moieties, and we discuss the molecular interactions stabilizing these complexes by elucidating the coordinating environments and binding preferences. These proposed models offer valuable insights into the role of iron in Alzheimer's disease (AD) pathology.
Collapse
Affiliation(s)
- Jorge Puello-Silva
- Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Bogotá 110111, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia - Sede Bogotá, Bogotá 110111, Colombia
| |
Collapse
|
16
|
Polynski MV, Vlasova YS, Solovev YV, Kozlov SM, Ananikov VP. Computational analysis of R-X oxidative addition to Pd nanoparticles. Chem Sci 2024; 15:9977-9986. [PMID: 38966374 PMCID: PMC11220582 DOI: 10.1039/d4sc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024] Open
Abstract
Oxidative addition (OA) is a necessary step in mechanisms of widely used synthetic methodologies such as the Heck reaction, cross-coupling reactions, and the Buchwald-Hartwig amination. This study pioneers the exploration of OA of aryl halide to palladium nanoparticles (NPs), a process previously unaddressed in contrast to the activity of well-studied Pd(0) complexes. Employing DFT modeling and semi-empirical metadynamics simulations, the oxidative addition of phenyl bromide to Pd nanoparticles was investigated in detail. Energy profiles of oxidative addition to Pd NPs were analyzed and compared to those involving Pd(0) complexes forming under both ligand-stabilized (phosphines) and ligandless (amine base) conditions. Metadynamics simulations highlighted the edges of the (1 1 1) facets of Pd NPs as the key element of oxidative addition activity. We demonstrate that OA to Pd NPs is not only kinetically facile at ambient temperatures but also thermodynamically favorable. This finding accentuates the necessity of incorporating OA to Pd NPs in future investigations, thus providing a more realistic view of the involved catalytic mechanisms. These results enhance the understanding of aryl halide (cross-)coupling reactions, reinforcing the concept of a catalytic "cocktail". This concept posits dynamic interconversions between diverse active and inactive centers, collectively affecting the outcome of the reaction. High activity of Pd NPs in direct C-X activation paves the way for novel approaches in catalysis, potentially enhancing the field and offering new catalytic pathways to consider.
Collapse
Affiliation(s)
- Mikhail V Polynski
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yulia S Vlasova
- Faculty of Chemistry, Moscow State University Leninskiye Gory 1-3 Moscow 119991 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yaroslav V Solovev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Miklukho-Maklaya 16/10 Moscow 117997 Russia
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Valentine P Ananikov
- Faculty of Chemistry, Moscow State University Leninskiye Gory 1-3 Moscow 119991 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
17
|
Scholz AS, Massoth JG, Stoess L, Bolte M, Braun M, Lerner HW, Mewes JM, Wagner M, Froitzheim T. NBN- and BNB-Phenalenyls: the Yin and Yang of Heteroatom-doped π Systems. Chemistry 2024; 30:e202400320. [PMID: 38426580 DOI: 10.1002/chem.202400320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
NBN- and BNB-doped phenalenyls are isoelectronic to phenalenyl anions and cations, respectively. They represent a pair of complementary molecules that have essentially identical structures but opposite properties as electron donors and acceptors. The NBN-phenalenyls 1-4 considered here were prepared from N,N'-dimethyl-1,8-diaminonaphthalene and readily available boron-containing building blocks (i. e., BH3⋅SMe2 (1), p-CF3-C6H4B(OH)2 (2), C6H5B(OH)2 (3), or MesBCl2/iPr2NEt (4)). Treatment of 1 with 4-Me2N-2,6-Me2-C6H2Li gave the corresponding NBN derivative 5. The BNB-phenalenyl 6 was synthesized from 1,8-naphthalenediyl-bridged diborane(6), PhNH2, and MesMgBr. A computational study reveals that the photoemission of 1, 4, and 5 originates from locally excited (LE) states at the NBN-phenalenyl fragments, while that of 2 is dominated by charge transfer (CT) from the NBN-phenalenyl to the p-CF3-C6H4 fragment. Depending on the dihedral angle θ between its Ph and NBN planes, compound 3 emits mainly from a less polar LE (θ >55°) or more polar CT state (θ <55°). In turn, the energetic preference for either state is governed by the polarity of the solvent used. An equimolar aggregate of the NBN- and BNB-phenalenyls 3 and 6 (in THF/H2O) shows a distinct red-shifted emission compared to that of the individual components, which originates from an intermolecular CT state.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Julian G Massoth
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Lennart Stoess
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Markus Braun
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Jan-M Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
18
|
Tobisch S. Copper-catalysed electrophilic carboamination of terminal alkynes with benzyne looked at through the computational lens. Dalton Trans 2024; 53:8154-8167. [PMID: 38536069 DOI: 10.1039/d3dt04301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
A detailed computational mechanistic study of the copper-catalysed three-component-type electrophilic carboamination of terminal alkynes with benzyne and an archetypal O-benzoylhydroxylamine electrophile is presented. Probing various plausible pathways for relevant elementary steps and scrutinising performance degradation pathways, with the aid of a reliable computational protocol applied to a realistic catalyst model combined with kinetic analysis, identified the pathways preferably traversed in productive catalysis. It entails rapid alkynylcupration of in situ generated benzyne to deliver the arylcopper nucleophile that undergoes amination with the O-benzoylhydroxylamine electrophile to afford copper benzoate. Umpolung-enabled electrophilic amination favours a multistep SN2-type oxidative addition/N-C bond-forming reductive elimination sequence involving a short-lived formal {P^P}CuIII carboxylate amido aryl intermediate. SN2-type displacement of the benzoate leaving group at the arylcopper nucleophile, which represents the catalyst resting state, is predicted to be the turnover limiting step. Alkynolysis transforms copper benzoate back to catalytically competent alkynylcopper. The computational probe of a wider range of substrates reveals that only severely ring-strained C6-arynes, C6-cycloalkynes and electron-deficient cyclopropenes featuring a highly reactive C≡C linkage could replace benzyne. Moreover, strict control of stationary benzyne concentration is indispensable for electrophilic carboamination to ever become achievable.
