1
|
Malbon CL, Hammes-Schiffer S. Nuclear-Electronic Orbital Multireference Configuration Interaction for Ground and Excited Vibronic States and Fundamental Insights into Multicomponent Basis Sets. J Chem Theory Comput 2025; 21:3968-3980. [PMID: 40172071 DOI: 10.1021/acs.jctc.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The nuclear-electronic orbital (NEO) approach incorporates nuclear quantum effects into quantum chemistry calculations by treating specified nuclei quantum mechanically, equivalently to the electrons. Within the NEO framework, excited states are vibronic states representing electronic and nuclear vibrational excitations. The NEO multireference configuration interaction (MRCI) method presented herein provides accurate ground and excited vibronic states. The electronic and nuclear orbitals are optimized with a NEO multiconfigurational self-consistent field (NEO-MCSCF) procedure, thereby including both static and dynamic correlation and allowing the description of double and higher excitations. The accuracy of the NEO-MRCI method is illustrated by computing the ground state protonic densities and excitation energies of the vibronic states for four molecular systems with the hydrogen nucleus treated quantum mechanically. In addition, revised conventional electronic basis sets adapted for quantized nuclei are developed and shown to be essential for achieving this level of accuracy. The NEO-MRCI approach, as well as the strategy for revising electronic basis sets, will play a critical role in multicomponent quantum chemistry.
Collapse
Affiliation(s)
- Christopher L Malbon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Moncada F, Reyes A, Pettersson LGM. Restoring rotational symmetry of multicomponent wavefunctions with nuclear orbitals. J Chem Phys 2025; 162:024110. [PMID: 39774887 DOI: 10.1063/5.0244318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, we present a non-orthogonal configuration interaction (NOCI) approach to address the rotational corrections in multicomponent quantum chemistry calculations where hydrogen nuclei and electrons are described with orbitals under Hartree-Fock (HF) and density functional theory (DFT) frameworks. The rotational corrections are required in systems such as diatomic (HX) and nonlinear triatomic molecules (HXY), where localized broken-symmetry nuclear orbitals have a lower energy than delocalized orbitals with the correct symmetry. By restoring rotational symmetry with the proposed NOCI approach, we demonstrate significant improvements in proton binding energy predictions at the HF level, with average rotational corrections of 0.46 eV for HX and 0.23 eV for HXY molecules. For computing rotational excitation energies, our results indicate that HF kinetic energy corrections are consistently accurate, while discrepancies arise in total energy predictions, primarily from an incomplete treatment of dynamical correlation effects. Rotational energy corrections in multicomponent DFT calculations, using the epc17-2 proton-electron correlation functional, lead to an overestimation of proton binding energies. This is as a result of double-counting of proton-electron correlation effects in the off-diagonal NOCI terms. As a correction, we propose a scaling scheme that effectively adjusts the proton-electron correlation contributions, bringing our results into close agreement with reference CCSD(T) data. The scaled rotational corrections, on average, increase the epc17-2 proton binding energy predictions by 0.055 eV for HX and 0.025 eV for HXY and yield average deviations of 1.0 cm-1 for rotational transitions.
