1
|
Farré-Gil D, Bayarri G, Laughton CA, Hospital A, Orozco M. CGeNArateWeb: a web server for the atomistic study of the structure and dynamics of chromatin fibers. Nucleic Acids Res 2025:gkaf371. [PMID: 40347109 DOI: 10.1093/nar/gkaf371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/13/2025] [Accepted: 04/25/2025] [Indexed: 05/12/2025] Open
Abstract
We present CGeNArateWeb, a new web tool for the three-dimensional simulation of naked DNA and protein-bound chromatin fibers. The server allows the user to obtain a dynamic representation of long segments of linear, circular, or protein-DNA segments thanks to a Langevin dynamics coarse-grained (CG) model working with a machine-learning (ML) fitted C1'-resolution Hamiltonian. The CG trajectories can be back-mapped to atomistic resolution using another ML algorithm trained on a large database of molecular dynamics (MD) simulations. The method allows the user to get structural and dynamic information on large (kilobase range) portions of both protein-bound and free DNA, to transform conceptual cartoons into structural and dynamical models. Trajectories are analyzed using an extensive set of nucleic acid-specific analysis tools, and the results are displayed using a powerful and flexible graphic interface. The web tool uses state-of-the-art technologies such as (i) Docker components orchestrated by Docker Swarm, with containers deployed on demand for computations, (ii) WebGL-programmed NGL molecular viewer and the JavaScript plotly library for interactive plots, and (iii) noSQL-MongoDB for storage. The server is accessible at https://mmb.irbbarcelona.org/CGNAW/. The web tool is free and open to all users, and there are no login requirements.
Collapse
Affiliation(s)
- David Farré-Gil
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona 08007, Spain
| | - Genis Bayarri
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Charles A Laughton
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
2
|
Ghediri S, Sarma PAP, Saravanan V, Abbadie C, Blossey R, Cleri F. Mechanisms of DNA Damage Recognition by UDG and PARP1 in the Nucleosome. Biomolecules 2025; 15:649. [PMID: 40427542 PMCID: PMC12108792 DOI: 10.3390/biom15050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
The DNA base-excision repair (BER) pathway shares the second part of its enzymatic chain with the single-strand break (SSB) repair pathway. BER is initiated by a glycosylase, such as UDG, while SSBR is initiated by the multifunctional enzyme PARP1. The very early steps in the identification of the DNA damage are crucial to the correct initiation of the repair chains, and become even more complex when considering the realistic environment of damage to the DNA in the nucleosome. We performed molecular dynamics computer simulations of the interaction between the glycosylase UDG and a mutated uracil (as could result from oxidative deamination of cytosine), and between the Zn1-Zn2 fragment of PARP1 and a simulated SSB. The model system is a whole nucleosome in which DNA damage is inserted at various typical positions along the 145-bp sequence. It is shown that damage recognition by the enzymes requires very strict conditions, unlikely to be matched by pure random search along the DNA. We propose that mechanical deformation of the DNA around the defective sites may help signaling the presence of the defect, accelerating the search process.
Collapse
Affiliation(s)
- Safwen Ghediri
- Université de Lille, Institut d’Electronique Microelectronique et Nanotechnologie (IEMN CNRS, UMR8520) and Département de Physique, F59652 Villeneuve d’Ascq, France; (S.G.); (P.A.P.S.)
- Université de Lille, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF CNRS UMR8576), F59000 Lille, France; (V.S.); (R.B.)
| | - Parvathy A. P. Sarma
- Université de Lille, Institut d’Electronique Microelectronique et Nanotechnologie (IEMN CNRS, UMR8520) and Département de Physique, F59652 Villeneuve d’Ascq, France; (S.G.); (P.A.P.S.)
- Université de Lille, CNRS UMR9020 and Inserm U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F59000 Lille, France;
| | - Vinnarasi Saravanan
- Université de Lille, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF CNRS UMR8576), F59000 Lille, France; (V.S.); (R.B.)
| | - Corinne Abbadie
- Université de Lille, CNRS UMR9020 and Inserm U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F59000 Lille, France;
| | - Ralf Blossey
- Université de Lille, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF CNRS UMR8576), F59000 Lille, France; (V.S.); (R.B.)
| | - Fabrizio Cleri
- Université de Lille, Institut d’Electronique Microelectronique et Nanotechnologie (IEMN CNRS, UMR8520) and Département de Physique, F59652 Villeneuve d’Ascq, France; (S.G.); (P.A.P.S.)
