1
|
Chen J, Gao Q, Huang M, Yu K. Application of modern artificial intelligence techniques in the development of organic molecular force fields. Phys Chem Chem Phys 2025; 27:2294-2319. [PMID: 39820957 DOI: 10.1039/d4cp02989e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
Collapse
Affiliation(s)
- Junmin Chen
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Gao
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Miaofei Huang
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kuang Yu
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Hölzer C, Gordiy I, Grimme S, Bursch M. Hybrid DFT Geometries and Properties for 17k Lanthanoid Complexes─The LnQM Data Set. J Chem Inf Model 2024; 64:825-836. [PMID: 38238264 DOI: 10.1021/acs.jcim.3c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The unique properties of lanthanoids and their diverse applications make them an indispensable part of modern research and industry. While the field has garnered attention, there remains a gap in available molecule data sets that facilitate both classical quantum chemistry calculations and the burgeoning field of machine learning in data science applications. This research addresses the need for a comprehensive data set that allows for a comparative analysis of various lanthanoids. The herein presented, curated data set includes 17269 monolanthanoid complexes derived from 1205 distinct ligand motifs. Structures encompass all 15 lanthanoids in the +3 oxidation state and exhibit molecular charges ranging from -1 to +3, including structures with a high spin multiplicity up to 8. Starting from lanthanum complexes, samples were processed with a permutation of the central lanthanoid atom, resulting in highly comparable subsets, facilitating comparative studies in which the influence of the lanthanoid can be investigated independently of ligand effects. The data set provides a broad range of features such as PBE0-D4/def2-SVP optimized geometries and optimization trajectories, while also covering ωB97M-V/def2-SVPD energies, rotational constants, dipole moments, highest occupied molecular orbital-lowest-unoccupied molecular orbital (HOMO-LUMO) energies, and Mulliken, Löwdin, and Hirshfeld population analyses. Additionally, coordination numbers, polarizabilities, and partial charges from D4, electronegativity equilibration (EEQ), GFN2-xTB, and charge extended Hückel (CEH) calculations are included. The data set is openly accessible and may serve as a basis for further investigations into the properties of lanthanoids.
Collapse
Affiliation(s)
- Christian Hölzer
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Igor Gordiy
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Lederer J, Gastegger M, Schütt KT, Kampffmeyer M, Müller KR, Unke OT. Automatic identification of chemical moieties. Phys Chem Chem Phys 2023; 25:26370-26379. [PMID: 37750554 PMCID: PMC10548786 DOI: 10.1039/d3cp03845a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
In recent years, the prediction of quantum mechanical observables with machine learning methods has become increasingly popular. Message-passing neural networks (MPNNs) solve this task by constructing atomic representations, from which the properties of interest are predicted. Here, we introduce a method to automatically identify chemical moieties (molecular building blocks) from such representations, enabling a variety of applications beyond property prediction, which otherwise rely on expert knowledge. The required representation can either be provided by a pretrained MPNN, or be learned from scratch using only structural information. Beyond the data-driven design of molecular fingerprints, the versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases, the automatic construction of coarse-grained force fields, as well as the identification of reaction coordinates.
Collapse
Affiliation(s)
- Jonas Lederer
- Berlin Institute of Technology (TU Berlin), 10587 Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Germany
| | - Michael Gastegger
- Berlin Institute of Technology (TU Berlin), 10587 Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Germany
| | - Kristof T Schütt
- Berlin Institute of Technology (TU Berlin), 10587 Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Germany
| | - Michael Kampffmeyer
- Department of Physics and Technology, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Klaus-Robert Müller
- Berlin Institute of Technology (TU Berlin), 10587 Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Germany
- Google Deepmind, Germany
- Department of Artificial Intelligence, Korea University, Seoul 136-713, Korea
- Max Planck Institut für Informatik, 66123 Saarbrücken, Germany
| | - Oliver T Unke
- Berlin Institute of Technology (TU Berlin), 10587 Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Germany
- Google Deepmind, Germany
| |
Collapse
|
4
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
5
|
Kříž K, Schmidt L, Andersson AT, Walz MM, van der Spoel D. An Imbalance in the Force: The Need for Standardized Benchmarks for Molecular Simulation. J Chem Inf Model 2023; 63:412-431. [PMID: 36630710 PMCID: PMC9875315 DOI: 10.1021/acs.jcim.2c01127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Force fields (FFs) for molecular simulation have been under development for more than half a century. As with any predictive model, rigorous testing and comparisons of models critically depends on the availability of standardized data sets and benchmarks. While such benchmarks are rather common in the fields of quantum chemistry, this is not the case for empirical FFs. That is, few benchmarks are reused to evaluate FFs, and development teams rather use their own training and test sets. Here we present an overview of currently available tests and benchmarks for computational chemistry, focusing on organic compounds, including halogens and common ions, as FFs for these are the most common ones. We argue that many of the benchmark data sets from quantum chemistry can in fact be reused for evaluating FFs, but new gas phase data is still needed for compounds containing phosphorus and sulfur in different valence states. In addition, more nonequilibrium interaction energies and forces, as well as molecular properties such as electrostatic potentials around compounds, would be beneficial. For the condensed phases there is a large body of experimental data available, and tools to utilize these data in an automated fashion are under development. If FF developers, as well as researchers in artificial intelligence, would adopt a number of these data sets, it would become easier to compare the relative strengths and weaknesses of different models and to, eventually, restore the balance in the force.