Collapse
Affiliation(s)
- Sven Tobisch
- University of St Andrews, School of Chemistry, Purdie Building, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
19
|
Santana OL, Silva DG, Santana SR. Solvate Suite: A Command-Line Interface for Molecular Simulations and Multiscale Microsolvation Modeling. J Chem Inf Model 2024; 64:3767-3778. [PMID: 38621228 DOI: 10.1021/acs.jcim.3c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In this work, we introduce the Solvate Suite, a comprehensive and modular command-line interface designed for molecular simulation and microsolvation modeling. The suite interfaces with widely used scientific software, streamlining computational experiments for liquid systems through the automated creation of simulation boxes and topology with adjustable simulation parameters. Furthermore, it has features for graphical and statistical analysis of simulated properties and extraction of trajectory configurations with various filters. Additionally, it introduces innovative strategies for microsolvation modeling with a multiscale approach, employing equilibrated dynamics to identify favorable solute-solvent interactions and enabling full cluster optimization for free-energy calculations without imaginary frequency contamination.
Collapse
Affiliation(s)
- Otávio L Santana
- Chemistry Department, Federal University of Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Daniel G Silva
- Chemistry Department, Federal University of Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Sidney R Santana
- Chemistry and Physics Department, Federal University of Paraíba, Areia, Paraíba 58397-000, Brazil
| |
Collapse
|
20
|
Gerasimova TP, Zagidullin AA, Nikolaeva AN, Fayzullin RR, Saitova AM, Miluykov VA, Grimme S, Katsyuba SA. Structural flexibility of favipiravir and its structural analogues in solutions: experimental and computational insight. Org Biomol Chem 2024; 22:3668-3683. [PMID: 38623758 DOI: 10.1039/d4ob00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Combined UV-vis and quantum chemical studies of the structural flexibility and tautomerism of 6-R-3-hydroxy-2-pyrazine carboxamides in solutions revealed that their keto-enol transformations are accompanied by the deprotonation of enol tautomers and the formation of the corresponding anionic species. Both the solvent and the 6-R substituent strongly influence the relative abundance of the above forms in solutions. Anions are not formed in 1,2-dichloroethane (DCE), but the probability of deprotonation in neutral water and N,N-dimethylformamide (DMF) increases in the order R = H < F < NO2. Only enol tautomers of all solutes are found in DCE. DMF stabilizes keto forms only moderately and assists much strongly in the deprotonation of all three compounds. Water tends to stabilize both keto tautomers and deprotonated anions: the keto form dominates in the case of R = H (antiviral drug T-1105), the anions are found exclusively for R = NO2, and the aqueous solution of another antiviral drug, favipiravir (R = F), contains both the keto tautomer and the anionic form. The results of quantum chemical free energy calculations are in agreement with the experimental observations.
Collapse
Affiliation(s)
- Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Almaz A Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Anastasiia N Nikolaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Aliya M Saitova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Vasili A Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov St. 8, 420088 Kazan, Russia.
| |
Collapse
|
21
|
Štěpánová S, Andris E, Gutten O, Buděšínský M, Dejmek M, Břehová P, Rulíšek L, Kašička V. Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy. Electrophoresis 2024; 45:687-705. [PMID: 38059733 DOI: 10.1002/elps.202300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pKa values, as well as to unambiguously determine the protonation sites. Acidity constants (pKa) of the NH+ moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pKa values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pKa of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pKa, the pKa values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pKas determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Břehová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
22
|
Katsyuba SA, Burganov TI. Computationally assisted vibrational spectroscopy of nucleic acid bases. 2. Thymine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123832. [PMID: 38190776 DOI: 10.1016/j.saa.2023.123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
As in the case of cytosine [Phys. Chem. Chem. Phys. 2023, 25, 24121-24128], Raman and infrared (IR) spectra of aqueous thymine and its N-deuterated derivative, thymine-d2 have been computationally reproduced and interpreted with the use of the recently developed efficient protocol to explicit quantum mechanical modeling of structure and IR spectra of liquids and solutions [J. Phys. Chem. B, 2020, 124, 6664-6670]. A cluster model of a solute surrounded by 30 water molecules is shown to be sufficient to reproduce experimental vibrational frequencies and relative Raman intensities with the use of B3LYP-D3/def2-TZVP or B3LYP-D3/aug-cc-pVDZ simulations. Analogous PBE-D3 computations provided a less good, but still reasonably accurate, modeling of Raman spectra. It is shown that strong changes of frequencies and relative intensities of the Raman bands of thymine, caused by its hydration, can be interpreted mainly as a result of hydrogen bonding with 6 nearest water molecules. Non-negligible improvement of the quality of simulations for larger clusters comprising water molecules that do not have direct contacts with the solute, suggests that spectroscopic effects of hydration should be ascribed to the joined action of solute-solvent and solvent-solvent interactions. Nevertheless, the moderate number of water molecules required for successful simulations of the Raman spectra of aqueous thymine, suggests that the vibrational modes and derivatives of the polarizability of the solute are mainly locally influenced, while the effect of bulk water is rather modest.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.
| | - Timur I Burganov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia
| |
Collapse
|
23
|
Kleine Büning JB, Grimme S, Bursch M. Machine learning-based correction for spin-orbit coupling effects in NMR chemical shift calculations. Phys Chem Chem Phys 2024; 26:4870-4884. [PMID: 38230684 DOI: 10.1039/d3cp05556f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As one of the most powerful analytical methods for molecular and solid-state structure elucidation, NMR spectroscopy is an integral part of chemical laboratories associated with a great research interest in its computational simulation. Particularly when heavy atoms are present, a relativistic treatment is essential in the calculations as these influence also the nearby light atoms. In this work, we present a Δ-machine learning method that approximates the contribution to 13C and 1H NMR chemical shifts that stems from spin-orbit (SO) coupling effects. It is built on computed reference data at the spin-orbit zeroth-order regular approximation (ZORA) DFT level for a set of 6388 structures with 38 740 13C and 64 436 1H NMR chemical shifts. The scope of the methods covers the 17 most important heavy p-block elements that exhibit heavy atom on the light atom (HALA) effects to covalently bound carbon or hydrogen atoms. Evaluated on the test data set, the approach is able to recover roughly 85% of the SO contribution for 13C and 70% for 1H from a scalar-relativistic PBE0/ZORA-def2-TZVP calculation at virtually no extra computational costs. Moreover, the method is transferable to other baseline DFT methods even without retraining the model and performs well for realistic organotin and -lead compounds. Finally, we show that using a combination of the new approach with our previous Δ-ML method for correlation contributions to NMR chemical shifts, the mean absolute NMR shift deviations from non-relativistic DFT calculations to experimental values can be halved.