- Laboratory for Integrated Micro Mechatronics, LIMMS CNRS IRL2820 and University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Caukwell J, Assenza S, Hassan KA, Neilan BA, Clulow AJ, Salvati Manni L, Fong WK. Lipidic drug delivery systems are responsive to the human microbiome. J Colloid Interface Sci 2025; 677:293-302. [PMID: 39146817 DOI: 10.1016/j.jcis.2024.07.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
In vitro and in vivo tests for therapeutic agents are typically conducted in sterile environments, but many target areas for drug delivery are home to thousands of microbial species. Here, we examine the behaviour of lipidic nanomaterials after exposure to representative strains of four bacterial species found in the gastrointestinal tract and skin. Small angle X-ray scattering measurements show that the nanostructure of monoolein cubic and inverse hexagonal phases are transformed, respectively, into inverse hexagonal and inverse micellar cubic phases upon exposure to a strain of live Staphylococcus aureus often present on skin and mucosa. Further investigation demonstrates that enzymatic hydrolysis and cell membrane lipid transfer are both likely responsible for this effect. The structural responses to S. aureus are rapid and significantly reduce the rate of drug release from monoolein-based nanomaterials. These findings are the first to demonstrate how a key species in the live human microbiome can trigger changes in the structure and drug release properties of lipidic nanomaterials. The effect appears to be strain specific, varies from patient to patient and body region to body region, and is anticipated to affect the bioapplication of monoglyceride-based formulations.
Collapse
Affiliation(s)
- Jonathan Caukwell
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia; Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Livia Salvati Manni
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia; School of Chemistry and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| | - Wye-Khay Fong
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia.
| |
Collapse
|
4
|
Mou X, Liu K, He L, Li S. Mechanical response of double-stranded DNA: Bend, twist, and overwind. J Chem Phys 2024; 161:085102. [PMID: 39177087 DOI: 10.1063/5.0216585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
We employed all-atom molecular dynamics simulations to explore the mechanical response of bending, twisting, and overwinding for double-stranded DNA (dsDNA). We analyzed the bending and twisting deformations, as well as their stiffnesses, using the tilt, roll, and twist modes under stretching force. Findings indicate that the roll and twist angles vary linearly with the stretching force but show opposite trends. The tilt, roll, and twist elastic moduli are considered constants, while the coupling between roll and twist modes slightly decreases under stretching force. The effect of the stretching force on the roll and twist modes, including both their deformations and elasticities, exhibits sequence-dependence, with symmetry around the base pair step. Furthermore, we examined the overwinding path and mechanism of dsDNA from the perspective of the stiffness matrix, based on the tilt, roll, and twist modes. The correlations among tilt, roll, and twist angles imply an alternative overwinding pathway via twist-roll coupling when dsDNA is stretched, wherein entropic contribution prevails.
Collapse
Affiliation(s)
- Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Kai Liu
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
5
|
Luengo-Márquez J, Assenza S, Micheletti C. Shape and size tunability of sheets of interlocked ring copolymers. SOFT MATTER 2024; 20:6595-6607. [PMID: 39105348 DOI: 10.1039/d4sm00694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Mechanically bonded membranes of interlocked ring polymers are a significant generalization of conventional elastic sheets, where connectivity is provided by covalent bonding, and represent a promising class of topological meta-materials. In this context, two open questions regard the large-scale reverberations of the heterogeneous composition of the rings and the inequivalent modes of interlocking neighboring rings. We address these questions with Langevin dynamics simulations of chainmails with honeycomb-lattice connectivity, where the rings are block copolymers with two segments of different rigidity. We considered various combinations of the relative lengths of the two segments and the patterns of the over- and under-passes linking neighboring rings. We find that varying ring composition and linking patterns have independent and complementary effects. While the former sets the overall size of the chainmail, the latter defines the shape, enabling the selection of starkly different conformation types. Notably, one of the considered linking patterns favors saddle-shaped membranes, providing a first example of spontaneous negative Gaussian curvature in mechanically bonded sheets. The results help establish the extent to which mechanically bonded membranes can differ from conventional elastic ones, particularly for the achievable shape and size tunability.
Collapse
Affiliation(s)
- Juan Luengo-Márquez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Salvatore Assenza
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
6
|
Farré-Gil D, Arcon JP, Laughton CA, Orozco M. CGeNArate: a sequence-dependent coarse-grained model of DNA for accurate atomistic MD simulations of kb-long duplexes. Nucleic Acids Res 2024; 52:6791-6801. [PMID: 38813824 PMCID: PMC11229373 DOI: 10.1093/nar/gkae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
We present CGeNArate, a new model for molecular dynamics simulations of very long segments of B-DNA in the context of biotechnological or chromatin studies. The developed method uses a coarse-grained Hamiltonian with trajectories that are back-mapped to the atomistic resolution level with extreme accuracy by means of Machine Learning Approaches. The method is sequence-dependent and reproduces very well not only local, but also global physical properties of DNA. The efficiency of the method allows us to recover with a reduced computational effort high-quality atomic-resolution ensembles of segments containing many kilobases of DNA, entering into the gene range or even the entire DNA of certain cellular organelles.
