1
|
Yoshida Y, Takemori N, Mizukami W. Ab initio extended Hubbard model of short polyenes for efficient quantum computing. J Chem Phys 2024; 161:084303. [PMID: 39193941 DOI: 10.1063/5.0213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method, which was originally formulated for periodic materials, toward efficient quantum computing of molecular electronic structure calculations. By utilizing this method, the first-principles Hamiltonian of chemical systems can be coarse-grained by eliminating the electronic degrees of freedom in higher energy space and reducing the number of terms of electron repulsion integral from O(N4) to O(N2). Our approach is validated numerically on the vertical excitation energies and excitation characters of ethylene, butadiene, and hexatriene. The dynamical electron correlation is incorporated within the framework of the constrained random phase approximation in advance of quantum computations, and the constructed models capture the trend of experimental and high-level quantum chemical calculation results. As expected, the L1-norm of the fermion-to-qubit mapped model Hamiltonians is significantly lower than that of conventional ab initio Hamiltonians, suggesting improved scalability of quantum computing. Those numerical outcomes and the results of the simulation of excited-state sampling demonstrate that the ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.
Collapse
Affiliation(s)
- Yuichiro Yoshida
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Nayuta Takemori
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Wataru Mizukami
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
2
|
Zhao S, Tang D, Xiao X, Wang R, Sun Q, Chen Z, Cai X, Li Z, Yu H, Fang WH. Quantum Computation of Conical Intersections on a Programmable Superconducting Quantum Processor. J Phys Chem Lett 2024; 15:7244-7253. [PMID: 38976358 DOI: 10.1021/acs.jpclett.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multiconfigurational methods, face computational hurdles in solving the electronic Schrödinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems─ethylene (C2H4) and triatomic hydrogen (H3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.
Collapse
Affiliation(s)
- Shoukuan Zhao
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Diandong Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaoxiao Xiao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruixia Wang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Qiming Sun
- Quantum Engine LLC, Lacey, Washington 98516, United States
| | - Zhen Chen
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Xiaoxia Cai
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haifeng Yu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Hefei National Laboratory, Hefei 230088, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Bierman J, Li Y, Lu J. Qubit Count Reduction by Orthogonally Constrained Orbital Optimization for Variational Quantum Excited-State Solvers. J Chem Theory Comput 2024; 20:3131-3143. [PMID: 38598683 DOI: 10.1021/acs.jctc.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We propose a state-averaged orbital optimization scheme for improving the accuracy of excited states of the electronic structure Hamiltonian for use on near-term quantum computers. Instead of parameterizing the orbital rotation operator in the conventional fashion as an exponential of an antihermitian matrix, we parameterize the orbital rotation as a general partial unitary matrix. Whereas conventional orbital optimization methods minimize the state-averaged energy using successive Newton steps of the second-order Taylor expansion of the energy, the method presented here optimizes the state-averaged energy using an orthogonally constrained gradient projection method that does not require any expansion approximations. Through extensive benchmarking of the method on various small molecular systems, we find that the method is capable of producing more accurate results than fixed basis FCI while simultaneously using fewer qubits. In particular, we show that for H2, the method is capable of matching the accuracy of FCI in the cc-pVTZ basis (56 qubits) while only using 14 qubits.
