1
|
Sang C, Shu J, Wang K, Xia W, Wang Y, Sun T, Xu X. The prediction of RNA-small molecule binding sites in RNA structures based on geometric deep learning. Int J Biol Macromol 2025; 310:143308. [PMID: 40268011 DOI: 10.1016/j.ijbiomac.2025.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Biological interactions between RNA and small-molecule ligands play a crucial role in determining the specific functions of RNA, such as catalysis and folding, and are essential for guiding drug design in the medical field. Accurately predicting the binding sites of ligands within RNA structures is therefore of significant importance. To address this challenge, we introduced a computational approach named RLBSIF (RNA-Ligand Binding Surface Interaction Fingerprints) based on geometric deep learning. This model utilizes surface geometric features, including shape index and distance-dependent curvature, combined with chemical features represented by atomic charge, to comprehensively characterize RNA-ligand interactions through MaSIF-based surface interaction fingerprints. Additionally, we employ the ResNet18 network to analyze these fingerprints for identifying ligand binding pockets. Trained on 440 binding pockets, RLBSIF achieves an overall pocket-level classification accuracy of 90 %. Through a full-space enumeration method, it can predict binding sites at nucleotide resolution. In two independent tests, RLBSIF outperformed competing models, demonstrating its efficacy in accurately identifying binding sites within complex molecular structures. This method shows promise for drug design and biological product development, providing valuable insights into RNA-ligand interactions and facilitating the design of novel therapeutic interventions. For access to the related source code, please visit RLBSIF on GitHub (https://github.com/ZUSTSTTLAB/RLBSIF).
Collapse
Affiliation(s)
- Chunjiang Sang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Jiasai Shu
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Kang Wang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Wentao Xia
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Yan Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
2
|
Poudel P, Miteva MA, Alexov E. Strategies for in Silico Drug Discovery to Modulate Macromolecular Interactions Altered by Mutations. FRONT BIOSCI-LANDMRK 2025; 30:26339. [PMID: 40302318 DOI: 10.31083/fbl26339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 05/02/2025]
Abstract
Most human diseases have genetic components, frequently single nucleotide variants (SNVs), which alter the wild type characteristics of macromolecules and their interactions. A straightforward approach for correcting such SNVs-related alterations is to seek small molecules, potential drugs, that can eliminate disease-causing effects. Certain disorders are caused by altered protein-protein interactions, for example, Snyder-Robinson syndrome, the therapy for which focuses on the development of small molecules that restore the wild type homodimerization of spermine synthase. Other disorders originate from altered protein-nucleic acid interactions, as in the case of cancer; in these cases, the elimination of disease-causing effects requires small molecules that eliminate the effect of mutation and restore wild type p53-DNA affinity. Overall, especially for complex diseases, pathogenic mutations frequently alter macromolecular interactions. This effect can be direct, i.e., the alteration of wild type affinity and specificity, or indirect via alterations in the concentration of the binding partners. Here, we outline progress made in methods and strategies to computationally identify small molecules capable of altering macromolecular interactions in a desired manner, reducing or increasing the binding affinity, and eliminating the disease-causing effect. When applicable, we provide examples of the outlined general strategy. Successful cases are presented at the end of the work.
Collapse
Affiliation(s)
- Pitambar Poudel
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Maria A Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm, U1268 MCTR Paris, France
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Kirkman T, Dos Santos Silva C, Tosin M, Bertacine Dias MV. How to Find a Fragment: Methods for Screening and Validation in Fragment-Based Drug Discovery. ChemMedChem 2024; 19:e202400342. [PMID: 39198213 DOI: 10.1002/cmdc.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Fragment-based drug discovery (FBDD) is a crucial strategy for developing new drugs that have been applied to diverse targets, from neglected infectious diseases to cancer. With at least seven drugs already launched to the market, this approach has gained interest in both academics and industry in the last 20 years. FBDD relies on screening small libraries with about 1000-2000 compounds of low molecular weight (about 300 Da) using several biophysical methods. Because of the reduced size of the compounds, the chemical space and diversity can be better explored than large libraries used in high throughput screenings. This review summarises the most common biophysical techniques used in fragment screening and orthogonal validation. We also explore the advantages and drawbacks of the different biophysical techniques and examples of applications and strategies.