Collapse
Affiliation(s)
- Julius B Kleine Büning
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
24
|
Groslambert L, Cornaton Y, Ditte M, Aubert E, Pale P, Tkatchenko A, Djukic JP, Mamane V. Affinity of Telluronium Chalcogen Bond Donors for Lewis Bases in Solution: A Critical Experimental-Theoretical Joint Study. Chemistry 2024; 30:e202302933. [PMID: 37970753 DOI: 10.1002/chem.202302933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Telluronium salts [Ar2 MeTe]X were synthesized, and their Lewis acidic properties towards a number of Lewis bases were addressed in solution by physical and theoretical means. Structural X-ray diffraction analysis of 21 different salts revealed the electrophilicity of the Te centers in their interactions with anions. Telluroniums' propensity to form Lewis pairs was investigated with OPPh3 . Diffusion-ordered NMR spectroscopy suggested that telluroniums can bind up to three OPPh3 molecules. Isotherm titration calorimetry showed that the related heats of association in 1,2-dichloroethane depend on the electronic properties of the substituents of the aryl moiety and on the nature of the counterion. The enthalpies of first association of OPPh3 span -0.5 to -5 kcal mol-1 . Study of the affinity of telluroniums for OPPh3 by state-of-the-art DFT and ab-initio methods revealed the dominant Coulombic and dispersion interactions as well as an entropic effect favoring association in solution. Intermolecular orbital interactions between [Ar2 MeTe]+ cations and OPPh3 are deemed insufficient on their own to ensure the cohesion of [Ar2 MeTe ⋅ Bn ]+ complexes in solution (B=Lewis base). Comparison of Grimme's and Tkatchenko's DFT-D4/MBD-vdW thermodynamics of formation of higher [Ar2 MeTe ⋅ Bn ]+ complexes revealed significant molecular size-dependent divergence of the two methodologies, with MBD yielding better agreement with experiment.
Collapse
Affiliation(s)
- Loïc Groslambert
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| | - Yann Cornaton
- LCSOM, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, F-67000, Strasbourg, France
| | - Matej Ditte
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | | | - Patrick Pale
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | - Jean-Pierre Djukic
- LCSOM, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, F-67000, Strasbourg, France
| | - Victor Mamane
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| |
Collapse
|
25
|
Swanson HA, Lau KHA, Tuttle T. Minimal Peptoid Dynamics Inform Self-Assembly Propensity. J Phys Chem B 2023; 127:10601-10614. [PMID: 38038956 PMCID: PMC10726364 DOI: 10.1021/acs.jpcb.3c03725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Peptoids are structural isomers of natural peptides, with side chain attachment at the amide nitrogen, conferring this class of compounds with the ability to access both cis and trans ω torsions as well as an increased diversity of ψ/φ states with respect to peptides. Sampling within these dimensions is controlled through side chain selection, and an expansive set of viable peptoid residues exists. It has been shown recently that "minimal" di- and tripeptoids with aromatic side chains can self-assemble into highly ordered structures, with size and morphological definition varying as a function of sequence pattern (e.g., XFF and FXF, where X = a nonaromatic peptoid monomer). Aromatic groups, such as phenylalanine, are regularly used in the design of minimal peptide assemblers. In recognition of this, and to draw parallels between these compounds classes, we have developed a series of descriptors for intramolecular dynamics of aromatic side chains to discern whether these dynamics, in a preassembly condition, can be related to experimentally observed nanoscale assemblies. To do this, we have built on the atomistic peptoid force field reported by Weiser and Santiso (CGenFF-WS) through the rigorous fitting of partial charges and the collation of Charmm General Force Field (CGenFF) parameters relevant to these systems. Our study finds that the intramolecular dynamics of side chains, for a given sequence, is dependent on the specific combination of backbone ω torsions and that homogeneity of sampling across these states correlates well with the experimentally observed ability to assemble into nanomorphologies with long-range order. Sequence patterning is also shown to affect sampling, in a manner consistent for both tripeptoids and tripeptides. Additionally, sampling similarities between the nanofiber forming tripeptoid, Nf-Nke-Nf in the cc state, and the nanotube forming dipeptide FF, highlight a structural motif which may be relevant to the emergence of extended linear assemblies. To assess these properties, a variety of computational approaches have been employed.
Collapse
Affiliation(s)
- Hamish
W. A. Swanson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
26
|
Pattanaik L, Menon A, Settels V, Spiekermann KA, Tan Z, Vermeire FH, Sandfort F, Eiden P, Green WH. ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents. J Phys Chem B 2023; 127:10151-10170. [PMID: 37966798 DOI: 10.1021/acs.jpcb.3c05904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Predicting Gibbs free energy of solution is key to understanding the solvent effects on thermodynamics and reaction rates for kinetic modeling. Accurately computing solution free energies requires the enumeration and evaluation of relevant solute conformers in solution. However, even after generation of relevant conformers, determining their free energy of solution requires an expensive workflow consisting of several ab initio computational chemistry calculations. To help address this challenge, we generate a large data set of solution free energies for nearly 44,000 solutes with almost 9 million conformers calculated in 41 different solvents using density functional theory and COSMO-RS and quantify the impact of solute conformers on the solution free energy. We then train a message passing neural network to predict the relative solution free energies of a set of solute conformers, enabling the identification of a small subset of thermodynamically relevant conformers. The model offers substantial computational time savings with predictions usually substantially within 1 kcal/mol of the free energy of the solution calculated by using computational chemical methods.
