1
|
Kong L, Bryce RA. Discriminating High from Low Energy Conformers of Druglike Molecules: An Assessment of Machine Learning Potentials and Quantum Chemical Methods. Chemphyschem 2025; 26:e202400992. [PMID: 40017058 PMCID: PMC12005129 DOI: 10.1002/cphc.202400992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/16/2025] [Indexed: 03/01/2025]
Abstract
Accurate and efficient prediction of high energy ligand conformations is important in structure-based drug discovery for the exclusion of unrealistic structures in docking-based virtual screening and de novo design approaches. In this work, we constructed a database of 140 solution conformers from 20 druglike molecules of varying size and chemical complexity, with energetics evaluated at the DLPNO-CCSD(T)/complete basis set (CBS) level. We then assessed a selection of machine learning potentials and semiempirical quantum mechanical models for their ability to predict conformational energetics. The GFN2-xTB tight binding density functional method correlates with reference conformer energies, yielding a Kendall's τ of 0.63 and mean absolute error of 2.2 kcal/mol. As putative internal energy filters for screening, we find that the GFN2-xTB, ANI-2x and MACE-OFF23(L) models perform well in identifying low energy conformer geometries, with sensitivities of 95 %, 89 % and 95 % respectively, but display a reduced ability to exclude high energy conformers, with respective specificities of 80 %, 61 % and 63 %. The GFN2-xTB method therefore exhibited the best overall performance and appears currently the most suitable of the three methods to act as an internal energy filter for integration into drug discovery workflows. Enrichment of high energy conformers in the training of machine learning potentials could improve their performance as conformational filters.
Collapse
Affiliation(s)
- Linghan Kong
- Division of Pharmacy and OptometrySchool of Health SciencesManchester Academic Health Sciences CentreUniversity of ManchesterOxford RoadManchesterM13 9PTUK
| | - Richard A. Bryce
- Division of Pharmacy and OptometrySchool of Health SciencesManchester Academic Health Sciences CentreUniversity of ManchesterOxford RoadManchesterM13 9PTUK
| |
Collapse
|
2
|
Joshi S, Roy Chowdhury S, Mishra S. Conformational isomerization in Co(acac) 2via spin-state switch: a computational study. Dalton Trans 2025; 54:6081-6092. [PMID: 40105151 DOI: 10.1039/d5dt00052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Conformational dynamics of ligands in transition metal complexes can give rise to interesting physical, chemical, spectroscopic, and magnetic properties of the complexes. The changing ligand environment often affects the d-orbital splitting pattern that allows multiple possible ways of electron arrangement in the frontier molecular orbitals, resulting in several closely spaced electronic states with different orbital and spin symmetries. The system can explore these states with either thermal or photophysical means. In the present work, we demonstrate the possibility of a spin transition in Co(acac)2 assisted by a conformational rearrangement of the ligand. Electronic structure calculations show that the complex adopts a square-planar and tetrahedral geometry with low-spin and high-spin electronic configurations, respectively. A spin-conserved conformational change involves a larger energy barrier in both high- and low-spin states. On the other hand, a low-lying minimum-energy-crossing point exists between the two spin-states that provides a low-energy pathway for conformational isomerization between the two isomers. While the spin-assisted isomerization from a tetrahedral to square planar form requires crossing a 10 kcal mol-1 barrier, the reverse barrier is only 2 kcal mol-1. The calculation of the magnetic properties of the complex reveals a large magnetic anisotropy barrier of 57.6 cm-1 for this complex in the high-spin state.