Collapse
Affiliation(s)
- David Farré-Gil
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
| | - Juan Pablo Arcon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
| | - Charles A Laughton
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
7
|
Rogoulenko E, Levy Y. Skipping events impose repeated binding attempts: profound kinetic implications of protein-DNA conformational changes. Nucleic Acids Res 2024; 52:6763-6776. [PMID: 38721783 PMCID: PMC11229352 DOI: 10.1093/nar/gkae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 07/09/2024] Open
Abstract
The kinetics of protein-DNA recognition, along with its thermodynamic properties, including affinity and specificity, play a central role in shaping biological function. Protein-DNA recognition kinetics are characterized by two key elements: the time taken to locate the target site amid various nonspecific alternatives; and the kinetics involved in the recognition process, which may necessitate overcoming an energetic barrier. In this study, we developed a coarse-grained (CG) model to investigate interactions between a transcription factor called the sex-determining region Y (SRY) protein and DNA, in order to probe how DNA conformational changes affect SRY-DNA recognition and binding kinetics. We find that, not only does a requirement for such a conformational DNA transition correspond to a higher energetic barrier for binding and therefore slower kinetics, it may further impede the recognition kinetics by increasing unsuccessful binding events (skipping events) where the protein partially binds its DNA target site but fails to form the specific protein-DNA complex. Such skipping events impose the need for additional cycles protein search of nonspecific DNA sites, thus significantly extending the overall recognition time. Our results highlight a trade-off between the speed with which the protein scans nonspecific DNA and the rate at which the protein recognizes its specific target site. Finally, we examine molecular approaches potentially adopted by natural systems to enhance protein-DNA recognition despite its intrinsically slow kinetics.
Collapse
Affiliation(s)
- Elena Rogoulenko
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Laeremans W, Segers M, Voorspoels A, Carlon E, Hooyberghs J. Insights into elastic properties of coarse-grained DNA models: q-stiffness of cgDNA vs cgDNA. J Chem Phys 2024; 160:144105. [PMID: 38591677 DOI: 10.1063/5.0197053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Coarse-grained models have emerged as valuable tools to simulate long DNA molecules while maintaining computational efficiency. These models aim at preserving interactions among coarse-grained variables in a manner that mirrors the underlying atomistic description. We explore here a method for testing coarse-grained vs all-atom models using stiffness matrices in Fourier space (q-stiffnesses), which are particularly suited to probe DNA elasticity at different length scales. We focus on a class of coarse-grained rigid base DNA models known as cgDNA and its most recent version, cgDNA+. Our analysis shows that while cgDNA+ closely follows the q-stiffnesses of the all-atom model, the original cgDNA shows some deviations for twist and bending variables, which are rather strong in the q → 0 (long length scale) limit. The consequence is that while both cgDNA and cgDNA+ give a suitable description of local elastic behavior, the former misses some effects that manifest themselves at longer length scales. In particular, cgDNA performs poorly on twist stiffness, with a value much lower than expected for long DNA molecules. Conversely, the all-atom and cgDNA+ twist are strongly length scale dependent: DNA is torsionally soft at a few base pair distances but becomes more rigid at distances of a few dozen base pairs. Our analysis shows that the bending persistence length in all-atom and cgDNA+ is somewhat overestimated.