Collapse
Affiliation(s)
- Félix Moncada
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30#45-03, Bogotá, Colombia
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Matoušek M, Vu N, Govind N, Foley JJ, Veis L. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J Chem Theory Comput 2024; 20:9424-9434. [PMID: 39441199 PMCID: PMC11562376 DOI: 10.1021/acs.jctc.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The emerging field of polaritonic chemistry explores the behavior of molecules under strong coupling with cavity modes. Despite recent developments in ab initio polaritonic methods for simulating polaritonic chemistry under electronic strong coupling, their capabilities are limited, especially in cases where the molecule also features strong electronic correlation. To bridge this gap, we have developed a novel method for cavity QED calculations utilizing the Density Matrix Renormalization Group (DMRG) algorithm in conjunction with the Pauli-Fierz Hamiltonian. Our approach is applied to investigate the effect of the cavity on the S0-S1 transition of n-oligoacenes, with n ranging from 2 to 5, encompassing 22 fully correlated π orbitals in the largest pentacene molecule. Our findings indicate that the influence of the cavity intensifies with larger acenes. Additionally, we demonstrate that, unlike the full determinantal representation, DMRG efficiently optimizes and eliminates excess photonic degrees of freedom, resulting in an asymptotically constant computational cost as the photonic basis increases.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 12116 Prague 2, Czech Republic
| | - Nam Vu
- Department
of Chemistry, University of North Carolina
Charlotte, Charlotte, North Carolina 28223, United States
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan J. Foley
- Department
of Chemistry, University of North Carolina
Charlotte, Charlotte, North Carolina 28223, United States
| | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
4
|
Weymuth T, Unsleber JP, Türtscher PL, Steiner M, Sobez JG, Müller CH, Mörchen M, Klasovita V, Grimmel SA, Eckhoff M, Csizi KS, Bosia F, Bensberg M, Reiher M. SCINE-Software for chemical interaction networks. J Chem Phys 2024; 160:222501. [PMID: 38857173 DOI: 10.1063/5.0206974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network. The software modules of SCINE have been designed to facilitate such studies. The features of the modules are (i) general applicability of the applied methodologies ranging from electronic structure (no restriction to specific elements of the periodic table) to microkinetic modeling (with little restrictions on molecularity), full modularity so that SCINE modules can also be applied as stand-alone programs or be exchanged for external software packages that fulfill a similar purpose (to increase options for computational campaigns and to provide alternatives in case of tasks that are hard or impossible to accomplish with certain programs), (ii) high stability and autonomous operations so that control and steering by an operator are as easy as possible, and (iii) easy embedding into complex heterogeneous environments for molecular structures taken individually or in the context of a reaction network. A graphical user interface unites all modules and ensures interoperability. All components of the software have been made available as open source and free of charge.
Collapse
Affiliation(s)
- Thomas Weymuth
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P Unsleber
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L Türtscher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan-Grimo Sobez
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Charlotte H Müller
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Veronika Klasovita
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A Grimmel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Eckhoff
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Francesco Bosia
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Garner SM, Upadhyay S, Li X, Hammes-Schiffer S. Nuclear-Electronic Orbital Time-Dependent Configuration Interaction Method. J Phys Chem Lett 2024; 15:6017-6023. [PMID: 38815051 DOI: 10.1021/acs.jpclett.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Combining real-time electronic structure with the nuclear-electronic orbital (NEO) method has enabled the simulation of complex nonadiabatic chemical processes. However, accurate descriptions of hydrogen tunneling and double excitations require multiconfigurational treatments. Herein, we develop and implement the real-time NEO time-dependent configuration interaction (NEO-TDCI) approach. Comparison to NEO-full CI calculations of absorption spectra for a molecular system shows that the NEO-TDCI approach can accurately capture the tunneling splitting associated with the electronic ground state as well as vibronic progressions corresponding to double electron-proton excitations associated with excited electronic states. Both of these features are absent from spectra obtained with single reference real-time NEO methods. Our simulations of hydrogen tunneling dynamics illustrate the oscillation of the proton density from one side to the other via a delocalized, bilobal proton wave function. These results indicate that the NEO-TDCI approach is highly suitable for studying hydrogen tunneling and other inherently multiconfigurational systems.
Collapse
Affiliation(s)
- Scott M Garner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Shiv Upadhyay
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Nykänen A, Miller A, Talarico W, Knecht S, Kovyrshin A, Skogh M, Tornberg L, Broo A, Mensa S, Symons BCB, Sahin E, Crain J, Tavernelli I, Pavošević F. Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals. J Chem Theory Comput 2023; 19:9269-9277. [PMID: 38081802 DOI: 10.1021/acs.jctc.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nuclear quantum effects such as zero-point energy and hydrogen tunneling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating selected nuclei quantum mechanically on the same footing as electrons. On classical computers, the resources required for an exact solution of NEO-based models grow exponentially with system size. By contrast, quantum computers offer a means of solving this problem with polynomial scaling. However, due to the limitations of current quantum devices, NEO simulations are confined to the smallest systems described by minimal basis sets, whereas realistic simulations beyond the Born-Oppenheimer approximation require more sophisticated basis sets. For this purpose, we herein extend a hardware-efficient ADAPT-VQE method to the NEO framework in the frozen natural orbital (FNO) basis. We demonstrate on H2 and D2 molecules that the NEO-FNO-ADAPT-VQE method reduces the CNOT count by several orders of magnitude relative to the NEO unitary coupled cluster method with singles and doubles while maintaining the desired accuracy. This extreme reduction in the CNOT gate count is sufficient to permit practical computations employing the NEO method─an important step toward accurate simulations involving nonclassical nuclei and non-Born-Oppenheimer effects on near-term quantum devices. We further show that the method can capture isotope effects, and we demonstrate that inclusion of correlation energy systematically improves the prediction of difference in the zero-point energy (ΔZPE) between isotopes.