Collapse
Affiliation(s)
- Tim Kirkman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Nordquist EB, Zhao M, Kumar A, MacKerell AD. Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots. J Chem Inf Model 2024; 64:7743-7757. [PMID: 39283165 PMCID: PMC11473228 DOI: 10.1021/acs.jcim.4c01189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Identifying druggable binding sites on proteins is an important and challenging problem, particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or predicted structures. The Site-Identification by Ligand Competitive Saturation (SILCS) method accounts for the flexibility of the target protein using all-atom molecular simulations that include various small molecule solutes in aqueous solution. During the simulations, the combination of protein flexibility and comprehensive sampling of the water and solute spatial distributions can identify buried binding pockets absent in experimentally determined structures. Previously, we reported a method for leveraging the information in the SILCS sampling to identify binding sites (termed Hotspots) of small mono- or bicyclic compounds, a subset of which coincide with known binding sites of drug-like molecules. Here, we build on that physics-based approach and present a ML model for ranking the Hotspots according to the likelihood they can accommodate drug-like molecules (e.g., molecular weight >200 Da). In the independent validation set, which includes various enzymes and receptors, our model recalls 67% and 89% of experimentally validated ligand binding sites in the top 10 and 20 ranked Hotspots, respectively. Furthermore, we show that the model's output Decision Function is a useful metric to predict binding sites and their potential druggability in new targets. Given the utility the SILCS method for ligand discovery and optimization, the tools presented represent an important advancement in the identification of orthosteric and allosteric binding sites and the discovery of drug-like molecules targeting those sites.
Collapse
Affiliation(s)
- Erik B. Nordquist
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Mingtian Zhao
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Anmol Kumar
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, Maryland 21201, United States
| |
Collapse
|
5
|
Yuce M, Ates B, Yasar NI, Sungur FA, Kurkcuoglu O. A computational workflow to determine drug candidates alternative to aminoglycosides targeting the decoding center of E. coli ribosome. J Mol Graph Model 2024; 131:108817. [PMID: 38976944 DOI: 10.1016/j.jmgm.2024.108817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the E. coli ribosome. The workflow basically consists of two molecular docking calculations on the intact 30S, followed by molecular dynamics (MD) simulations coupled with MM-GBSA calculations on a truncated ribosome structure. The parameters used in the molecular docking suits, Glide and AutoDock Vina, as well as in the MD simulations with Desmond were carefully adjusted to obtain expected interactions for the ligand-rRNA complexes. A filtering procedure was followed, considering a fingerprint based on aminoglycoside's binding site on the 30S to obtain seven hit compounds either with different clinical usages or aminoglycoside derivatives under investigation, suggested for in vitro studies. The detailed workflow developed in this study promises an effective and fast approach for the estimation of binding free energies of large protein-RNA and ligand complexes.
Collapse
Affiliation(s)
- Merve Yuce
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| | - Beril Ates
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| | - Nesrin Isil Yasar
- Istanbul Technical University, Computational Science and Engineering Division, Informatics Institute, Istanbul, 34469, Turkey.
| | - Fethiye Aylin Sungur
- Istanbul Technical University, Computational Science and Engineering Division, Informatics Institute, Istanbul, 34469, Turkey.
| | - Ozge Kurkcuoglu
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| |
Collapse
|
6
|
Muscat S, Martino G, Manigrasso J, Marcia M, De Vivo M. On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules. J Chem Theory Comput 2024. [PMID: 39150960 DOI: 10.1021/acs.jctc.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
RNA molecules play a vital role in biological processes within the cell, with significant implications for science and medicine. Notably, the biological functions exerted by specific RNA molecules are often linked to the RNA conformational ensemble. However, the experimental characterization of such three-dimensional RNA structures is challenged by the structural heterogeneity of RNA and by its multiple dynamic interactions with binding partners such as small molecules, proteins, and metal ions. Consequently, our current understanding of the structure-function relationship of RNA molecules is still limited. In this context, we highlight molecular dynamics (MD) simulations as a powerful tool to complement experimental efforts on RNAs. Despite the recognized limitations of current force fields for RNA MD simulations, examining the dynamics of selected RNAs has provided valuable functional insights into their structures.