Collapse
Affiliation(s)
- Joel Bierman
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Yingzhou Li
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai 200433, China
- Key Laboratory of Computational Physical Sciences (MOE), Shanghai 200433, China
| | - Jianfeng Lu
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Mathematics, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Wang Y, Mazziotti DA. Quantum simulation of conical intersections. Phys Chem Chem Phys 2024; 26:11491-11497. [PMID: 38587679 DOI: 10.1039/d4cp00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We explore the simulation of conical intersections (CIs) on quantum devices, setting the groundwork for potential applications in nonadiabatic quantum dynamics within molecular systems. The intersecting potential energy surfaces of H3+ are computed from a variance-based contracted quantum eigensolver. We show how the CIs can be correctly described on quantum devices using wavefunctions generated by the anti-Hermitian contracted Schrödinger equation ansatz, which is a unitary transformation of wavefunctions that preserves the topography of CIs. A hybrid quantum-classical procedure is used to locate the seam of CIs. Additionally, we discuss the quantum implementation of the adiabatic to diabatic transformation and its relation to the geometric phase effect. Results on noisy intermediate-scale quantum devices showcase the potential of quantum computers in dealing with problems in nonadiabatic chemistry.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
5
|
Fitzpatrick A, Nykänen A, Talarico NW, Lunghi A, Maniscalco S, García-Pérez G, Knecht S. Self-Consistent Field Approach for the Variational Quantum Eigensolver: Orbital Optimization Goes Adaptive. J Phys Chem A 2024; 128:2843-2856. [PMID: 38547028 DOI: 10.1021/acs.jpca.3c05882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We present a self-consistent field (SCF) approach within the adaptive derivative-assembled problem-tailored ansatz variational quantum eigensolver (ADAPT-VQE) framework for efficient quantum simulations of chemical systems on near-term quantum computers. To this end, our ADAPT-VQE-SCF approach combines the idea of generating an ansatz with a small number of parameters, resulting in shallow-depth quantum circuits with a direct minimization of an energy expression that is correct to second order with respect to changes in the molecular orbital basis. Our numerical analysis, including calculations for the transition-metal complex ferrocene [Fe (C5H5)2], indicates that convergence in the self-consistent orbital optimization loop can be reached without a considerable increase in the number of two-qubit gates in the quantum circuit by comparison to a VQE optimization in the initial molecular orbital basis. Moreover, the orbital optimization can be carried out simultaneously within each iteration of the ADAPT-VQE cycle. ADAPT-VQE-SCF thus allows us to implement a routine analogous to the complete active space SCF, a cornerstone of state-of-the-art computational chemistry, in a hardware-efficient manner on near-term quantum computers. Hence, ADAPT-VQE-SCF paves the way toward a paradigm shift for quantitative quantum-chemistry simulations on quantum computers by requiring fewer qubits and opening up for the use of large and flexible atomic orbital basis sets in contrast to earlier methods that are predominantly based on the idea of full active spaces with minimal basis sets.
Collapse
Affiliation(s)
- Aaron Fitzpatrick
- Algorithmiq Ltd, Kanavakatu 3C, Helsinki FI-00160, Finland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2 D02 YN67, Ireland
| | - Anton Nykänen
- Algorithmiq Ltd, Kanavakatu 3C, Helsinki FI-00160, Finland
| | | | - Alessandro Lunghi
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | | | | | - Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, Helsinki FI-00160, Finland
- ETH Zürich, Department of Chemistry and Applied Life Sciences Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| |
Collapse
|
6
|
Nishio S, Oba Y, Kurashige Y. Statistical errors in reduced density matrices sampled from quantum circuit simulation and the impact on multireference perturbation theory. Phys Chem Chem Phys 2023; 25:30525-30535. [PMID: 37927233 DOI: 10.1039/d3cp03520d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In this work, we present a detailed analysis of statistical errors in reduced density matrices (RDMs) of active space wavefunctions sampled from quantum circuit simulation and the impact on results obtained by the multireference theories. From the sampling experiments, it is shown that the errors in sampled RDMs have a larger value for higher-order RDMs, and that the errors in sampled RDMs for excited states are larger than those for the ground state. We analytically derive the expected value of the sum of squared errors between the true distribution and sample distribution of weights of the electron configurations based on a multinomial distribution model, with which we present an assessment of the dependency of RDM errors on the number of shots for the observation (Nshot) and on the character of the target electronic state. With the benchmark calculations of short polyenes, C4H6 and C6H8, we report the statistical errors in CASCI and complete active space second-order perturbation theory (CASPT2) energies obtained with the sampled 1,2-RDMs and 1,2,3,4-RDMs, respectively. It was found that the standard deviation (SD) of the sampled CASCI energies is proportional to as predicted. It was also found that the dependence of the SD of the second-order correction energies are somewhat different but the errors in the reference CASCI energies are dominant as compared with the corrections and the SD of the resulting CASPT2 energies are proportional to . This suggests that the required Nshot for 3,4-RDMs used only in the second-order perturbative corrections is smaller than that for 1,2-RDM used to calculate the reference CASCI energies. It was also suggested from the analysis of the errors in the sampled energies that the required Nshot for 3-RDM, which is used to calculate the perturbative correction energies, can be smaller than that for 2-RDM to calculate the CASCI energies. In fact, it was shown that the potential energy curve along the isomerization reaction of the {[Cu(NH3)3]2O2}2+ complex as an archetype of metalloenzyme, in which static and dynamical electron correlations are both important, can be reasonably reproduced with Nshot = 106 for 1,2-RDMs but Nshot = 105 for 3-RDM by the sampling simulation.