Collapse
Affiliation(s)
- Lagnajit Pattanaik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angiras Menon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Volker Settels
- BASF SE, Scientific Modeling, Group Research, Ludwigshafen am Rhein 67056, Germany
| | - Kevin A Spiekermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zipei Tan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Florence H Vermeire
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Frederik Sandfort
- BASF SE, Scientific Modeling, Group Research, Ludwigshafen am Rhein 67056, Germany
| | - Philipp Eiden
- BASF SE, Scientific Modeling, Group Research, Ludwigshafen am Rhein 67056, Germany
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
García de la Concepción J, Flores-Jiménez M, Cuccia LA, Light ME, Viedma C, Cintas P. Revisiting Homochiral versus Heterochiral Interactions through a Long Detective Story of a Useful Azobis-Nitrile and Puzzling Racemate. CRYSTAL GROWTH & DESIGN 2023; 23:5719-5733. [PMID: 37547876 PMCID: PMC10402293 DOI: 10.1021/acs.cgd.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Indexed: 08/08/2023]
Abstract
This paper documents and reinvestigates the solid-state and crystal structures of 4,4'-azobis-4-cyanopentanoic acid (ACPA), a water-soluble azobis-nitrile of immense utility as a radical initiator in living polymerizations and a labile mechanophore that can be embedded within long polymer chains to undergo selective scission under mechanical activation. Surprisingly, for such applications, both the commercially available reagent and their derivatives are used as "single initiators" when this azonitrile is actually a mixture of stereoisomers. Although the racemate and meso compounds were identified more than half a century ago and their enantiomers were separated by classical resolution, there have been confusing narratives dealing with their characterization, the existence of a conglomeratic phase, and fractional crystallization. Our results report on the X-ray crystal structures of all stereoisomers for the first time, along with further details on enantiodiscrimination and the always intriguing arguments accounting for the stability of homochiral versus heterochiral crystal aggregates. To this end, metadynamic (MTD) simulations on stereoisomer molecular aggregates were performed to capture the incipient nucleation events at the picosecond time scale. This analysis sheds light on the driving homochiral aggregation of ACPA enantiomers.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Mirian Flores-Jiménez
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Louis A. Cuccia
- Department
of Chemistry and Biochemistry, Concordia
University, 7141 Sherbrooke
Street West, H4B 1R6 Montreal, Canada
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cristóbal Viedma
- Department
of Crystallography and Mineralogy, University
Complutense, 28040 Madrid, Spain
| | - Pedro Cintas
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
28
|
Motlová L, Šnajdr I, Kutil Z, Andris E, Ptáček J, Novotná A, Nováková Z, Havlínová B, Tueckmantel W, Dráberová H, Majer P, Schutkowski M, Kozikowski A, Rulíšek L, Bařinka C. Comprehensive Mechanistic View of the Hydrolysis of Oxadiazole-Based Inhibitors by Histone Deacetylase 6 (HDAC6). ACS Chem Biol 2023. [PMID: 37392419 PMCID: PMC10367051 DOI: 10.1021/acschembio.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG‡ ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.
Collapse
Affiliation(s)
- Lucia Motlová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Šnajdr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jakub Ptáček
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Adéla Novotná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlínová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, Wisconsin 53719, United States
| | - Helena Dráberová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, Wisconsin 53719, United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
29
|
Chan B. Compilation of Ionic Clusters with the Rock Salt Structure: Accurate Benchmark Thermochemical Data, Assessment of Quantum Chemistry Methods, and the Convergence Behavior of Lattice Energies. J Phys Chem A 2023. [PMID: 37368538 DOI: 10.1021/acs.jpca.3c01880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the present study, computational quantum chemistry is used to obtain lattice energies (LEs) for a range of ionic clusters with the NaCl structure. Specifically, the compounds include NaF, NaCl, MgO, MgS, KF, CaO, and CaS clusters, (MX)n, with n = 1, 2, 4, 6, 8, 12, 16, 24, 32, 40, 50, 60, 75, 90, and 108. The highest-level W2 and W1X-2 methods are applied to the small clusters with n = 1 to 8 (the MX35 data set). The assessment with MX35 shows that, for the calculation of geometries and vibrational frequencies, the PBE0-D3(BJ) and PBE-D3(BJ) DFT methods are reasonable, but the calculation of atomization energies is more challenging. This is a result of different systematic deviations for clusters of different species. Thus, species-specific adjustments are applied for larger clusters, which are calculated with the DuT-D3 double-hybrid DFT method, the MN15 DFT method, and the PM7 semi-empirical method. They yield smoothly converging LEs to the bulk values. It is also found that, for the alkali-metal species, the LEs for a single molecule are ∼70% of the bulk values, while for the alkali-earth species, they are ∼80%. This has enabled a straightforward means to the first-principles estimation of LEs for similarly structured ionic compounds.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
30
|
Curtolo F, Arantes GM. Dissecting Reaction Mechanisms and Catalytic Contributions in Flavoprotein Fumarate Reductases. J Chem Inf Model 2023. [PMID: 37196341 DOI: 10.1021/acs.jcim.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The interconversion between fumarate and succinate is fundamental to the energy metabolism of nearly all organisms. This redox reaction is catalyzed by a large family of enzymes, fumarate reductases and succinate dehydrogenases, using hydride and proton transfers from a flavin cofactor and a conserved Arg side-chain. These flavoenzymes also have substantial biomedical and biotechnological importance. Therefore, a detailed understanding of their catalytic mechanisms is valuable. Here, calibrated electronic structure calculations in a cluster model of the active site of the Fcc3 fumarate reductase were employed to investigate various reaction pathways and possible intermediates in the enzymatic environment and to dissect interactions that contribute to catalysis of fumarate reduction. Carbanion, covalent adduct, carbocation, and radical intermediates were examined. Significantly lower barriers were obtained for mechanisms via carbanion intermediates, with similar activation energies for hydride and proton transfers. Interestingly, the carbanion bound to the active site is best described as an enolate. Hydride transfer is stabilized by a preorganized charge dipole in the active site and by the restriction of the C1-C2 bond in a twisted conformation of the otherwise planar fumarate dianion. But, protonation of a fumarate carboxylate and quantum tunneling effects are not critical for catalysis of the hydride transfer. Calculations also suggest that the driving force for enzyme turnover is provided by regeneration of the catalytic Arg, either coupled with flavin reduction and decomposition of a proposed transient state or directly from the solvent. The detailed mechanistic description of enzymatic reduction of fumarate provided here clarifies previous contradictory views and provides new insights into catalysis by essential flavoenzyme reductases and dehydrogenases.