Collapse
Affiliation(s)
- Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Sabyasachi Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota, USA
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
3
|
Kazakov A, Paulechka E. Accurate Enthalpies of Formation for Bioactive Compounds from High-Level Ab Initio Calculations with Detailed Conformational Treatment: A Case of Cannabinoids. J Chem Theory Comput 2025; 21:643-654. [PMID: 39787319 DOI: 10.1021/acs.jctc.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol-1 for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions. Although the present capabilities allow processing even a few hundred distinct conformer structures for a given compound, many systems of interest exhibit numbers well in excess of 1000. In this study, we investigate how to reduce the number of expensive LCCSD(T) calculations for large conformer ensembles while controlling the error of the approximation. The best strategy found was to correct the results of the lower-level, surrogate model (density functional theory, DFT) in a systematic manner. It was also found that the error in the conformational contribution introduced by a surrogate model is mainly driven by a systematic (bias) rather than a random component of the DFT energy deviation from the LCCSD(T) target. This distinction is usually overlooked in DFT benchmarking studies. As a result of this work, the enthalpies of formation for 20 cannabinoid and cannabinoid-related compounds were obtained. Comprehensive uncertainty analysis suggests that the expanded uncertainties of the obtained values are below 4 kJ·mol-1.
Collapse
Affiliation(s)
- Andrei Kazakov
- Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado 80305-3337, United States
| | - Eugene Paulechka
- Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado 80305-3337, United States
| |
Collapse
|
4
|
Scott CE, Juechter LA, Rocha J, Jones LD, Outten B, Aishman TD, Ivers AR, Shields GC. Impact of Intracellular Proteins on μ-Opioid Receptor Structure and Ligand Binding. J Phys Chem B 2025; 129:71-87. [PMID: 39699881 PMCID: PMC11726672 DOI: 10.1021/acs.jpcb.4c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Chronic pain is a prevalent problem affecting approximately one out of every five adults in the U.S. The most effective way to treat chronic pain is with opioids, but they cause dangerous side effects such as tolerance, addiction, and respiratory depression, which makes them quite deadly. Opioids, such as fentanyl, target the μ-opioid receptor (MOR), which can then bind to the intracellular Gi protein or the β-arrestin protein. The Gi pathway is primarily responsible for pain relief and potential side effects, but the β-arrestin pathway is chiefly responsible for the unwanted side effects. Ideally, an effective pain medication without side effects would bind to MOR, which would bias signaling solely through the Gi pathway. We used the Bio3D library to conduct principal component analysis to compare the cryo-electron microscopy MOR structure in complex with the Gi versus an X-ray crystallography MOR structure with a nanobody acting as a Gi mimic. Our results agree with a previous study by Munro, which concluded that nanobody-bound MOR is structurally different than Gi-bound MOR. Furthermore, we investigated the structural diversity of opioids that can bind to MOR. Quantum mechanical calculations show that the low energy solution structures of fentanyl differ from the one bound to MOR in the experimental structure, and pKa calculations reveal that fentanyl is protonated in aqueous solution. Glide docking studies show that higher energy structures of fentanyl in solution form favorable docking complexes with MOR. Our calculations show the relative abundance of each fentanyl conformation in solution as well as the energetic barriers that need to be overcome to bind to MOR. Docking studies confirm that multiple fentanyl conformations can bind to the receptor. Perhaps a variety of conformations of fentanyl can stabilize multiple conformations of the MOR, which can explain why fentanyl can induce different intracellular signaling and multiple physiological effects.
