1
|
Wang L, Brasnett C, Borges-Araújo L, Souza PCT, Marrink SJ. Martini3-IDP: improved Martini 3 force field for disordered proteins. Nat Commun 2025; 16:2874. [PMID: 40128232 PMCID: PMC11933364 DOI: 10.1038/s41467-025-58199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Coarse-grained (CG) molecular dynamics (MD) is widely used for the efficient simulation of intrinsically disordered proteins (IDPs). The Martini model, one of the most popular CG force fields in biomolecular simulation, was reported to yield too compact IDP conformations, limiting its applications. Addressing this, we optimized the bonded parameters based on fitting to reference simulations of a diverse set of IDPs at atomistic resolution, resulting in a Martini3-based disordered protein model coined Martini3-IDP. This model leads to expanded IDP conformations, greatly improving the reproduction of the experimentally measured radii of gyration. Moreover, contrary to ad-hoc fixes based on scaling of protein-protein or protein-water interactions, Martini3-IDP keeps the overall interaction balance underlying Martini 3. To validate that, we perform a comprehensive testing including full-length multidomain proteins, IDP-lipid membrane binding and IDP-small molecule binding, confirming its ability to successfully capture the complex interplay between disordered proteins and diverse biomolecular components. Finally, the recently emerging concept of biomolecular condensate, through liquid-liquid phase separation, was also reproduced by Martini3-IDP for a number of both homotypic and heterotypic systems. With the improved Martini3-IDP model, we expand the ability to simulate processes involving IDPs in complex environments, at spatio-temporal scales inaccessible with all-atom models.
Collapse
Affiliation(s)
- Liguo Wang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Muhammedkutty FNK, MacAinsh M, Zhou HX. Atomistic molecular dynamics simulations of intrinsically disordered proteins. Curr Opin Struct Biol 2025; 92:103029. [PMID: 40068541 DOI: 10.1016/j.sbi.2025.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
Recent years have seen remarkable gains in the accuracy of atomistic molecular dynamics (MD) simulations of intrinsically disordered proteins (IDPs) and expansion in the types of calculated properties that can be directly compared with experimental measurements. These advances occurred due to the use of IDP-tested force fields and the porting of MD simulations to GPUs and other computational technologies. All-atom MD simulations are now explaining the sequence-dependent dynamics of IDPs; elucidating the mechanisms of their binding to other proteins, nucleic acids, and membranes; revealing the modes of drug action on them; and characterizing their phase separation. Artificial intelligence (AI) and machine learning (ML) are further expanding the reach of atomistic MD simulations.
Collapse
Affiliation(s)
| | - Matthew MacAinsh
- Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA; Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
MacAinsh M, Dey S, Zhou HX. Direct and indirect salt effects on homotypic phase separation. eLife 2024; 13:RP100282. [PMID: 39531035 PMCID: PMC11556789 DOI: 10.7554/elife.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by >100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we carried out all-atom molecular dynamics simulations of systems comprising multiple A1-LCD chains at NaCl concentrations from 50 to 1000 mM NaCl. The ions occupy first shell as well as more distant sites around the IDP chains, with Arg sidechains and backbone carbonyls the favored partners of Cl- and Na+, respectively. They play two direct roles in driving A1-LCD condensation. The first is to neutralize the high net charge of the protein (+9) by an excess of bound Cl- over Na+; the second is to bridge between A1-LCD chains, thereby fortifying the intermolecular interaction networks in the dense phase. At high concentrations, NaCl also indirectly strengthens π-π, cation-π, and amino-π interactions, by drawing water away from the interaction partners. Therefore, at low salt, A1-LCD is prevented from phase separation by net charge repulsion; at intermediate concentrations, NaCl neutralizes enough of the net charge while also bridging IDP chains to drive phase separation. This drive becomes even stronger at high salt due to strengthened π-type interactions. Based on this understanding, four classes of salt dependence of IDP phase separation can be predicted from amino-acid composition.