Collapse
Affiliation(s)
- Felipe Curtolo
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, São Paulo, Brazil
| | - Guilherme M Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Force G, Mayer RJ, Vayer M, Lebœuf D. NDIPhos as a platform for chiral supramolecular ligands in rhodium-catalyzed enantioselective hydrogenation. Chem Commun (Camb) 2023; 59:6231-6234. [PMID: 37129901 DOI: 10.1039/d3cc00695f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chiral naphthalene diimide ligands (NDIPhos) were exploited in rhodium-catalyzed enantioselective hydrogenation. The key feature of these ligands is their ability to self-assemble via π-π interactions to mimic bidentate ligands, offering a complementary method to traditional supramolecular strategies. This concept was further substantiated by computations with the composite electronic-structure method r2SCAN-3c.
Collapse
Affiliation(s)
- Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Orsay 91405, France
| | - Robert J Mayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg 67000, France.
| | - Marie Vayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg 67000, France.
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg 67000, France.
| |
Collapse
|
32
|
Witte JF, Wasternack J, Wei S, Schalley CA, Paulus B. The Interplay of Weakly Coordinating Anions and the Mechanical Bond: A Systematic Study of the Explicit Influence of Counterions on the Properties of (Pseudo)rotaxanes. Molecules 2023; 28:molecules28073077. [PMID: 37049840 PMCID: PMC10096450 DOI: 10.3390/molecules28073077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Weakly coordinating anions (WCAs) have attracted much attention in recent years due to their ability to stabilise highly reactive cations. It may well be argued, however, that a profound understanding of what truly defines a WCA is still lacking, and systematic studies to unravel counterion effects are scarce. In this work, we investigate a supramolecular pseudorotaxane formation reaction, subject to a selection of anions, ranging from strongly to weakly coordinating, which not only aids in fostering our knowledge about anion coordination properties, but also provides valuable theoretical insight into the nature of the mechanical bond. We employ state-of-the-art DFT-based methods and tools, combined with isothermal calorimetry and 1H NMR experiments, to compute anion-dependent Gibbs free association energies ΔGa, as well as to evaluate intermolecular interactions. We find correlations between ΔGa and the anions’ solvation energies, which are exploited to calculate physico-chemical reaction parameters in the context of coordinating anions. Furthermore, we show that the binding situation within the (pseudo)rotaxanes can be mostly understood by straight-forward electrostatic considerations. However, quantum-chemical effects such as dispersion and charge-transfer interactions become more and more relevant when WCAs are employed.
Collapse
Affiliation(s)
- J. Felix Witte
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
- Correspondence: (J.F.W.); (B.P.)
| | - Janos Wasternack
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Shenquan Wei
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
- Correspondence: (J.F.W.); (B.P.)
| |
Collapse
|
33
|
Bartalucci E, Malär AA, Mehnert A, Kleine Büning JB, Günzel L, Icker M, Börner M, Wiebeler C, Meier BH, Grimme S, Kersting B, Wiegand T. Probing a Hydrogen-π Interaction Involving a Trapped Water Molecule in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202217725. [PMID: 36630178 DOI: 10.1002/anie.202217725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
The detection and characterization of trapped water molecules in chemical entities and biomacromolecules remains a challenging task for solid materials. We herein present proton-detected solid-state Nuclear Magnetic Resonance (NMR) experiments at 100 kHz magic-angle spinning and at high static magnetic-field strengths (28.2 T) enabling the detection of a single water molecule fixed in the calix[4]arene cavity of a lanthanide complex by a combination of three types of non-covalent interactions. The water proton resonances are detected at a chemical-shift value close to zero ppm, which we further confirm by quantum-chemical calculations. Density Functional Theory calculations pinpoint to the sensitivity of the proton chemical-shift value for hydrogen-π interactions. Our study highlights how proton-detected solid-state NMR is turning into the method-of-choice in probing weak non-covalent interactions driving a whole branch of molecular-recognition events in chemistry and biology.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | | | - Anne Mehnert
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Julius B Kleine Büning
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Lennart Günzel
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Maik Icker
- Institute of Organic Chemistry, Leipzig University Linnéstraße 3, 04103, Leipzig, Germany
| | - Martin Börner
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Christian Wiebeler
- Institute of Analytic Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103, Leipzig, Germany
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Berthold Kersting
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Thomas Wiegand
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,previous address: Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
34
|
Guna K, Sakthivel P, Ragavan JI, Anbarasan PM, Vidya C, Arunkumar A. Structural, spectroscopic, electronic, Hirshfeld, QTAIM and biological predications of a hybrid 2,6-dichloropurine compound: A detailed density functional theoretical study. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
35
|
Akhmadeev BS, Retyunskaya OO, Podyachev SN, Katsyuba SA, Gubaidullin AT, Sudakova SN, Syakaev VV, Babaev VM, Sinyashin OG, Mustafina AR. Supramolecular Optimization of Sensory Function of a Hemicurcuminoid through Its Incorporation into Phospholipid and Polymeric Polydiacetylenic Vesicles: Experimental and Computational Insight. Polymers (Basel) 2023; 15:polym15030714. [PMID: 36772015 PMCID: PMC9920781 DOI: 10.3390/polym15030714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
This work presents the synthesis of a new representative of hemicurcuminoids with a nonyloxy substituent (HCur) as a fluorescent amphiphilic structural element of vesicular aggregates based on phosphatidylcholine (PC), phosphatidylserine (PS), and 10,12-pentacosadiynoic acid (PCDA). Both X-ray diffraction analysis of the single crystal and 1H NMR spectra of HCur in organic solvents indicate the predominance of the enol-tautomer of HCur. DFT calculations show the predominance of the enol tautomer HCur in supramolecular assemblies with PC, PS, and PCDA molecules. The results of the molecular modeling show that HCur molecules are surrounded by PC and PS with a rather weak exposure to water molecules, while an exposure of HCur molecules to water is enhanced under its supramolecular assembly with PCDA molecules. This is in good agreement with the higher loading of HCur into PC(PS) vesicles compared to PCDA vesicles converted into polydiacetylene (PDA) ones by photopolymerization. HCur molecules incorporated into HCur-PDA vesicles exhibit greater planarity distortion and hydration effect in comparison with HCur-PC(PS) ones. HCur-PDA is presented as a dual fluorescence-chromatic nanosensor responsive to a change in pH within 7.5-9.5, heavy metal ions and polylysine, and the concentration-dependent fluorescent response is more sensitive than the chromatic one. Thus, the fluorescent response of HCur-PDA allows for the distinguishing between Cd2+ and Pb2+ ions in the concentration range 0-0.01 mM, while the chromatic response allows for the selective sensing of Pb2+ over Cd2+ ions at their concentrations above 0.03 mM.