Collapse
Affiliation(s)
- Caitlin E. Scott
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, California, 90032, United States
- Department
of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Leah A. Juechter
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Josephine Rocha
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, California, 90032, United States
| | - Lauren D. Jones
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Brenna Outten
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Taylor D. Aishman
- Department
of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Alaina R. Ivers
- Department
of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - George C. Shields
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
5
|
Soriano-Agueda L, Guevara-García A. A refreshing approach to understanding the action on DNA of vanadium (IV) and (V) complexes derived from the anticancer VCp 2Cl 2. J Inorg Biochem 2024; 261:112705. [PMID: 39217821 DOI: 10.1016/j.jinorgbio.2024.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
A computational study based on derivatives of the anticancer VCp2Cl2 compound and their interaction with representative models of deoxyribonucleic acid (DNA) is presented. The derivatives were obtained by substituting the cyclopentadienes of VCp2Cl2 with H2O, NH3, OH-, Cl-, O2- and C2O42- ligands. The oxidation states IV and V of vanadium were considered, so a total of 20 derivative complexes are included. The complexes interactions with DNA were studied using two different models, the first model considers the interactions of the complexes with the pair Guanine-Cytosine (G-C) and the second involves the interaction of the complexes with adjacent pairs, that is, d(GG). This study compares methodologies based on density functional theory with coupled cluster like calculations (DLPNO-CCSD(T)), the gold standard of electronic structure methods. Furthermore, the change in the electron density of the hydrogen bonds that keep bonded the G-C pair and d(GG) pairs, due to the presence of vanadium (IV) and (V) complexes is rationalize. To this aim, quantities obtained from the topology of the electron densities are inspected, particularly the value of the electron density at the hydrogen bond critical points. The approach allowed to identify vanadium complexes that lead to significant changes in the hydrogen bonds indicated above, a key aspect in the understanding, development, and proposal of mechanisms of action between metal complexes and DNA.
Collapse
Affiliation(s)
- Luis Soriano-Agueda
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.
| | - Alfredo Guevara-García
- Departamento de Química, CONAHCYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc, Iztapalapa, 09340 Ciudad de México, México
| |
Collapse
|
6
|
He L, Li C, Zhang Z, Shang Y, Zhao H, Luo SN. Kinetic Study on the H-Abstraction Reactions from 1-Nitropropane by H and OH Radicals. J Phys Chem A 2024; 128:10009-10019. [PMID: 39508750 DOI: 10.1021/acs.jpca.4c06113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
To improve the comprehension of the combustion kinetics of 1-nitropropane (1-NP), the H-abstraction reactions from 1-NP by H and OH radicals are theoretically explored using the canonical variational transition-state theory combined with the multistructural torsional anharmonicity and small-curvature tunneling corrections (MS-CVT/SCT). The M08-HX/cc-pVTZ method is adopted for geometry optimizations and frequency calculations due to its effective performance in describing the current reaction systems with an average mean unsigned deviation of 0.95 kcal mol-1 against the benchmark by the high-level DLPNO-CCSD(T)/CBS(T-Q) method. The rate constants for the investigated reactions are calculated using the MS-CVT/SCT method at 200-2000 K, and a good agreement is achieved by comparing our calculations with the available literature data. The rate constant calculations show that the multistructural torsional anharmonicity, variational effect, and tunneling effect have different influences on the H-abstraction reactions 1-NP + H/OH, and the reaction channel at the Cβ position is the most important above the room temperature. With our calculations, a literature combustion kinetic model of 1-NP is revised, and the new model demonstrates improved performance across most conditions. Sensitivity analysis demonstrates that the H-abstraction reaction channel, 1-NP + OH = CH3CHCH2NO2 + H2O, alters the combustion kinetics of 1-NP and plays an important role in controlling its ignition process.
Collapse
Affiliation(s)
- Li He
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Chong Li
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610027, PR China
| | - Zhenpeng Zhang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yanlei Shang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
- Extreme Material Dynamics Technology Laboratory, Chengdu, Sichuan 610031, PR China
| | - Haiyong Zhao
- Xiling DigitIntel Institute, Chengdu, Sichuan 610000, PR China
| | - Sheng-Nian Luo
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
- Extreme Material Dynamics Technology Laboratory, Chengdu, Sichuan 610031, PR China
| |
Collapse
|
7
|
Chan GKL. Spiers Memorial Lecture: Quantum chemistry, classical heuristics, and quantum advantage. Faraday Discuss 2024; 254:11-52. [PMID: 39258407 DOI: 10.1039/d4fd00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We describe the problems of quantum chemistry, the intuition behind classical heuristic methods used to solve them, a conjectured form of the classical complexity of quantum chemistry problems, and the subsequent opportunities for quantum advantage. This article is written for both quantum chemists and quantum information theorists. In particular, we attempt to summarize the domain of quantum chemistry problems as well as the chemical intuition that is applied to solve them within concrete statements (such as a classical heuristic cost conjecture) in the hope that this may stimulate future analysis.