Collapse
Affiliation(s)
- Soichiro Nishio
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan.
| | - Yuki Oba
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan.
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto, 606-8502, Japan.
| |
Collapse
|
7
|
Whitlow J, Jia Z, Wang Y, Fang C, Kim J, Brown KR. Quantum simulation of conical intersections using trapped ions. Nat Chem 2023; 15:1509-1514. [PMID: 37640856 DOI: 10.1038/s41557-023-01303-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Conical intersections often control the reaction products of photochemical processes and occur when two electronic potential energy surfaces intersect. Theory predicts that the conical intersection will result in a geometric phase for a wavepacket on the ground potential energy surface, and although conical intersections have been observed experimentally, the geometric phase has not been directly observed in a molecular system. Here we use a trapped atomic ion system to perform a quantum simulation of a conical intersection. The ion's internal state serves as the electronic state, and the motion of the atomic nuclei is encoded into the motion of the ions. The simulated electronic potential is constructed by applying state-dependent optical forces to the ion. We experimentally observe a clear manifestation of the geometric phase using adiabatic state preparation followed by motional state measurement. Our experiment shows the advantage of combining spin and motion degrees for quantum simulation of chemical reactions.
Collapse
Affiliation(s)
- Jacob Whitlow
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Zhubing Jia
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
- Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ye Wang
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- School of Physical Sciences, University of Science and Technology of China, Hefei, China
| | - Chao Fang
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jungsang Kim
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
- IonQ, Inc., College Park, MD, USA
| | - Kenneth R Brown
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Shirai S, Iwakiri H, Kanno K, Horiba T, Omiya K, Hirai H, Koh S. Computational Analysis of Chemical Reactions Using a Variational Quantum Eigensolver Algorithm without Specifying Spin Multiplicity. ACS OMEGA 2023; 8:19917-19925. [PMID: 37305284 PMCID: PMC10249088 DOI: 10.1021/acsomega.3c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
The analysis of a chemical reaction along the ground-state potential energy surface in conjunction with an unknown spin state is challenging because electronic states must be separately computed several times using different spin multiplicities to find the lowest energy state. However, in principle, the ground state could be obtained with just a single calculation using a quantum computer without specifying the spin multiplicity in advance. In the present work, ground-state potential energy curves for PtCO were calculated as a proof-of-concept using a variational quantum eigensolver (VQE) algorithm. This system exhibits a singlet-triplet crossover as a consequence of the interaction between Pt and CO. VQE calculations using a statevector simulator were found to converge to a singlet state in the bonding region, while a triplet state was obtained at the dissociation limit. Calculations performed using an actual quantum device provided potential energies within ±2 kcal/mol of the simulated energies after error mitigation techniques were adopted. The spin multiplicities in the bonding and dissociation regions could be clearly distinguished even in the case of a small number of shots. The results of this study suggest that quantum computing can be a powerful tool for the analysis of the chemical reactions of systems for which the spin multiplicity of the ground state and variations in this parameter are not known in advance.
Collapse
Affiliation(s)
- Soichi Shirai
- Toyota
Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Hokuto Iwakiri
- QunaSys
Inc., Aqua Hakusan Building
9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| | - Keita Kanno
- QunaSys
Inc., Aqua Hakusan Building
9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| | - Takahiro Horiba
- Toyota
Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Keita Omiya
- QunaSys
Inc., Aqua Hakusan Building
9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| | - Hirotoshi Hirai
- Toyota
Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Sho Koh
- QunaSys
Inc., Aqua Hakusan Building
9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
| |
Collapse
|
9
|
de Gracia Triviño JA, Delcey MG, Wendin G. Complete Active Space Methods for NISQ Devices: The Importance of Canonical Orbital Optimization for Accuracy and Noise Resilience. J Chem Theory Comput 2023; 19:2863-2872. [PMID: 37103120 PMCID: PMC10210242 DOI: 10.1021/acs.jctc.3c00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/28/2023]
Abstract
To avoid the scaling of the number of qubits with the size of the basis set, one can divide the molecular space into active and inactive regions, which is also known as complete active space methods. However, selecting the active space alone is not enough to accurately describe quantum mechanical effects such as correlation. This study emphasizes the importance of optimizing the active space orbitals to describe correlation and improve the basis-dependent Hartree-Fock energies. We will explore classical and quantum computation methods for orbital optimization and compare the chemically inspired ansatz, UCCSD, with the classical full CI approach for describing the active space in both weakly and strongly correlated molecules. Finally, we will investigate the practical implementation of a quantum CASSCF, where hardware-efficient circuits must be used and noise can interfere with accuracy and convergence. Additionally, we will examine the impact of using canonical and noncanonical active orbitals on the convergence of the quantum CASSCF routine in the presence of noise.