Collapse
Affiliation(s)
- Bulat S. Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
- Correspondence:
| | - Olga O. Retyunskaya
- Department of Organic and Medicinal Chemistry, Kazan (Volga region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia
| | - Sergey N. Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Sergey A. Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Svetlana N. Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Victor V. Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Asiya R. Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| |
Collapse
|
36
|
Stahn M, Grimme S, Salthammer T, Hohm U, Palm WU. Quantum chemical calculation of the vapor pressure of volatile and semi volatile organic compounds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2153-2166. [PMID: 36222641 DOI: 10.1039/d2em00271j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The vapor pressure is a specific and temperature-dependent parameter that describes the volatility of a substance and thus its driving force for evaporation or sublimation into the gas phase. Depending on the magnitude of the vapor pressure, there are different methods for experimental determination. However, these are usually associated with a corresponding amount of effort and become less accurate as the vapor pressure decreases. For purposes of vapor pressure prediction, algorithms were developed that are usually based on quantitative structure-activity relationships (QSAR). The quantum mechanical (QM) approach followed here applies an alternative, much less empirical strategy, where the change in Gibbs free energy for the transition from the condensed to the gas phase is obtained from conformer ensembles computed for each phase separately. The results of this automatic, so-called CRENSO workflow are compared with experimentally determined vapor pressures for a large set of environmentally relevant compounds. In addition, comparisons are made with the single structure-based COSMO-RS QM approach, linear-free-energy relationships (LFER) as well as results from the SPARC program. We show that our CRENSO workflow is superior to conventional prediction models and provides reliable vapor pressures for liquids and sub-cooled liquids over a wide pressure range.
Collapse
Affiliation(s)
- Marcel Stahn
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, 38108 Braunschweig, Germany.
| | - Uwe Hohm
- Institute of Physical and Theoretical Chemistry, University of Braunschweig - Institute of Technology, 38106 Braunschweig, Germany
| | - Wolf-Ulrich Palm
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, 21335 Lüneburg, Germany
| |
Collapse
|
37
|
Cotty S, Jeon J, Elbert J, Jeyaraj VS, Mironenko AV, Su X. Electrochemical recycling of homogeneous catalysts. SCIENCE ADVANCES 2022; 8:eade3094. [PMID: 36260663 PMCID: PMC9581474 DOI: 10.1126/sciadv.ade3094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Homogeneous catalysts have rapid kinetics and keen reaction selectivity. However, their widespread use for industrial catalysis has remained limited because of challenges in reusability. Here, we propose a redox-mediated electrochemical approach for catalyst recycling using metallopolymer-functionalized electrodes for binding and release. The redox platform was investigated for the separation of key platinum and palladium homogeneous catalysts used in organic synthesis and industrial chemical manufacturing. Noble metal catalysts for hydrosilylation, silane etherification, Suzuki cross-coupling, and Wacker oxidation were recycled electrochemically. The redox electrodes demonstrated high sorption uptake for platinum-based catalysts (Qmax up to 200 milligrams of platinum per gram of adsorbent) from product mixtures, with up to 99.5% recovery, while retaining full catalytic activity over multiple cycles. The combination of mechanistic studies and electronic structure calculations indicate that selective interactions with anionic intermediates during the catalytic cycle played a key role in the separations. Last, continuous flow cell studies support the scalability and favorable technoeconomics of electrochemical recycling.
Collapse
|
38
|
Bursch M, Mewes J, Hansen A, Grimme S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew Chem Int Ed Engl 2022; 61:e202205735. [PMID: 36103607 PMCID: PMC9826355 DOI: 10.1002/anie.202205735] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 01/11/2023]
Abstract
Nowadays, many chemical investigations are supported by routine calculations of molecular structures, reaction energies, barrier heights, and spectroscopic properties. The lion's share of these quantum-chemical calculations applies density functional theory (DFT) evaluated in atomic-orbital basis sets. This work provides best-practice guidance on the numerous methodological and technical aspects of DFT calculations in three parts: Firstly, we set the stage and introduce a step-by-step decision tree to choose a computational protocol that models the experiment as closely as possible. Secondly, we present a recommendation matrix to guide the choice of functional and basis set depending on the task at hand. A particular focus is on achieving an optimal balance between accuracy, robustness, and efficiency through multi-level approaches. Finally, we discuss selected representative examples to illustrate the recommended protocols and the effect of methodological choices.
Collapse
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Andreas Hansen
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| |
Collapse
|
39
|
Barravecchia L, Blanco-Gómez A, Neira I, Skackauskaite R, Vila A, Rey-Rico A, Peinador C, García MD. "Vermellogens" and the Development of CB[8]-Based Supramolecular Switches Using pH-Responsive and Non-Toxic Viologen Analogues. J Am Chem Soc 2022; 144:19127-19136. [PMID: 36206443 DOI: 10.1021/jacs.2c08575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present herein the "vermellogens", a new class of pH-responsive viologen analogues, which replace the direct linking between para-substituted pyridinium moieties within those by a hydrazone functional group. A series of such compounds have been efficiently synthesized in aqueous media by hydrazone exchange reactions, displaying a marked pH-responsivity. Furthermore, the parent N,N'-dimethylated "vermellogen": the "red thread", an analogue of the herbicide paraquat and used herein as a representative model of the series, showed anion-recognition abilities, non-reversible electrochemical behavior, and non-toxicity of the modified bis-pyridinium core. The host-guest chemistry for the "red thread" with the CB[7,8] macrocyclic receptors has been extensively studied experimentally and by dispersion corrected density functional theory methods, showing a parallel behavior to that previously described for the herbicide but, crucially, swapping the well-known redox reactive capabilities of the viologen-based inclusion complexes by acid-base supramolecular responsiveness.