Collapse
Affiliation(s)
- Matt MacAinsh
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
| | - Souvik Dey
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
- Department of Physics, University of Illinois ChicagoChicagoUnited States
| |
Collapse
|
4
|
Qin S, Zhou HX. Predicting the sequence-dependent backbone dynamics of intrinsically disordered proteins. eLife 2024; 12:RP88958. [PMID: 39475380 PMCID: PMC11524581 DOI: 10.7554/elife.88958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here, we present a sequence-based method, SeqDYN, for predicting residue-specific backbone dynamics of IDPs. SeqDYN employs a mathematical model with 21 parameters: one is a correlation length and 20 are the contributions of the amino acids to slow dynamics. Training on a set of 45 IDPs reveals aromatic, Arg, and long-branched aliphatic amino acids as the most active in slow dynamics whereas Gly and short polar amino acids as the least active. SeqDYN predictions not only provide an accurate and insightful characterization of sequence-dependent IDP dynamics but may also serve as indicators in a host of biophysical processes, including the propensities of IDP sequences to undergo phase separation.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois ChicagoChicagoUnited States
- Department of Physics, University of Illinois ChicagoChicagoUnited States
| |
Collapse
|
5
|
Zhang Y, Prasad R, Su S, Lee D, Zhou HX. Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102218. [PMID: 39513041 PMCID: PMC11542723 DOI: 10.1016/j.xcrp.2024.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rules of how amino acids dictate the physical properties of biomolecular condensates are still incomplete. Here, we study condensates formed by tetrapeptides of the form XXssXX. Eight peptides form four types of condensates at different concentrations and pHs: droplets (X = F, L, M, P, V, and A), amorphous dense liquids (X = L, M, P, V, and A), amorphous aggregates (X = W), and gels (X = I, V, and A). The peptides exhibit differences in phase equilibrium and material properties, including a 368-fold range in the threshold concentration for phase separation and a 3,856-fold range in viscosity. All-atom molecular dynamics simulations provide physical explanations of these results. The present work also reveals widespread critical behaviors-including critical slowing down manifested by amorphous dense liquids and critical scaling obeyed by fusion speed-with broad implications for condensate functions.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
- Lead contact
| |
Collapse
|
6
|
Qin S, Zhou HX. Predicting the Sequence-Dependent Backbone Dynamics of Intrinsically Disordered Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.02.526886. [PMID: 36778236 PMCID: PMC9915584 DOI: 10.1101/2023.02.02.526886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here we present a sequence-based method, SeqDYN, for predicting residue-specific backbone dynamics of IDPs. SeqDYN employs a mathematical model with 21 parameters: one is a correlation length and 20 are the contributions of the amino acids to slow dynamics. Training on a set of 45 IDPs reveals aromatic, Arg, and long-branched aliphatic amino acids as the most active in slow dynamics whereas Gly and short polar amino acids as the least active. SeqDYN predictions not only provide an accurate and insightful characterization of sequence-dependent IDP dynamics but may also serve as indicators in a host of biophysical processes, including the propensities of IDP sequences to undergo phase separation.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Chemistry and University of Illinois Chicago, Chicago, IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry and University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
8
|
Saibo NV, Maiti S, Boral S, Banerjee P, Kushwaha T, Inampudi KK, Goswami R, De S. The intrinsically disordered transactivation region of HOXA9 regulates its function by auto-inhibition of its DNA-binding activity. Int J Biol Macromol 2024; 273:132704. [PMID: 38825283 DOI: 10.1016/j.ijbiomac.2024.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
HOXA9 transcription factor is expressed in hematopoietic stem cells and is involved in the regulation of their differentiation and maturation to various blood cells. HOXA9 is linked to various leukemia and is a marker for poor prognosis of acute myeloid leukemia (AML). This protein has a conserved DNA-binding homeodomain and a transactivation domain. We show that this N-terminal transactivation domain is intrinsically disordered and inhibits DNA-binding by the homeodomain. Using NMR spectroscopy and molecular dynamics simulation, we show that the hexapeptide 197AANWLH202 in the disordered region transiently occludes the DNA-binding interface. The hexapeptide also forms a rigid segment, as determined by NMR dynamics, in an otherwise flexible disordered region. Interestingly, this hexapeptide is known to mediate the interaction of HOXA9 and its TALE partner proteins, such as PBX1, and help in cooperative DNA binding. Mutation of tryptophan to alanine in the hexapeptide abrogates the DNA-binding auto-inhibition. We propose that the disordered transactivation region plays a dual role in the regulation of HOXA9 function. In the absence of TALE partners, it inhibits DNA binding, and in the presence of TALE partners it interacts with the TALE protein and facilitates the cooperative DNA binding by the HOX-TALE complex.