Collapse
Affiliation(s)
- Kristian Kříž
- Department
of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124Uppsala, Sweden
| | - Lisa Schmidt
- Faculty
of Biosciences, University of Heidelberg, Heidelberg69117, Germany
| | - Alfred T. Andersson
- Department
of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124Uppsala, Sweden
| | - Marie-Madeleine Walz
- Department
of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124Uppsala, Sweden
| | - David van der Spoel
- Department
of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124Uppsala, Sweden
| |
Collapse
|
6
|
Liu Z, Zubatiuk T, Roitberg A, Isayev O. Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials. J Chem Inf Model 2022; 62:5373-5382. [PMID: 36112860 DOI: 10.1021/acs.jcim.2c00817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational programs accelerate the chemical discovery processes but often need proper three-dimensional molecular information as part of the input. Getting optimal molecular structures is challenging because it requires enumerating and optimizing a huge space of stereoisomers and conformers. We developed the Python-based Auto3D package for generating the low-energy 3D structures using SMILES as the input. Auto3D is based on state-of-the-art algorithms and can automatize the isomer enumeration and duplicate filtering process, 3D building process, geometry optimization, and ranking process. Tested on 50 molecules with multiple unspecified stereocenters, Auto3D is guaranteed to find the stereoconfiguration that yields the lowest-energy conformer. With Auto3D, we provide an extension of the ANI model. The new model, dubbed ANI-2xt, is trained on a tautomer-rich data set. ANI-2xt is benchmarked with DFT methods on geometry optimization and electronic and Gibbs free energy calculations. Compared with ANI-2x, ANI-2xt provides a 42% error reduction for tautomeric reaction energy calculations when using the gold-standard coupled-cluster calculation as the reference. ANI-2xt can accurately predict the energies and is several orders of magnitude faster than DFT methods.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Tetiana Zubatiuk
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Adrian Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida32611, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
7
|
Vazquez-Salazar LI, Boittier ED, Meuwly M. Uncertainty quantification for predictions of atomistic neural networks. Chem Sci 2022; 13:13068-13084. [PMID: 36425481 PMCID: PMC9667919 DOI: 10.1039/d2sc04056e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/16/2022] [Indexed: 12/31/2023] Open
Abstract
The value of uncertainty quantification on predictions for trained neural networks (NNs) on quantum chemical reference data is quantitatively explored. For this, the architecture of the PhysNet NN was suitably modified and the resulting model (PhysNet-DER) was evaluated with different metrics to quantify its calibration, the quality of its predictions, and whether prediction error and the predicted uncertainty can be correlated. Training on the QM9 database and evaluating data in the test set within and outside the distribution indicate that error and uncertainty are not linearly related. However, the observed variance provides insight into the quality of the data used for training. Additionally, the influence of the chemical space covered by the training data set was studied by using a biased database. The results clarify that noise and redundancy complicate property prediction for molecules even in cases for which changes - such as double bond migration in two otherwise identical molecules - are small. The model was also applied to a real database of tautomerization reactions. Analysis of the distance between members in feature space in combination with other parameters shows that redundant information in the training dataset can lead to large variances and small errors whereas the presence of similar but unspecific information returns large errors but small variances. This was, e.g., observed for nitro-containing aliphatic chains for which predictions were difficult although the training set contained several examples for nitro groups bound to aromatic molecules. The finding underlines the importance of the composition of the training data and provides chemical insight into how this affects the prediction capabilities of a ML model. Finally, the presented method can be used for information-based improvement of chemical databases for target applications through active learning optimization.