Collapse
Affiliation(s)
- Liliana Barravecchia
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Iago Neira
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Raminta Skackauskaite
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Alejandro Vila
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Ana Rey-Rico
- Gene & Cell Therapy Research Group (G-CEL), Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| | - Marcos D García
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, 15071A Coruña, Spain
| |
Collapse
|
40
|
Bursch M, Mewes J, Hansen A, Grimme S. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| |
Collapse
|
41
|
Abstract
Differences in entropies of competing transition states can direct kinetic selectivity. Understanding and modeling such entropy differences at the molecular level is complicated by the fact that entropy is statistical in nature; i.e., it depends on multiple vibrational states of transition structures, the existence of multiple dynamically accessible pathways past these transition structures, and contributions from multiple transition structures differing in conformation/configuration. The difficulties associated with modeling each of these contributors are discussed here, along with possible solutions, all with an eye toward the development of portable qualitative models of use to experimentalists aiming to design reactions that make use of entropy to control kinetic selectivity.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California-Davis, 1 Shields Ave, Davis, California 95616, United States
| |
Collapse
|
42
|
Grimm LM, Spicher S, Tkachenko B, Schreiner PR, Grimme S, Biedermann F. The Role of Packing, Dispersion, Electrostatics, and Solvation in High-Affinity Complexes of Cucurbit[n]urils with Uncharged Polar Guests. Chemistry 2022; 28:e202200529. [PMID: 35612260 PMCID: PMC9401061 DOI: 10.1002/chem.202200529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/21/2022]
Abstract
The rationalization of non-covalent binding trends is both of fundamental interest and provides new design concepts for biomimetic molecular systems. Cucurbit[n]urils (CBn) are known for a long time as the strongest synthetic binders for a wide range of (bio)organic compounds in water. However, their host-guest binding mechanism remains ambiguous despite their symmetric and simple macrocyclic structure and the wealth of literature reports. We herein report experimental thermodynamic binding parameters (ΔG, ΔH, TΔS) for CB7 and CB8 with a set of hydroxylated adamantanes, di-, and triamantanes as uncharged, rigid, and spherical/ellipsoidal guests. Binding geometries and binding energy decomposition were obtained from high-level theory computations. This study reveals that neither London dispersion interactions, nor electronic energies or entropic factors are decisive, selectivity-controlling factors for CBn complexes. In contrast, peculiar host-related solvation effects were identified as the major factor for rationalizing the unique behavior and record-affinity characteristics of cucurbit[n]urils.
Collapse
Affiliation(s)
- Laura M. Grimm
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sebastian Spicher
- Mulliken Center for Theoretical ChemistryInstitute of Physical and Theoretical ChemistryUniversity of BonnBeringstraße 453115BonnGermany
| | - Boryslav Tkachenko
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitute of Physical and Theoretical ChemistryUniversity of BonnBeringstraße 453115BonnGermany
| | - Frank Biedermann
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
43
|
Zapata Trujillo JC, McKemmish LK. Meta‐analysis of uniform scaling factors for harmonic frequency calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
GEOM, energy-annotated molecular conformations for property prediction and molecular generation. Sci Data 2022; 9:185. [PMID: 35449137 PMCID: PMC9023519 DOI: 10.1038/s41597-022-01288-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Machine learning (ML) outperforms traditional approaches in many molecular design tasks. ML models usually predict molecular properties from a 2D chemical graph or a single 3D structure, but neither of these representations accounts for the ensemble of 3D conformers that are accessible to a molecule. Property prediction could be improved by using conformer ensembles as input, but there is no large-scale dataset that contains graphs annotated with accurate conformers and experimental data. Here we use advanced sampling and semi-empirical density functional theory (DFT) to generate 37 million molecular conformations for over 450,000 molecules. The Geometric Ensemble Of Molecules (GEOM) dataset contains conformers for 133,000 species from QM9, and 317,000 species with experimental data related to biophysics, physiology, and physical chemistry. Ensembles of 1,511 species with BACE-1 inhibition data are also labeled with high-quality DFT free energies in an implicit water solvent, and 534 ensembles are further optimized with DFT. GEOM will assist in the development of models that predict properties from conformer ensembles, and generative models that sample 3D conformations. Measurement(s) | Conformer geometries and properties | Technology Type(s) | Computational Chemistry |
Collapse
|
45
|
Bohle F, Grimme S. Hydrocarbon Macrocycle Conformer Ensembles and 13 C-NMR Spectra. Angew Chem Int Ed Engl 2022; 61:e202113905. [PMID: 35099097 PMCID: PMC9303527 DOI: 10.1002/anie.202113905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 12/27/2022]
Abstract
NMR as a routine analytical method provides important three-dimensional structure information of compounds in solution. Here we apply the recently released CRENSO computational workflow for the automated generation of conformer ensembles to the quantum mechanical calculation of 13 C-NMR spectra of a series of flexible cycloalkanes up to C20 H40 . We evaluate the computed chemical shifts in comparison with corresponding experimental data in chloroform. It is shown that accurate and properly averaged theoretical NMR data can be obtained in about a day of computation time on a standard workstation computer. The excellent agreement between theory and experiment enables one to deduce preferred conformations of large, non-rigid macrocycles under ambient conditions from our automated procedure.