Collapse
Affiliation(s)
- Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
8
|
Ng S, Howshall C, Ho TN, Mai BK, Zhou Y, Qin C, Tee KZ, Liu P, Romiti F, Hoveyda AH. Catalytic prenyl conjugate additions for synthesis of enantiomerically enriched PPAPs. Science 2024; 386:167-175. [PMID: 39388539 PMCID: PMC11825173 DOI: 10.1126/science.adr8612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of >400 natural products with a broad spectrum of bioactivity, ranging from antidepressant and antimicrobial to anti-obesity and anticancer activity. Here, we present a scalable, regio-, site-, and enantioselective catalytic method for synthesis of cyclic β-prenyl ketones, compounds that can be used for efficient syntheses of many PPAPs in high enantiomeric purity. The transformation is prenyl conjugate addition to cyclic β-ketoesters promoted by a readily accessible chiral copper catalyst and involving an easy-to-prepare and isolable organoborate reagent. Reactions reach completion in just a few minutes at room temperature. The importance of this advance is highlighted by the enantioselective preparation of intermediates previously used to generate racemic PPAPs. We also present the enantioselective synthesis of nemorosonol (14 steps, 20% yield) and its one-step conversion to another PPAP, garcibracteatone (52% yield).
Collapse
Affiliation(s)
- Shawn Ng
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Casey Howshall
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Thanh Nhat Ho
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Can Qin
- Supramolecular Science and Engineering Institute, University of Strasbourg, 67000 Strasbourg, France
| | - Kai Ze Tee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Filippo Romiti
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, 67000 Strasbourg, France
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Montoya A, Wisniewski M, Goodsell JL, Angerhofer A. Bidentate Substrate Binding Mode in Oxalate Decarboxylase. Molecules 2024; 29:4414. [PMID: 39339409 PMCID: PMC11433825 DOI: 10.3390/molecules29184414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO') to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion.
Collapse
Affiliation(s)
| | | | | | - Alexander Angerhofer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
In this feature, we review the current capabilities of local electron correlation methods up to the coupled cluster model with single, double, and perturbative triple excitations [CCSD(T)], which is a gold standard in quantum chemistry. The main computational aspects of the local method types are assessed from the perspective of applications, but the focus is kept on how to achieve chemical accuracy (i.e., <1 kcal mol-1 uncertainty), as well as on the broad scope of chemical problems made accessible. The performance of state-of-the-art methods is also compared, including the most employed DLPNO and, in particular, our local natural orbital (LNO) CCSD(T) approach. The high accuracy and efficiency of the LNO method makes chemically accurate CCSD(T) computations accessible for molecules of hundreds of atoms with resources affordable to a broad computational community (days on a single CPU and 10-100 GB of memory). Recent developments in LNO-CCSD(T) enable systematic convergence and robust error estimates even for systems of complicated electronic structure or larger size (up to 1000 atoms). The predictive power of current local CCSD(T) methods, usually at about 1-2 order of magnitude higher cost than hybrid density functional theory (DFT), has become outstanding on the palette of computational chemistry applicable for molecules of practical interest. We also review more than 50 LNO-based and other advanced local-CCSD(T) applications for realistic, large systems across molecular interactions as well as main group, transition metal, bio-, and surface chemistry. The examples show that properly executed local-CCSD(T) can contribute to binding, reaction equilibrium, rate constants, etc. which are able to match measurements within the error estimates. These applications demonstrate that modern, open-access, and broadly affordable local methods, such as LNO-CCSD(T), already enable predictive computations and atomistic insight for complicated, real-life molecular processes in realistic environments.