Collapse
Affiliation(s)
| | - Eric D Boittier
- Department of Chemistry, University of Basel Basel Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel Basel Switzerland
- Department of Chemistry, Brown University USA
| |
Collapse
|
8
|
Snyder R, Kim B, Pan X, Shao Y, Pu J. Facilitating ab initio QM/MM free energy simulations by Gaussian process regression with derivative observations. Phys Chem Chem Phys 2022; 24:25134-25143. [PMID: 36222412 PMCID: PMC11095978 DOI: 10.1039/d2cp02820d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In combined quantum mechanical and molecular mechanical (QM/MM) free energy simulations, how to synthesize the accuracy of ab initio (AI) methods with the speed of semiempirical (SE) methods for a cost-effective QM treatment remains a long-standing challenge. In this work, we present a machine-learning-facilitated method for obtaining AI/MM-quality free energy profiles through efficient SE/MM simulations. In particular, we use Gaussian process regression (GPR) to learn the energy and force corrections needed for SE/MM to match with AI/MM results during molecular dynamics simulations. Force matching is enabled in our model by including energy derivatives into the observational targets through the extended-kernel formalism. We demonstrate the effectiveness of this method on the solution-phase SN2 Menshutkin reaction using AM1/MM and B3LYP/6-31+G(d,p)/MM as the base and target levels, respectively. Trained on only 80 configurations sampled along the minimum free energy path (MFEP), the resulting GPR model reduces the average energy error in AM1/MM from 18.2 to 5.8 kcal mol-1 for the 4000-sample testing set with the average force error on the QM atoms decreased from 14.6 to 3.7 kcal mol-1 Å-1. Free energy sampling with the GPR corrections applied (AM1-GPR/MM) produces a free energy barrier of 14.4 kcal mol-1 and a reaction free energy of -34.1 kcal mol-1, in closer agreement with the AI/MM benchmarks and experimental results.
Collapse
Affiliation(s)
- Ryan Snyder
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA.
| | - Bryant Kim
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA.
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA.
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA.
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Leguy J, Glavatskikh M, Cauchy T, Da Mota B. Scalable estimator of the diversity for de novo molecular generation resulting in a more robust QM dataset (OD9) and a more efficient molecular optimization. J Cheminform 2021; 13:76. [PMID: 34600576 PMCID: PMC8487551 DOI: 10.1186/s13321-021-00554-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023] Open
Abstract
Chemical diversity is one of the key term when dealing with machine learning and molecular generation. This is particularly true for quantum chemical datasets. The composition of which should be done meticulously since the calculation is highly time demanding. Previously we have seen that the most known quantum chemical dataset QM9 lacks chemical diversity. As a consequence, ML models trained on QM9 showed generalizability shortcomings. In this paper we would like to present (i) a fast and generic method to evaluate chemical diversity, (ii) a new quantum chemical dataset of 435k molecules, OD9, that includes QM9 and new molecules generated with a diversity objective, (iii) an analysis of the diversity impact on unconstrained and goal-directed molecular generation on the example of QED optimization. Our innovative approach makes it possible to individually estimate the impact of a solution to the diversity of a set, allowing for effective incremental evaluation. In the first application, we will see how the diversity constraint allows us to generate more than a million of molecules that would efficiently complete the reference datasets. The compounds were calculated with DFT thanks to a collaborative effort through the QuChemPedIA@home BOINC project. With regard to goal-directed molecular generation, getting a high QED score is not complicated, but adding a little diversity can cut the number of calls to the evaluation function by a factor of ten.
Collapse
Affiliation(s)
- Jules Leguy
- Univ Angers, LERIA, SFR MATHSTIC, 49000, Angers, France
| | - Marta Glavatskikh
- Univ Angers, LERIA, SFR MATHSTIC, 49000, Angers, France.,Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, 49000, Angers, France
| | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, 49000, Angers, France.
| | - Benoit Da Mota
- Univ Angers, LERIA, SFR MATHSTIC, 49000, Angers, France.
| |
Collapse
|