Collapse
Affiliation(s)
- Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
46
|
Akhmadeev BS, Gerasimova TP, Gilfanova AR, Katsyuba SA, Islamova LN, Fazleeva GM, Kalinin AA, Daminova AG, Fedosimova SV, Amerhanova SK, Voloshina AD, Tanysheva EG, Sinyashin OG, Mustafina AR. Temperature-sensitive emission of dialkylaminostyrylhetarene dyes and their incorporation into phospholipid aggregates: Applicability for thermal sensing and cellular uptake behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120647. [PMID: 34840053 DOI: 10.1016/j.saa.2021.120647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
A series of dialkylaminostyrylhetarene dyes constructed from electron-rich and electron-deficient moieties of various structures connected via vinylene π-bridges are introduced as temperature-sensitive luminophores. The temperature dependent emission of the dyes in the acidified dichloromethane solutions derives from temperature-induced shift of the equilibrium between neutral and protonated forms of the dyes. The heating-induced blue shift and intensification of emission of neutral form of the dyes make them a promising basis for development of nanoparticles exhibiting temperature-sensitivity in aqueous solutions at pH typical of biological liquids. Hydrophobicity-driven incorporation of the water insoluble dyes into L-α-phosphatidylcholine(PC)-based bilayers allows to obtain water dispersible dye-PC aggregates, and to follow their emission in the aqueous solutions. Structure of the dyes has strong impact on the efficacy of the dyes incorporation into the PC-based bilayers, temperature sensitivity of emission of the dye-PC aggregates and its reversibility under the heating/cooling cycles. This enables structural optimization of the dyes in order to obtain the dye-PC species demonstrating maximal temperature dependence and reversibility of their luminescence in aqueous solutions. The selected leader exhibits low cytotoxicity exemplified for M-HeLa and Chang Liver cell lines, while the efficient cell internalization of the dye, manifested in the staining of the cell cytoplasm, opens further opportunities for biosensing applications.
Collapse
Affiliation(s)
- B S Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation.
| | - T P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - A R Gilfanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - S A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - L N Islamova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - G M Fazleeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - A A Kalinin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - A G Daminova
- Kazan (Volga region) Federal University, 18 Kremlyovskaya st., 420008 Kazan, Russian Federation
| | - S V Fedosimova
- Kazan (Volga region) Federal University, 18 Kremlyovskaya st., 420008 Kazan, Russian Federation
| | - S K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - A D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - E G Tanysheva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - O G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| | - A R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov st., 420088 Kazan, Russian Federation
| |
Collapse
|
47
|
Bohle F, Grimme S. Hydrocarbon Macrocycle Conformer Ensembles and
13
C‐NMR Spectra. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Bohle
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich-Wilhelms-Universität Bonn Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich-Wilhelms-Universität Bonn Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
48
|
Katsyuba SA, Gerasimova TP, Spicher S, Bohle F, Grimme S. Computer-aided simulation of infrared spectra of ethanol conformations in gas, liquid and in CCl 4 solution. J Comput Chem 2022; 43:279-288. [PMID: 34846764 DOI: 10.1002/jcc.26788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
The recently developed efficient protocol combining implicit and explicit, accurate quantum-mechanical modeling of the condensed state (Katsyuba et al., J. Chem. Phys. 155, 024507 [2021]) is used to describe the IR spectra of liquid ethanol and its solutions in CCl4 . The relative abundance of the anti and gauche conformers of ethanol is shown to increase from ~40:60 in the gas phase to ~55:45 in the liquid phase. In spite of a moderate impact of media effects on the conformational composition of the liquid, the solvent strongly influences vibrational frequencies, IR intensities, and normal modes of each conformer, producing qualitatively different spectra compared to the gas phase and CCl4 solution. Further, these solvent effects affecting IR frequencies and intensities depend not only on the conformation of the solvated molecule but also on the solvating species. Nevertheless, vibrational frequencies of anti and gauche conformers of liquid ethanol and its several isotopomers practically coincide with each other. Convenient liquid-state conformational markers in the fingerprint region of IR spectra are revealed for the hydroxyl-deuterated species: CH3 CH2 OD, CH3 CHDOD, CH3 CD2 OD, and CD3 CD2 OD.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Kazan, Russia
| | - Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Kazan, Russia
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany
| |
Collapse
|
49
|
Salthammer T, Grimme S, Stahn M, Hohm U, Palm WU. Quantum Chemical Calculation and Evaluation of Partition Coefficients for Classical and Emerging Environmentally Relevant Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:379-391. [PMID: 34931808 DOI: 10.1021/acs.est.1c06935] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Octanol/water (KOW), octanol/air (KOA), and hexadecane/air (KHdA) partition coefficients are calculated for 67 organic compounds of environmental concern using computational chemistry. The extended CRENSO workflow applied here includes the calculation of extensive conformer ensembles with semiempirical methods and refinement through density functional theory, taking into account solvation models, especially COSMO-RS, and thermostatistical contributions. This approach is particularly advantageous for describing large and nonrigid molecules. With regard to KOW and KHdA, one can refer to many experimental data from direct and indirect measurement methods, and very good matches with results from our quantum chemical workflow are evident. In the case of the KOA values, however, good matches are only obtained for the experimentally determined values. Larger systematic deviations between data computed here and available, nonexperimental quantitative structure-activity relationship literature data occur in particular for phthalic acid esters and organophosphate esters. From a critical analysis of the coefficients calculated in this work and comparison with available literature data, we conclude that the presented quantum chemical composite approach is the most powerful so far for calculating reliable partition coefficients because all physical contributions to the conformational free energy are considered and the structure ensembles for the two phases are generated independently and consistently.
Collapse
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, 38108 Braunschweig, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Marcel Stahn
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Uwe Hohm
- Institute of Physical and Theoretical Chemistry, University of Braunschweig─Institute of Technology, 38106 Braunschweig, Germany
| | - Wolf-Ulrich Palm
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, 21335 Lüneburg, Germany
| |
Collapse
|
50
|
Chen YQ, Sheng YJ, Ding HM, Ma YQ. Efficient calculation of protein-ligand binding free energy with GFN methods: the power of cluster model. Phys Chem Chem Phys 2022; 24:14339-14347. [DOI: 10.1039/d2cp00161f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein-ligand interactions are crucial in many biochemical processes and biomedical applications, yet it still remains challenging to accurately calculating the binding free energy of their interactions. In this work,...
Collapse
|