Collapse
Affiliation(s)
- Wout Laeremans
- Soft Matter and Biological Physics, Department of Applied Physics, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, Netherlands
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- UHasselt, Faculty of Sciences, Data Science Institute, Theory Lab, Agoralaan, 3590 Diepenbeek, Belgium
| | - Midas Segers
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Aderik Voorspoels
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Carlon
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Jef Hooyberghs
- UHasselt, Faculty of Sciences, Data Science Institute, Theory Lab, Agoralaan, 3590 Diepenbeek, Belgium
| |
Collapse
|
9
|
Roldán-Piñero C, Luengo-Márquez J, Assenza S, Pérez R. Systematic Comparison of Atomistic Force Fields for the Mechanical Properties of Double-Stranded DNA. J Chem Theory Comput 2024; 20:2261-2272. [PMID: 38411091 PMCID: PMC10938644 DOI: 10.1021/acs.jctc.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
The response of double-stranded DNA to external mechanical stress plays a central role in its interactions with the protein machinery in the cell. Modern atomistic force fields have been shown to provide highly accurate predictions for the fine structural features of the duplex. In contrast, and despite their pivotal function, less attention has been devoted to the accuracy of the prediction of the elastic parameters. Several reports have addressed the flexibility of double-stranded DNA via all-atom molecular dynamics, yet the collected information is insufficient to have a clear understanding of the relative performance of the various force fields. In this work, we fill this gap by performing a systematic study in which several systems, characterized by different sequence contexts, are simulated with the most popular force fields within the AMBER family, bcs1 and OL15, as well as with CHARMM36. Analysis of our results, together with their comparison with previous work focused on bsc0, allows us to unveil the differences in the predicted rigidity between the newest force fields and suggests a roadmap to test their performance against experiments. In the case of the stretch modulus, we reconcile these differences, showing that a single mapping between sequence-dependent conformation and elasticity via the crookedness parameter captures simultaneously the results of all force fields, supporting the key role of crookedness in the mechanical response of double-stranded DNA.
Collapse
Affiliation(s)
- Carlos Roldán-Piñero
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Juan Luengo-Márquez
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
| | - Salvatore Assenza
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Rubén Pérez
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
10
|
Zhang Z, Mou X, Zhang Y, He L, Li S. Influence of temperature on bend, twist and twist-bend coupling of dsDNA. Phys Chem Chem Phys 2024; 26:8077-8088. [PMID: 38224130 DOI: 10.1039/d3cp04932a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The temperature-dependent bend and twist elasticities of dsDNA, as well as their couplings, were explored through all-atom molecular dynamics simulations. Three rotational parameters, tilt, roll, and twist, were employed to assess the bend and twist elasticities through their stiffness matrix. Our analysis indicates that the bend and twist stiffnesses decrease as the temperature rises, primarily owing to entropic influences stemming from thermodynamic fluctuations. Furthermore, the couplings between these rotational parameters also exhibit a decline with increasing temperature, although the roll-twist coupling displays greater strength than the tilt-roll and tilt-twist couplings, attributed to its more robust correction component. We elucidated the influence of temperature on bend and twist elasticities based on the comparisons between various models and existing data.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Park S, Brandani GB, Ha T, Bowman G. Bi-directional nucleosome sliding by the Chd1 chromatin remodeler integrates intrinsic sequence-dependent and ATP-dependent nucleosome positioning. Nucleic Acids Res 2023; 51:10326-10343. [PMID: 37738162 PMCID: PMC10602870 DOI: 10.1093/nar/gkad738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
Chromatin remodelers use a helicase-type ATPase motor to shift DNA around the histone core. Although not directly reading out the DNA sequence, some chromatin remodelers exhibit a sequence-dependent bias in nucleosome positioning, which presumably reflects properties of the DNA duplex. Here, we show how nucleosome positioning by the Chd1 remodeler is influenced by local DNA perturbations throughout the nucleosome footprint. Using site-specific DNA cleavage coupled with next-generation sequencing, we show that nucleosomes shifted by Chd1 can preferentially localize DNA perturbations - poly(dA:dT) tracts, DNA mismatches, and single-nucleotide insertions - about a helical turn outside the Chd1 motor domain binding site, super helix location 2 (SHL2). This phenomenon occurs with both the Widom 601 positioning sequence and the natural +1 nucleosome sequence from the Saccharomyces cerevisiae SWH1 gene. Our modeling indicates that localization of DNA perturbations about a helical turn outward from SHL2 results from back-and-forth sliding due to remodeler action on both sides of the nucleosome. Our results also show that barrier effects from DNA perturbations can be extended by the strong phasing of nucleosome positioning sequences.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory D Bowman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
13
|
Luengo-Márquez J, Zalvide-Pombo J, Pérez R, Assenza S. Force-dependent elasticity of nucleic acids. NANOSCALE 2023; 15:6738-6744. [PMID: 36942727 DOI: 10.1039/d2nr06324g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The functioning of double-stranded (ds) nucleic acids (NAs) in cellular processes is strongly mediated by their elastic response. These processes involve proteins that interact with dsDNA or dsRNA and distort their structures. The perturbation of the elasticity of NAs arising from these deformations is not properly considered by most theoretical frameworks. In this work, we introduce a novel method to assess the impact of mechanical stress on the elastic response of dsDNA and dsRNA through the analysis of the fluctuations of the double helix. Application of this approach to atomistic simulations reveals qualitative differences in the force dependence of the mechanical properties of dsDNA with respect to those of dsRNA, which we relate to structural features of these molecules by means of physically-sound minimalistic models.