Collapse
Affiliation(s)
- Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3. H-1111 Budapest Hungary
- HUN-REN-BME Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
- MTA-BME Lendület Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
| |
Collapse
|
11
|
Kulsha AV, Ivashkevich OA, Lyakhov DA, Michels D. Strong Bases Design: Key Techniques and Stability Issues. Int J Mol Sci 2024; 25:8716. [PMID: 39201404 PMCID: PMC11354936 DOI: 10.3390/ijms25168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Theoretical design of molecular superbases has been attracting researchers for more than twenty years. General approaches were developed to make the bases potentially stronger, but less attention was paid to the stability of the predicted structures. Hence, only a small fraction of the theoretical research has led to positive experimental results. Possible stability issues of extremely strong bases are extensively studied in this work using quantum chemical calculations on a high level of theory. Several step-by-step design examples are discussed in detail, and general recommendations are given to avoid the most common stability problems. New potentially stable structures are theoretically studied to demonstrate the future prospects of molecular superbases design.
Collapse
Affiliation(s)
- Andrey V. Kulsha
- Chemical Department, Belarusian State University, 14 Leningradskaya Str., 220006 Minsk, Belarus;
| | - Oleg A. Ivashkevich
- Research Institute for Physical Chemical Problems, Belarusian State University, 14 Leningradskaya Str., 220006 Minsk, Belarus
| | - Dmitry A. Lyakhov
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.M.)
| | - Dominik Michels
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.M.)
| |
Collapse
|
12
|
Shang Y, Luo SN. Insights into the role of the H-abstraction reaction kinetics of amines in understanding their degeneration fates under atmospheric and combustion conditions. Phys Chem Chem Phys 2024. [PMID: 39028293 DOI: 10.1039/d4cp02187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amines, a class of prototypical volatile organic compounds, have garnered considerable interest within the context of atmospheric and combustion chemistry due to their substantial contributions to the formation of hazardous pollutants in the atmosphere. In the current energy landscape, the implementation of carbon-neutral energy and strategic initiatives leads to generation of new amine sources that cannot be overlooked in terms of the emission scale. To reduce the emission level of amines from their sources and mitigate their impact on the formation of harmful substances, a comprehensive understanding of the fundamental reaction kinetics during the degeneration process of amines is imperative. This perspective article first presents an overview of both traditional amine sources and emerging amine sources within the context of carbon peaking and carbon neutrality and then highlights the importance of H-abstraction reactions in understanding the atmospheric and combustion chemistry of amines from the perspective of reaction kinetics. Subsequently, the current experimental and theoretical techniques for investigating the H-abstraction reactions of amines are introduced, and a concise summary of research endeavors made in this field over the past few decades is provided. In order to provide accurate kinetic parameters of the H-abstraction reactions of amines, advanced kinetic calculations are performed using the multi-path canonical variational theory combined with the small-curvature tunneling and specific-reaction parameter methods. By comparing with the literature data, current kinetic calculations are comprehensively evaluated, and these validated data are valuable for the development of the reaction mechanism of amines.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, P. R. China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - S N Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
13
|
Salikov RF, Belyy AY, Ilyushchenko MK, Platonov DN, Sokolova AD, Tomilov YV. Antiaromaticity of Cycloheptatrienyl Anions: Structure, Acidity, and Magnetic Properties. Chemistry 2024; 30:e202401041. [PMID: 38785416 DOI: 10.1002/chem.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Investigations of the nature and degree of antiaromaticity of cycloheptatrienyl anion derivatives using both experimental and computational tools are presented. The ground state of cycloheptatrienyl anion in the gas phase is triplet, planar and Baird-aromatic. In DMSO, it assumes a singlet distorted allylic form with a paratropic ring current. The other derivatives in both phases assume either allylic or diallylic conformations depending on the substituent pattern. A combination of experimental and computational methods was used to determine the pKa values of 16 derivatives in DMSO, which ranged from 36 to -10.7. We revealed that the stronger stabilization of the anionic system, which correlates with acidity, does not necessarily imply a lower degree of antiaromaticity in terms of magnetic properties. Conversely, the substitution pattern first affects the geometry of the ring through the bulkiness of the substituents and their better conjugation with a more distorted system. Consequently, the distortion reduces the cyclic conjugation in the π-system and thereby decreases the paratropic current in a magnetic field, which manifests itself as a decrease in the NICS. The triplet-state geometries and magnetic properties are nearly independent on the substitution pattern, which is typical for simple aromatic systems.