Collapse
Affiliation(s)
- Stefano Muscat
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jacopo Manigrasso
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Mölndal, Sweden
| | - Marco Marcia
- European Molecular Biology Laboratory Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
7
|
Zhao M, Yu W, MacKerell AD. Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms. J Phys Chem B 2024; 128:7362-7375. [PMID: 39031121 PMCID: PMC11294009 DOI: 10.1021/acs.jpcb.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
In the domain of computer-aided drug design, achieving precise and accurate estimates of ligand-protein binding is paramount in the context of screening extensive drug libraries and performing ligand optimization. A fundamental aspect of the SILCS (site identification by ligand competitive saturation) methodology lies in the generation of comprehensive 3D free-energy functional group affinity maps (FragMaps), encompassing the entirety of the target molecule structure. These FragMaps offer an intricate landscape of functional group affinities across the protein, bilayer, or RNA, acting as the basis for subsequent SILCS-Monte Carlo (MC) simulations wherein ligands are docked to the target molecule. To augment the efficiency and breadth of ligand sampling capabilities, we implemented an improved SILCS-MC methodology. By harnessing the parallel computing capability of GPUs, our approach facilitates concurrent calculations over multiple ligands and binding sites, markedly enhancing the computational efficiency. Moreover, the integration of a genetic algorithm (GA) with MC allows us to employ an evolutionary approach to perform ligand sampling, assuring enhanced convergence characteristics. In addition, the potential utility of parallel tempering (PT) to improve sampling was investigated. Implementation of SILCS-MC on GPU architecture is shown to accelerate the speed of SILCS-MC calculations by over 2-orders of magnitude. Use of GA and PT yield improvements over Markov-chain MC, increasing the precision of the resultant docked orientations and binding free energies, though the extent of improvements is relatively small. Accordingly, significant improvements in speed are obtained through the GPU implementation with minor improvements in the precision of the docking obtained via the tested GA and PT algorithms.
Collapse
Affiliation(s)
- Mingtian Zhao
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn St., Baltimore, Maryland 21201, USA
| | - Wenbo Yu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn St., Baltimore, Maryland 21201, USA
| | - Alexander D. MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn St., Baltimore, Maryland 21201, USA
| |
Collapse
|
8
|
Panei FP, Gkeka P, Bonomi M. Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN. Nat Commun 2024; 15:5725. [PMID: 38977675 PMCID: PMC11231146 DOI: 10.1038/s41467-024-49638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.
Collapse
Affiliation(s)
- F P Panei
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
| | - P Gkeka
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France.
| | - M Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France.
| |
Collapse
|
9
|
Deng J, Cui Q. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields. J Chem Theory Comput 2024; 20:1897-1911. [PMID: 38417108 PMCID: PMC11663258 DOI: 10.1021/acs.jctc.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Prediction of the hydration levels of protein cavities and active sites is important to both mechanistic analysis and ligand design. Due to the unique microscopic environment of these buried water molecules, a polarizable model is expected to be crucial for an accurate treatment of protein internal hydration in simulations. Here we adapt a nonequilibrium candidate Monte Carlo approach for conducting grand canonical Monte Carlo simulations with the Drude polarizable force field. The GPU implementation enables the efficient sampling of internal cavity hydration levels in biomolecular systems. We also develop an enhanced sampling approach referred to as B-walking, which satisfies detailed balance and readily combines with grand canonical integration to efficiently calculate quantitative binding free energies of water to protein cavities. Applications of these developments are illustrated in a solvent box and the polar ligand binding site in trypsin. Our simulation results show that including electronic polarization leads to a modest but clear improvement in the description of water position and occupancy compared to the crystal structure. The B-walking approach enhances the range of water sampling in different chemical potential windows and thus improves the accuracy of water binding free energy calculations.