1
|
Sun K, Gelin MF, Shen K, Zhao Y. Optical-cavity manipulation strategies of singlet fission systems mediated by conical intersections: Insights from fully quantum simulations. J Chem Phys 2025; 162:130902. [PMID: 40166991 DOI: 10.1063/5.0254436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
We offer a theoretical perspective on simulation and engineering of polaritonic conical-intersection-driven singlet-fission (SF) materials. We begin by examining fundamental models, including Tavis-Cummings and Holstein-Tavis-Cummings Hamiltonians, exploring how disorder, non-Hermitian effects, and finite temperature conditions impact their dynamics, setting the stage for studying conical intersections and their crucial role in SF. Using rubrene as an example and applying the numerically accurate Davydov Ansatz methodology, we derive dynamic and spectroscopic responses of the system and demonstrate key mechanisms capable of SF manipulation, viz. cavity-induced enhancement/weakening/suppression of SF, population localization on the singlet state via engineering cavity-mode excitation, polaron/polariton decoupling, and collective enhancement of SF. We outline unsolved problems and challenges in the field and share our views on the development of the future lines of research. We emphasize the significance of careful modeling of cascades of polaritonic conical intersections in high excitation manifolds and envisage that collective geometric phase effects may remarkably affect the SF dynamics and yield. We argue that the microscopic interpretation of the main regulatory mechanisms of polaritonic conical-intersection-driven SF can substantially deepen our understanding of this process, thereby providing novel ideas and solutions for improving conversion efficiency in photovoltaics.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Gallina F, Bruschi M, Cacciari R, Fresch B. Simulating Non-Markovian Dynamics in Multidimensional Electronic Spectroscopy via Quantum Algorithm. J Chem Theory Comput 2024; 20:10588-10601. [PMID: 39585324 DOI: 10.1021/acs.jctc.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Including the effect of the molecular environment in the numerical modeling of time-resolved electronic spectroscopy remains an important challenge in computational spectroscopy. In this contribution, we present a general approach for the simulation of the optical response of multichromophore systems in a structured environment and its implementation as a quantum algorithm. A key step of the procedure is the pseudomode embedding of the system-environment problem resulting in a finite set of quantum states evolving according to a Markovian quantum master equation. This formulation is then solved by a collision model integrated into a quantum algorithm designed to simulate linear and nonlinear response functions. The workflow is validated by simulating spectra for the prototypical excitonic dimer interacting with fast (memoryless) and finite-memory environments. The results demonstrate, on the one hand, the potential of the pseudomode embedding for simulating the dynamical features of nonlinear spectroscopy, including lineshape, spectral diffusion, and relaxations along delay times. On the other hand, the explicit synthesis of quantum circuits provides a fully quantum simulation protocol of nonlinear spectroscopy harnessing the efficient quantum simulation of many-body dynamics promised by the future generation of fault-tolerant quantum computers.
Collapse
Affiliation(s)
- Federico Gallina
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, Padua 35131, Italy
| | - Matteo Bruschi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, Padua 35131, Italy
| | - Roberto Cacciari
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, Padua 35131, Italy
| | - Barbara Fresch
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, Padua 35131, Italy
- Padua Quantum Technologies Research Center,Università degli Studi di Padova, via Gradenigo 6/A, Padua 35131, Italy
| |
Collapse
|
3
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Hunter KE, Mao Y, Chin AW, Zuehlsdorff TJ. Environmentally Driven Symmetry Breaking Quenches Dual Fluorescence in Proflavine. J Phys Chem Lett 2024; 15:4623-4632. [PMID: 38647005 DOI: 10.1021/acs.jpclett.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nonadiabatic couplings between several electronic excited states are ubiquitous in many organic chromophores and can significantly influence optical properties. A recent experimental study demonstrated that the proflavine molecule exhibits surprising dual fluorescence in the gas phase, which is suppressed in polar solvent environments. Here, we uncover the origin of this phenomenon by parametrizing a linear-vibronic coupling Hamiltonian from spectral densities of system-bath coupling constructed along molecular dynamics trajectories, fully accounting for interactions with the condensed-phase environment. The finite-temperature absorption, steady-state emission, and time-resolved emission spectra are then computed using powerful, numerically exact tensor network approaches. We find that the dual fluorescence in vacuum is driven by a single well-defined coupling mode but is quenched in solution due to dynamic solvent-driven symmetry breaking that mixes the two low-lying electronic states. We expect the computational framework developed here to be widely applicable to the study of non-Condon effects in complex condensed-phase environments.