Collapse
Affiliation(s)
- Rinat F Salikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
- Department of Chemistry, Higher School of Economics National Research University, Moscow, 101000, Russian Federation
| | - Alexander Y Belyy
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Matvey K Ilyushchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Dmitry N Platonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Alena D Sokolova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| |
Collapse
|
14
|
Wei Y, Debnath S, Weber JL, Mahajan A, Reichman DR, Friesner RA. Scalable Ab Initio Electronic Structure Methods with Near Chemical Accuracy for Main Group Chemistry. J Phys Chem A 2024; 128:5796-5807. [PMID: 38970826 DOI: 10.1021/acs.jpca.4c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This study evaluates the precision of widely recognized quantum chemical methodologies, CCSD(T), DLPNO-CCSD(T), and localized ph-AFQMC, for determining the thermochemistry of main group elements. DLPNO-CCSD(T) and localized ph-AFQMC, which offer greater scalability compared to canonical CCSD(T), have emerged over the past decade as pivotal in producing precise benchmark chemical data. Our investigation includes closed-shell, neutral molecules, focusing on their heat of formation and atomization energy sourced from four specific small molecule data sets. First, we selected molecules from the G2 and G3 data sets, noted for their reliable experimental heat of formation data. Additionally, we incorporate molecules from the W4-11 and W4-17 sets, which provide high-level theoretical reference values for atomization energy at 0 K. Our findings reveal that both DLPNO-CCSD(T) and ph-AFQMC methods are capable of achieving a root-mean-square deviation of less than 1 kcal/mol across the combined data set, aligning with the threshold for chemical accuracy. Moreover, we make efforts to confine the maximum deviations within 2 kcal/mol, a degree of precision that significantly broadens the applicability of these methods in fields such as biology and materials science.
Collapse
Affiliation(s)
- Yujing Wei
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sibali Debnath
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
15
|
Zhang X, Li C, Ye HZ, Berkelbach TC, Chan GKL. Performant automatic differentiation of local coupled cluster theories: Response properties and ab initio molecular dynamics. J Chem Phys 2024; 161:014109. [PMID: 38949583 DOI: 10.1063/5.0212274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
In this work, we introduce a differentiable implementation of the local natural orbital coupled cluster (LNO-CC) method within the automatic differentiation framework of the PySCFAD package. The implementation is comprehensively tuned for enhanced performance, which enables the calculation of first-order static response properties on medium-sized molecular systems using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. We evaluate the accuracy of our method by benchmarking it against the canonical CCSD(T) reference for nuclear gradients, dipole moments, and geometry optimizations. In addition, we demonstrate the possibility of property calculations for chemically interesting systems through the computation of bond orders and Mössbauer spectroscopy parameters for a [NiFe]-hydrogenase active site model, along with the simulation of infrared spectra via ab initio LNO-CC molecular dynamics for a protonated water hexamer.