Collapse
Affiliation(s)
- Nikita V Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Soumendu Boral
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Puja Banerjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ritobrata Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India.
| |
Collapse
|
9
|
Zhang Y, Prasad R, Su S, Lee D, Zhou HX. Amino Acid-Dependent Material Properties of Tetrapeptide Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594233. [PMID: 38798623 PMCID: PMC11118382 DOI: 10.1101/2024.05.14.594233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Condensates formed by intrinsically disordered proteins mediate a myriad of cellular processes and are linked to pathological conditions including neurodegeneration. Rules of how different types of amino acids (e.g., π-π pairs) dictate the physical properties of biomolecular condensates are emerging, but our understanding of the roles of different amino acids is far from complete. Here we studied condensates formed by tetrapeptides of the form XXssXX, where X is an amino acid and ss represents a disulfide bond along the backbone. Eight peptides form four types of condensates at different concentrations and pH values: droplets (X = F, L, M, P, V, A); amorphous dense liquids (X = L, M, P, V, A); amorphous aggregates (X = W), and gels (X = I, V, A). The peptides exhibit enormous differences in phase equilibrium and material properties, including a 368-fold range in the threshold concentration for phase separation and a 3856-fold range in viscosity. All-atom molecular dynamics simulations provide physical explanations of these results. The present work also reveals widespread critical behaviors, including critical slowing down manifested by the formation of amorphous dense liquids and critical scaling obeyed by fusion speed, with broad implications for condensate function.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, USA
| |
Collapse
|
10
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
11
|
Ghosh C, Nagpal S, Muñoz V. Molecular simulations integrated with experiments for probing the interaction dynamics and binding mechanisms of intrinsically disordered proteins. Curr Opin Struct Biol 2024; 84:102756. [PMID: 38118365 PMCID: PMC11242915 DOI: 10.1016/j.sbi.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Intrinsically disordered proteins (IDPs) exploit their plasticity to deploy a rich panoply of soft interactions and binding phenomena. Advances in tailoring molecular simulations for IDPs combined with experimental cross-validation offer an atomistic view of the mechanisms that control IDP binding, function, and dysfunction. The emerging theme is that unbound IDPs autonomously form transient local structures and self-interactions that determine their binding behavior. Recent results have shed light on whether and how IDPs fold, stay disordered or drive condensation upon binding; how they achieve binding specificity and select among competing partners. The disorder-binding paradigm is now being proactively used by researchers to target IDPs for rational drug design and engineer molecular responsive elements for biosensing applications.
Collapse
Affiliation(s)
- Catherine Ghosh
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA. https://twitter.com/cat_ghosh
| | - Suhani Nagpal
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA; OpenEye, Cadence Molecular Sciences, Boston, 02114 MA, USA
| | - Victor Muñoz
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA.
| |
Collapse
|
12
|
Li X, Fu L, Zhang S, Dong Y, Gao L. Relationship between Protein-Induced Membrane Curvature and Membrane Thermal Undulation. J Phys Chem B 2024; 128:515-525. [PMID: 38181399 DOI: 10.1021/acs.jpcb.3c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
This work studied the membrane curvature generated by anchored proteins lacking amphipathic helices and intrinsic morphologies, including the Epsin N-terminal homology domain, intrinsically disordered C-terminal domain, and truncated C-terminal fragments, by using coarse-grained molecular dynamics simulations. We found that anchored proteins can stabilize the thermal undulation of membranes at a wavelength five times the protein's binding size. This proportional connection is governed by the membrane bending rigidity and protein density. Extended intrinsically disordered proteins with relatively high hydrophobicity favor colliding with the membrane, leading to a much larger binding size, and show superiority in generating membrane curvature at low density over folded proteins.