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Rinaldi S, Moroni E, Rozza R, Magistrato A. Frontiers and Challenges of Computing ncRNAs Biogenesis, Function and Modulation. J Chem Theory Comput 2024; 20:993-1018. [PMID: 38287883 DOI: 10.1021/acs.jctc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Non-coding RNAs (ncRNAs), generated from nonprotein coding DNA sequences, constitute 98-99% of the human genome. Non-coding RNAs encompass diverse functional classes, including microRNAs, small interfering RNAs, PIWI-interacting RNAs, small nuclear RNAs, small nucleolar RNAs, and long non-coding RNAs. With critical involvement in gene expression and regulation across various biological and physiopathological contexts, such as neuronal disorders, immune responses, cardiovascular diseases, and cancer, non-coding RNAs are emerging as disease biomarkers and therapeutic targets. In this review, after providing an overview of non-coding RNAs' role in cell homeostasis, we illustrate the potential and the challenges of state-of-the-art computational methods exploited to study non-coding RNAs biogenesis, function, and modulation. This can be done by directly targeting them with small molecules or by altering their expression by targeting the cellular engines underlying their biosynthesis. Drawing from applications, also taken from our work, we showcase the significance and role of computer simulations in uncovering fundamental facets of ncRNA mechanisms and modulation. This information may set the basis to advance gene modulation tools and therapeutic strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Silvia Rinaldi
- National Research Council of Italy (CNR) - Institute of Chemistry of OrganoMetallic Compounds (ICCOM), c/o Area di Ricerca CNR di Firenze Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Elisabetta Moroni
- National Research Council of Italy (CNR) - Institute of Chemical Sciences and Technologies (SCITEC), via Mario Bianco 9, 20131 Milano, Italy
| | - Riccardo Rozza
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
11
|
Zhao M, Kognole AA, Jo S, Tao A, Hazel A, MacKerell AD. GPU-specific algorithms for improved solute sampling in grand canonical Monte Carlo simulations. J Comput Chem 2023; 44:1719-1732. [PMID: 37093676 PMCID: PMC10330275 DOI: 10.1002/jcc.27121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The Grand Canonical Monte Carlo (GCMC) ensemble defined by the excess chemical potential, μex , volume, and temperature, in the context of molecular simulations allows for variations in the number of particles in the system. In practice, GCMC simulations have been widely applied for the sampling of rare gasses and water, but limited in the context of larger molecules. To overcome this limitation, the oscillating μex GCMC method was introduced and shown to be of utility for sampling small solutes, such as formamide, propane, and benzene, as well as for ionic species such as monocations, acetate, and methylammonium. However, the acceptance of GCMC insertions is low, and the method is computationally demanding. In the present study, we improved the sampling efficiency of the GCMC method using known cavity-bias and configurational-bias algorithms in the context of GPU architecture. Specifically, for GCMC simulations of aqueous solution systems, the configurational-bias algorithm was extended by applying system partitioning in conjunction with a random interval extraction algorithm, thereby improving the efficiency in a highly parallel computing environment. The method is parallelized on the GPU using CUDA and OpenCL, allowing for the code to run on both Nvidia and AMD GPUs, respectively. Notably, the method is particularly well suited for GPU computing as the large number of threads allows for simultaneous sampling of a large number of configurations during insertion attempts without additional computational overhead. In addition, the partitioning scheme allows for simultaneous insertion attempts for large systems, offering considerable efficiency. Calculations on the BK Channel, a transporter, including a lipid bilayer with over 760,000 atoms, show a speed up of ~53-fold through the use of system partitioning. The improved algorithm is then combined with an enhanced μex oscillation protocol and shown to be of utility in the context of the site-identification by ligand competitive saturation (SILCS) co-solvent sampling approach as illustrated through application to the protein CDK2.
Collapse
Affiliation(s)
- Mingtian Zhao
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | | | | | | | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Alexander D MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Ramaswamy Krishnan S, Roy A, Michael Gromiha M. R-SIM: A database of binding affinities for RNA-small molecule interactions. J Mol Biol 2022:167914. [DOI: 10.1016/j.jmb.2022.167914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
|