Collapse
Affiliation(s)
- Xing Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chenghan Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
16
|
Hehn L, Deglmann P, Kühn M. Chelate Complexes of 3d Transition Metal Ions─A Challenge for Electronic-Structure Methods? J Chem Theory Comput 2024; 20:4545-4568. [PMID: 38805381 DOI: 10.1021/acs.jctc.3c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Different electronic-structure methods were assessed for their ability to predict two important properties of the industrially relevant chelating agent nitrilotriacetic acid (NTA): its selectivity with respect to six different first-row transition metal ions and the spin-state energetics of its complex with Fe(III). The investigated methods encompassed density functional theory (DFT), the random phase approximation (RPA), coupled cluster (CC) theory, and the auxiliary-field quantum Monte Carlo (AFQMC) method, as well as the complete active space self-consistent field (CASSCF) method and the respective on-top methods: second-order N-electron valence state perturbation theory (NEVPT2) and multiconfiguration pair-density functional theory (MC-PDFT). Different strategies for selecting active spaces were explored, and the density matrix renormalization group (DMRG) approach was used to solve the largest active spaces. Despite somewhat ambiguous multi-reference diagnostics, most methods gave relatively good agreement with experimental data for the chemical reactions connected to the selectivity, which only involved transition-metal complexes in their high-spin state. CC methods yielded the highest accuracy followed by range-separated DFT and AFQMC. We discussed in detail that even higher accuracies can be obtained with NEVPT2, under the prerequisite that consistent active spaces along the entire chemical reaction can be selected, which was not the case for reactions involving Fe(III). A bigger challenge for electronic-structure methods was the prediction of the spin-state energetics, which additionally involved lower spin states that exhibited larger multi-reference diagnostics. Conceptually different, typically accurate methods ranging from CC theory via DMRG-NEVPT2 in combination with large active spaces to AFQMC agreed well that the high-spin state is energetically significantly favored over the other spin states. This was in contrast to most DFT functionals and RPA which yielded a smaller stabilization and some common DFT functionals and MC-PDFT even predicting the low-spin state to be energetically most favorable.
Collapse
Affiliation(s)
- Lukas Hehn
- Next Generation Computing, BASF SE, Pfalzgrafenstr. 1, 67061 Ludwigshafen, Germany
| | - Peter Deglmann
- Quantum Chemistry, BASF SE, Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany
| | - Michael Kühn
- Next Generation Computing, BASF SE, Pfalzgrafenstr. 1, 67061 Ludwigshafen, Germany
| |
Collapse
|
17
|
Cormanich RA, da Silva GD. Autobench V1.0: Benchmarking Automation for Electronic Structure Calculations. J Chem Inf Model 2024; 64:3322-3331. [PMID: 38536765 DOI: 10.1021/acs.jcim.4c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
This work reports on new software for automatic conformer energy benchmarking calculations for flexible molecules. The software workflow consists of four parts: conformational search, preoptimization, optimization, and frequency calculations at a higher level and last calculations using several theoretical levels. The software was written to be user-friendly and versatile to be used by nonexperts in computational chemistry. Any theoretical levels available in either Gaussian 16 or ORCA 5 may be applied in the benchmarking study. The workflow will automatically run conformational search calculations and deal with conformers that converge to the same minimum and those that show a negative frequency. At the end of the workflow, the user will have the mean absolute deviations and the most accurate method/DFT functional and basis set in comparison to the benchmark to be applied for the molecular system of interest. Case examples are given at the end of the paper that may help users to get insight into the software's main features.
Collapse
Affiliation(s)
- Rodrigo A Cormanich
- Instituto de Química, Departamento de Química Orgânica, Universidade Estadual de Campinas, PO Box 6154, Campinas 13083-970, São Paulo, Brazil
| | - Gabriel D da Silva
- Instituto de Química, Departamento de Química Orgânica, Universidade Estadual de Campinas, PO Box 6154, Campinas 13083-970, São Paulo, Brazil
| |
Collapse
|
18
|
Yu Y, Pan L, Sun Q, Wang J. The mechanism and kinetics of the atmospheric oxidation of CF 3(CF 2) 2CHCH 2 (HFC-1447fz) by hydroxyl radicals: ab initio investigation. Phys Chem Chem Phys 2024; 26:10989-10997. [PMID: 38526437 DOI: 10.1039/d3cp06149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The oxidation of 3,3,4,4,5,5,5-heptafluoro-1-pentene (HFC-1447fz) by hydroxyl radicals plays a crucial role in atmospheric conditions. By employing the CCSD(T)/cc-pVTZ//M06-2X/6-311++G(d,p) level of theory, the detailed reaction mechanism, kinetics and atmospheric implications of the degradation of HFC-1447fz by hydroxyl radicals were investigated. Compared to H-abstraction channels, the OH addition reaction is determined to be more favorable initial pathways in the degradation processes of HFC-1447fz. The overall rate coefficient of the degradation of HFC-1447fz by OH radicals is estimated to be 1.66 × 10-12 cm3 molecule-1 s-1 and the lifetime of HFC-1447fz is found to be 7 days at 298 K, which are in good agreement with the reported experimental results. The global warming potential (GWP) for HFC-1447fz on the 50, 100 and 500-year time horizons is estimated using the calculated rate coefficient. Furthermore, the mechanisms of the subsequent reactions of two OH-addition adducts have also been investigated. By TD-DFT calculations, it was found that eleven species can undergo photodissociation, while ten other species are photolytically stable under sunlight.