Collapse
Affiliation(s)
- Juan Angel de Gracia Triviño
- Department
of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mickael G. Delcey
- Division
of Theoretical Chemistry and Biology, Department of Chemistry, Royal Institute of Technology, SE-114 28 Stockholm, Sweden
- Division
of Theoretical Chemistry, Department of Chemistry, Lund University, SE-223
62 Lund, Sweden
| | - Göran Wendin
- Department
of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
10
|
Hohenstein EG, Oumarou O, Al-Saadon R, Anselmetti GLR, Scheurer M, Gogolin C, Parrish RM. Efficient quantum analytic nuclear gradients with double factorization. J Chem Phys 2023; 158:114119. [PMID: 36948843 DOI: 10.1063/5.0137167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Efficient representations of the Hamiltonian, such as double factorization, drastically reduce the circuit depth or the number of repetitions in error corrected and noisy intermediate-scale quantum (NISQ) algorithms for chemistry. We report a Lagrangian-based approach for evaluating relaxed one- and two-particle reduced density matrices from double factorized Hamiltonians, unlocking efficiency improvements in computing the nuclear gradient and related derivative properties. We demonstrate the accuracy and feasibility of our Lagrangian-based approach to recover all off-diagonal density matrix elements in classically simulated examples with up to 327 quantum and 18 470 total atoms in QM/MM simulations with modest-sized quantum active spaces. We show this in the context of the variational quantum eigensolver in case studies, such as transition state optimization, ab initio molecular dynamics simulation, and energy minimization of large molecular systems.
Collapse
|
11
|
Sugisaki K, Wakimoto H, Toyota K, Sato K, Shiomi D, Takui T. Quantum Algorithm for Numerical Energy Gradient Calculations at the Full Configuration Interaction Level of Theory. J Phys Chem Lett 2022; 13:11105-11111. [PMID: 36444985 PMCID: PMC9743205 DOI: 10.1021/acs.jpclett.2c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A Bayesian phase difference estimation (BPDE) algorithm allows us to compute the energy gap of two electronic states of a given Hamiltonian directly by utilizing the quantum superposition of their wave functions. Here we report an extension of the BPDE algorithm to the direct calculation of the energy difference of two molecular geometries. We apply the BPDE algorithm for the calculation of numerical energy gradients based on the two-point finite-difference method, enabling us to execute geometry optimization of one-dimensional molecules at the full-CI level on a quantum computer. Results of numerical quantum circuit simulations of the geometry optimization of the H2 molecule with the STO-3G and 6-31G basis sets, the LiH and BeH2 molecules at the full-CI/STO-3G level, and the N2 molecule at the CASCI(6e,6o)/6-311G* level are given.
Collapse
Affiliation(s)
- Kenji Sugisaki
- Department
of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
- JSTPRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Centre
for Quantum Engineering, Research and Education (CQuERE), TCG Centres for Research and Education in Science
and Technology (TCG CREST), Sector V,
Salt Lake, Kolkata700091, India
| | - Hiroyuki Wakimoto
- Department
of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
| | - Kazuo Toyota
- Department
of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
| | - Kazunobu Sato
- Department
of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
| | - Daisuke Shiomi
- Department
of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
| | - Takeji Takui
- Department
of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
- Research
Support Department/University Research Administrator Center, University
Administration Division, Osaka Metropolitan
University, 3-3-138 Sugimoto,
Sumiyoshi-ku, Osaka558-8585, Japan
| |
Collapse
|
12
|
|