Collapse
Affiliation(s)
- Kye E Hunter
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Yuezhi Mao
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, Paris 75005, France
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
5
|
Allan L, Zuehlsdorff TJ. Taming the third order cumulant approximation to linear optical spectroscopy. J Chem Phys 2024; 160:074108. [PMID: 38380749 DOI: 10.1063/5.0182745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
The second order cumulant method offers a promising pathway to predicting optical properties in condensed phase systems. It allows for the computation of linear absorption spectra from excitation energy fluctuations sampled along molecular dynamics (MD) trajectories, fully accounting for vibronic effects, direct solute-solvent interactions, and environmental polarization effects. However, the second order cumulant approximation only guarantees accurate line shapes for energy gap fluctuations obeying Gaussian statistics. A third order correction has recently been derived but often yields unphysical spectra or divergent line shapes for moderately non-Gaussian fluctuations due to the neglect of higher order terms in the cumulant expansion. In this work, we develop a corrected cumulant approach, where the collective effect of neglected higher order contributions is approximately accounted for through a dampening factor applied to the third order cumulant term. We show that this dampening factor can be expressed as a function of the skewness and kurtosis of energy gap fluctuations and can be parameterized from a large set of randomly sampled model Hamiltonians for which exact spectral line shapes are known. This approach is shown to systematically remove unphysical contributions in the form of negative absorbances from cumulant spectra in both model Hamiltonians and condensed phase systems sampled from MD and dramatically improves over the second order cumulant method in describing systems exhibiting Duschinsky mode mixing effects. We successfully apply the approach to the coumarin-153 dye in toluene, obtaining excellent agreement with experiment.
Collapse
Affiliation(s)
- Lucas Allan
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
6
|
Sayer T, Montoya-Castillo A. Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra. J Chem Phys 2024; 160:044108. [PMID: 38270238 DOI: 10.1063/5.0185578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light-matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori-Nakajima-Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method's capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
7
|
Segatta F, Aranda D, Aleotti F, Montorsi F, Mukamel S, Garavelli M, Santoro F, Nenov A. Time-Resolved X-ray Absorption Spectroscopy: An MCTDH Quantum Dynamics Protocol. J Chem Theory Comput 2024; 20:307-322. [PMID: 38101807 PMCID: PMC10782456 DOI: 10.1021/acs.jctc.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Expressions for linear and nonlinear spectroscopy simulation in the X-ray window in which the time evolution of a photoexcited molecular system is treated via quantum dynamics are derived. By leveraging on the peculiar properties of core-excited/ionized states, first- and third-order response functions are recast in the limit of time-scale separation between the extremely short core-state lifetime and the (comparably longer) electronic-state transfer and nuclear vibrational motion. This work is a natural extension of Segatta et al. (J. Chem. Theory Comput. 2023, 19, 2075-2091), in which some of the present authors coupled MCTDH quantum dynamics to spectroscopy simulation at different levels of sophistication. Full quantum dynamics and approximate expressions are compared by simulating X-ray transient absorption spectroscopy at the carbon K-edge in the pyrene molecule.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Daniel Aranda
- ICMol, Universidad de Valencia, c/Catedrático José
Beltrán,
2, 46980 Paterna, Spain
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Flavia Aleotti
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Francesco Montorsi
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, 92697 California, United States
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|