Collapse
Affiliation(s)
- Juan Luengo-Márquez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Zalvide-Pombo
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
14
|
Zhang Y, He L, Li S. Temperature dependence of DNA elasticity: An all-atom molecular dynamics simulation study. J Chem Phys 2023; 158:094902. [PMID: 36889965 DOI: 10.1063/5.0138940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We used all-atom molecular dynamics simulation to investigate the elastic properties of double-stranded DNA (dsDNA). We focused on the influences of temperature on the stretch, bend, and twist elasticities, as well as the twist-stretch coupling, of the dsDNA over a wide range of temperature. The results showed that the bending and twist persistence lengths, together with the stretch and twist moduli, decrease linearly with temperature. However, the twist-stretch coupling behaves in a positive correction and enhances as the temperature increases. The potential mechanisms of how temperature affects dsDNA elasticity and coupling were investigated by using the trajectories from atomistic simulation, in which thermal fluctuations in structural parameters were analyzed in detail. We analyzed the simulation results by comparing them with previous simulation and experimental data, which are in good agreement. The prediction about the temperature dependence of dsDNA elastic properties provides a deeper understanding of DNA elasticities in biological environments and potentially helps in the further development of DNA nanotechnology.
Collapse
Affiliation(s)
- Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
15
|
Sharma R, Patelli AS, Bruin LD, Maddocks JH. cgNA+web : A visual interface to the cgNA+ sequence-dependent statistical mechanics model of double-stranded nucleic acids. J Mol Biol 2023. [DOI: 10.1016/j.jmb.2023.167978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Brandani GB, Gopi S, Yamauchi M, Takada S. Molecular dynamics simulations for the study of chromatin biology. Curr Opin Struct Biol 2022; 77:102485. [PMID: 36274422 DOI: 10.1016/j.sbi.2022.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
The organization of Eukaryotic DNA into chromatin has profound implications for the processing of genetic information. In the past years, molecular dynamics (MD) simulations proved to be a powerful tool to investigate the mechanistic basis of chromatin biology. We review recent all-atom and coarse-grained MD studies revealing how the structure and dynamics of chromatin underlie its biological functions. We describe the latest method developments; the structural fluctuations of nucleosomes and the various factors affecting them; the organization of chromatin fibers, with particular emphasis on its liquid-like character; the interactions and dynamics of transcription factors on chromatin; and how chromatin organization is modulated by molecular motors acting on DNA.
Collapse
Affiliation(s)
- Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| | - Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| |
Collapse
|
17
|
Mu ZC, Tan YL, Zhang BG, Liu J, Shi YZ. Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions. PLoS Comput Biol 2022; 18:e1010501. [PMID: 36260618 PMCID: PMC9621594 DOI: 10.1371/journal.pcbi.1010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.4Å from the experimental structures. For DNAs with various lengths and sequences, the present model can make reliable predictions on stability, e.g., for 27 dsDNAs with/without bulge/internal loops and 24 ssDNAs including pseudoknot, the mean deviation of predicted melting temperatures from the corresponding experimental data is only ~2.0°C. Furthermore, the model also quantificationally predicts the effects of monovalent or divalent ions on the structure stability of ssDNAs/dsDNAs. To determine 3D structures and quantify stability of single- (ss) and double-stranded (ds) DNAs is essential to unveil the mechanisms of their functions and to further guide the production and development of novel materials. Although many DNA models have been proposed to reproduce the basic structural, mechanical, or thermodynamic properties of dsDNAs based on the secondary structure information or preset constraints, there are very few models can be used to investigate the ssDNA folding or dsDNA assembly from the sequence. Furthermore, due to the polyanionic nature of DNAs, metal ions (e.g., Na+ and Mg2+) in solutions can play an essential role in DNA folding and dynamics. Nevertheless, ab initio predictions for DNA folding in ion solutions are still an unresolved problem. In this work, we developed a novel coarse-grained model to predict 3D structures and thermodynamic stabilities for both ssDNAs and dsDNAs in monovalent/divalent ion solutions from their sequences. As compared with the extensive experimental data and available existing models, we showed that the present model can successfully fold simple DNAs into their native-like structures, and can also accurately reproduce the effects of sequence and monovalent/divalent ions on structure stability for ssDNAs including pseudoknot and dsDNAs with/without bulge/internal loops.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- * E-mail:
| |
Collapse
|