Collapse
Affiliation(s)
- Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Dong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Herrera-Nieto P, Pérez A, De Fabritiis G. Binding-and-Folding Recognition of an Intrinsically Disordered Protein Using Online Learning Molecular Dynamics. J Chem Theory Comput 2023; 19:3817-3824. [PMID: 37341654 PMCID: PMC10863933 DOI: 10.1021/acs.jctc.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/22/2023]
Abstract
Intrinsically disordered proteins participate in many biological processes by folding upon binding to other proteins. However, coupled folding and binding processes are not well understood from an atomistic point of view. One of the main questions is whether folding occurs prior to or after binding. Here we use a novel, unbiased, high-throughput adaptive sampling approach to reconstruct the binding and folding between the disordered transactivation domain of c-Myb and the KIX domain of the CREB-binding protein. The reconstructed long-term dynamical process highlights the binding of a short stretch of amino acids on c-Myb as a folded α-helix. Leucine residues, especially Leu298-Leu302, establish initial native contacts that prime the binding and folding of the rest of the peptide, with a mixture of conformational selection on the N-terminal region with an induced fit of the C-terminal.
Collapse
Affiliation(s)
- Pablo Herrera-Nieto
- Computational
Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park
(PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Adrià Pérez
- Computational
Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park
(PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
- Acellera
Labs, C Dr Trueta 183, 08005, Barcelona, Spain
| | - Gianni De Fabritiis
- Computational
Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park
(PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
- Acellera
Ltd, Devonshire House
582, Stanmore Middlesex, HA7 1JS, United Kingdom
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Dey S, Zhou HX. Why Does Synergistic Activation of WASP, but Not N-WASP, by Cdc42 and PIP 2 Require Cdc42 Prenylation? J Mol Biol 2023; 435:168035. [PMID: 36863659 PMCID: PMC10079582 DOI: 10.1016/j.jmb.2023.168035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstream basic region and GTPase binding domain. Little is known about how a single intrinsically disordered protein, WASP or N-WASP, binds multiple regulators to achieve full activation. Here we used molecular dynamics simulations to characterize the binding of WASP and N-WASP with PIP2 and Cdc42. In the absence of Cdc42, both WASP and N-WASP strongly associate with PIP2-containing membranes, through their basic region and also possibly through a tail portion of the N-terminal WH1 domain. The basic region also participates in Cdc42 binding, especially for WASP; consequently Cdc42 binding significantly compromises the ability of the basic region in WASP, but not N-WASP, to bind PIP2. PIP2 binding to the WASP basic region is restored only when Cdc42 is prenylated at the C-terminus and tethered to the membrane. This distinction in the activation of WASP and N-WASP may contribute to their different functional roles.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA. https://twitter.com/SouvikDeyUIC
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
15
|
Smrt ST, Escobar CA, Dey S, Cross TA, Zhou HX. An Arg/Ala-rich helix in the N-terminal region of M. tuberculosis FtsQ is a potential membrane anchor of the Z-ring. Commun Biol 2023; 6:311. [PMID: 36959324 PMCID: PMC10036325 DOI: 10.1038/s42003-023-04686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Mtb infects a quarter of the worldwide population. Most drugs for treating tuberculosis target cell growth and division. With rising drug resistance, it becomes ever more urgent to better understand Mtb cell division. This process begins with the formation of the Z-ring via polymerization of FtsZ and anchoring of the Z-ring to the inner membrane. Here we show that the transmembrane protein FtsQ is a potential membrane anchor of the Mtb Z-ring. In the otherwise disordered cytoplasmic region of FtsQ, a 29-residue, Arg/Ala-rich α-helix is formed that interacts with upstream acidic residues in solution and with acidic lipids at the membrane surface. This helix also binds to the GTPase domain of FtsZ, with implications for drug binding and Z-ring formation.
Collapse
Affiliation(s)
- Sean T Smrt
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Cristian A Escobar
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Souvik Dey
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|