Collapse
Affiliation(s)
- Anton Nykänen
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
| | - Aaron Miller
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- School of Physics, Trinity College Dublin, College Green Dublin 2, Ireland
| | - Walter Talarico
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- Department of Applied Physics, QTF Centre of Excellence, Center for Quantum Engineering, Aalto University School of Science, Aalto FIN-00076, Finland
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- ETH Zürich, Department of Chemistry and Applied Life Sciences Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - Arseny Kovyrshin
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Mårten Skogh
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Lars Tornberg
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Anders Broo
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Stefano Mensa
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
| | | | - Emre Sahin
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
| | - Jason Crain
- IBM Research Europe, Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | | | | |
Collapse
|
7
|
Feldmann R, Baiardi A, Reiher M. Symmetry-Projected Nuclear-Electronic Hartree-Fock: Eliminating Rotational Energy Contamination. J Phys Chem A 2023; 127:8943-8954. [PMID: 37831620 PMCID: PMC10614303 DOI: 10.1021/acs.jpca.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Indexed: 10/15/2023]
Abstract
We present a symmetry projection technique for enforcing rotational and parity symmetries in nuclear-electronic Hartree-Fock wave functions, which treat electrons and nuclei on equal footing. The molecular Hamiltonian obeys rotational and parity inversion symmetries, which are, however, broken by expanding in Gaussian basis sets that are fixed in space. We generate a trial wave function with the correct symmetry properties by projecting the wave function onto representations of the three-dimensional rotation group, i.e., the special orthogonal group in three dimensions SO(3). As a consequence, the wave function becomes an eigenfunction of the angular momentum operator which (i) eliminates the contamination of the ground-state wave function by highly excited rotational states arising from the broken rotational symmetry and (ii) enables the targeting of specific rotational states of the molecule. We demonstrate the efficiency of the symmetry projection technique by calculating the energies of the low-lying rotational states of the H2 and H3+ molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Markus Reiher
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
8
|
Feldmann R, Baiardi A, Reiher M. Second-Order Self-Consistent Field Algorithms: From Classical to Quantum Nuclei. J Chem Theory Comput 2023; 19:856-873. [PMID: 36701300 DOI: 10.1021/acs.jctc.2c01035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work presents a general framework for deriving exact and approximate Newton self-consistent field (SCF) orbital optimization algorithms by leveraging concepts borrowed from differential geometry. Within this framework, we extend the augmented Roothaan-Hall (ARH) algorithm to unrestricted electronic and nuclear-electronic calculations. We demonstrate that ARH yields an excellent compromise between stability and computational cost for SCF problems that are hard to converge with conventional first-order optimization strategies. In the electronic case, we show that ARH overcomes the slow convergence of orbitals in strongly correlated molecules with the example of several iron-sulfur clusters. For nuclear-electronic calculations, ARH significantly enhances the convergence already for small molecules, as demonstrated for a series of protonated water clusters.
Collapse
Affiliation(s)
- Robin Feldmann
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023; 127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fragmentation and embedding schemes are of great importance when applying quantum-chemical calculations to more complex and attractive targets. The divide-and-conquer (DC)-based quantum-chemical model is a fragmentation scheme that can be connected to embedding schemes. This feature article explains several DC-based schemes developed by the authors over the last two decades, which was inspired by the pioneering study of DC self-consistent field (SCF) method by Yang and Lee (J. Chem. Phys. 1995, 103, 5674-5678). First, the theoretical aspects of the DC-based SCF, electron correlation, excited-state, and nuclear orbital methods are described, followed by the two-component relativistic theory, quantum-mechanical molecular dynamics simulation, and the introduction of three programs, including DC-based schemes. Illustrative applications confirmed the accuracy and feasibility of the DC-based schemes.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - Junji Seino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
10
|
Khan MA, Ayub AR, Alrowaili Z, Ilyas M, Hui L, Abbas SZ. Self-assembly of 2D coordination complex of cytidine monophosphate to boost up the optical phenomena. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|