1
|
Basciu A, Athar M, Kurt H, Neville C, Malloci G, Muredda FC, Bosin A, Ruggerone P, Bonvin AMJJ, Vargiu AV. Toward the Prediction of Binding Events in Very Flexible, Allosteric, Multidomain Proteins. J Chem Inf Model 2025; 65:2052-2065. [PMID: 39907634 PMCID: PMC11863385 DOI: 10.1021/acs.jcim.4c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Knowledge of the structures formed by proteins and small molecules is key to understand the molecular principles of chemotherapy and for designing new and more effective drugs. During the early stage of a drug discovery program, it is customary to predict ligand-protein complexes in silico, particularly when screening large compound databases. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology to generate bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites by exploiting only information on the unbound structure and the putative binding sites. The protocol is validated on the paradigm enzyme adenylate kinase, for which we generated a significant fraction of bound-like structures. A fraction of these conformations, employed in ensemble-docking calculations, allowed to find native-like poses of substrates and inhibitors (binding to the active form of the enzyme), as well as catalytically incompetent analogs (binding the inactive form). Our protocol provides a general framework for the generation of bound-like conformations of challenging drug targets that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening, in the prediction of the impact of amino acid mutations on structure and dynamics, and in protein engineering.
Collapse
Affiliation(s)
- Andrea Basciu
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| | - Mohd Athar
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| | - Han Kurt
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| | - Christine Neville
- Institute
for Computational Molecular Science, Temple
University, 1925 N. 12th Street, Philadelphia, Pennsylvania 19122, United States
- Department
of Biology, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Giuliano Malloci
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| | - Fabrizio C. Muredda
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| | - Andrea Bosin
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| | - Paolo Ruggerone
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| | - Alexandre M. J. J. Bonvin
- Bijvoet
Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Attilio V. Vargiu
- Physics
Department, University of Cagliari, Cittadella
Universitaria, Monserrato
(CA) I-09042, Italy
| |
Collapse
|
2
|
Basciu A, Athar M, Kurt H, Neville C, Malloci G, Muredda FC, Bosin A, Ruggerone P, Bonvin AMJJ, Vargiu AV. Predicting binding events in very flexible, allosteric, multi-domain proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597018. [PMID: 38895346 PMCID: PMC11185556 DOI: 10.1101/2024.06.02.597018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Knowledge of the structures formed by proteins and small molecules is key to understand the molecular principles of chemotherapy and for designing new and more effective drugs. During the early stage of a drug discovery program, it is customary to predict ligand-protein complexes in silico, particularly when screening large compound databases. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology to generate bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites by exploiting only information on the unbound structure and the putative binding sites. The protocol is validated on the paradigm enzyme adenylate kinase, for which we generated a significant fraction of bound-like structures. A fraction of these conformations, employed in ensemble-docking calculations, allowed to find native-like poses of substrates and inhibitors (binding to the active form of the enzyme), as well as catalytically incompetent analogs (binding the inactive form). Our protocol provides a general framework for the generation of bound-like conformations of challenging drug targets that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening, in the prediction of the impact of amino acid mutations on structure and dynamics, and in protein engineering.
Collapse
Affiliation(s)
- Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Han Kurt
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Christine Neville
- Institute for Computational Molecular Science, Temple University, 1925 N. 12th Street Philadelphia, PA 19122, U.S.A
- Department of Biology, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, U.S.A
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Fabrizio C. Muredda
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Andrea Bosin
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Alexandre M. J. J. Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Attilio V. Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| |
Collapse
|
3
|
Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. J Chem Inf Model 2024; 64:150-163. [PMID: 38117131 PMCID: PMC10778088 DOI: 10.1021/acs.jcim.3c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Abdul Raafik Arattu Thodika
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | | | - Uwe H. Sauer
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| | - Magnus Wolf-Watz
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| |
Collapse
|
4
|
Davolio AJ, J. Jankowski W, Várnai C, Irwin BWJ, Payne MC, Chau PL. Efficiently Differentiating Agonists and Competitive Antagonists for Weak Allosteric Protein-Ligand Interactions with Linear Response Theory. ACS OMEGA 2023; 8:44537-44544. [PMID: 38046342 PMCID: PMC10688131 DOI: 10.1021/acsomega.3c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/05/2023] [Indexed: 12/05/2023]
Abstract
What makes an agonist and a competitive antagonist? In this work, we aim to answer this question by performing parallel tempering Monte Carlo simulations on the serotonin type 3A (5-HT3A) receptor. We use linear response theory to predict conformational changes in the 5-HT3A receptor active site after weak perturbations are applied to its allosteric binding sites. A covariance tensor is built from conformational sampling of its apo state, and a harmonic approximation allows us to substitute the calculation of ligand-induced forces with the binding site's displacement vector. Remarkably, our study demonstrates the feasibility of effectively discerning between agonists and competitive antagonists for multiple ligands, requiring computationally expensive calculations only once per protein.
Collapse
Affiliation(s)
- Anthony J. Davolio
- Theory
of Condensed Matter Group, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Wojciech J. Jankowski
- Theory
of Condensed Matter Group, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Csilla Várnai
- Centre
for Computational Biology, University of
Birmingham, Birmingham B15 2TT, U.K.
- Institute
of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, U.K.
| | - Benedict W. J. Irwin
- Theory
of Condensed Matter Group, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Michael C. Payne
- Theory
of Condensed Matter Group, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Pak-Lee Chau
- Bioinformatique
Structurale, Institut Pasteur, CNRS URA
3528, CB3I CNRS USR 3756, 75724 Paris, France
| |
Collapse
|
5
|
Punia R, Goel G. Free Energy Surface and Molecular Mechanism of Slow Structural Transitions in Lipid Bilayers. J Chem Theory Comput 2023; 19:8245-8257. [PMID: 37947833 DOI: 10.1021/acs.jctc.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Lipid membrane remodeling, crucial for many cellular processes, is governed by the coupling of membrane structure and shape fluctuations. Given the importance of the ∼ nm length scale, details of the transition intermediates for conformational change are not fully captured by a continuum-mechanical description. Slow dynamics and the lack of knowledge of reaction coordinates (RCs) for biasing methods pose a challenge for all-atom (AA) simulations. Here, we map system dynamics on Langevin dynamics in a normal mode space determined from an elastic network model representation for the lipid-water Hamiltonian. AA molecular dynamics (MD) simulations are used to determine model parameters, and Langevin dynamics predictions for bilayer structural, mechanical, and dynamic properties are validated against MD simulations and experiments. Transferability to describe the dynamics of a larger lipid bilayer and a heterogeneous membrane-protein system is assessed. A set of generic RCs for pore formation in two tensionless bilayers is obtained by coupling Langevin dynamics to the underlying energy landscape for membrane deformations. Structure evolution is carried out by AA MD, wherein the generic RCs are used in a path metadynamics or an umbrella sampling simulation to determine the thermodynamics of pore formation and its molecular determinants, such as the role of distinct bilayer motions, lipid solvation, and lipid packing.
Collapse
Affiliation(s)
- Rajat Punia
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|