Collapse
Affiliation(s)
- Youqing Yu
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China.
| | - Li Pan
- Chongqing Medical and Health School, Chongqing 408100, China
| | - Qiyao Sun
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China.
| | - Jie Wang
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
19
|
Dunlop D, Horváth P, Klán P, Slanina T, Šebej P. Central Ring Puckering Enhances the Stokes Shift of Xanthene Dyes. Chemistry 2024; 30:e202400024. [PMID: 38197554 DOI: 10.1002/chem.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Small-molecule dyes are generally designed based on well-understood electronic effects. However, steric hindrance can promote excited-state geometric relaxation, increasing the difference between the positions of absorption and emission bands (the Stokes shift). Accordingly, we hypothesized that sterically induced central ring puckering in xanthene dyes could be used to systematically increase their Stokes shift. Through a combined experimental/quantum-chemical approach, we screened a group of (9-acylimino)-pyronin dyes with a perturbed central ring geometry. Our results showed that an atom with sp3 hybridization in position 10 of (9-acylimino)-pyronins induces central ring puckering and facilitates excited-state geometric relaxation, thereby markedly enhancing their Stokes shifts (by up to ~2000 cm-1). Thus, we prepared fluorescent (9-acylimino)-pyronin pH sensors, which showed a Stokes shift disparity between acid and base forms of up to ~8700 cm-1. Moreover, the concept of ring puckering-enhanced Stokes shift can be applied to a wide range of xanthene analogues found in the literature. Therefore, central ring puckering may be reliably used as a strategy for enhancing Stokes shifts in the rational design of dyes.
Collapse
Affiliation(s)
- David Dunlop
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Peter Horváth
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
| | - Peter Šebej
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
20
|
Du H, Sato M, Komuro A, Ono R. Theoretical Prediction of the Reaction Probabilities of H, O, and OH Radicals on the Polypropylene Surface. J Phys Chem A 2024; 128:1041-1048. [PMID: 38311924 DOI: 10.1021/acs.jpca.3c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
To determine the H-abstraction reaction probabilities of H/O/OH radicals with a polypropylene (PP) surface, a first-principles calculation was performed based on the DLPNO-CCSD(T)/CBS//M06-2X-D3/def-TZVP theory level. The PP chain model used in this study was 2,4,6-trimethylheptane. The rate constants of the H/O/OH radicals with the isolated PP chain model were calculated based on the conventional transition-state theory. By comparing the experimental values and considering the error factors and their compensation, it was concluded that the orders of magnitude of the predicted rate constants were accurate. The resulting rate constants were converted to reaction probabilities between the H/O/OH radicals and the PP surface. The method used in this study is applicable for obtaining theoretical values of surface reaction probabilities based on first-principles calculations. The calculation at the DLPNO-CCSD(T)/CBS theory level has high accuracy but consumes a large amount of computational resources. The study also demonstrated that the double-hybrid functionals, wB97x-2-D3(BJ) and rev-DSD-PBEP86-D3(BJ), with a 3-ζ or 4-ζ basis set, could reproduce the electronic energy values obtained from DLPNO-CCSD(T)/CBS while using only approximately 1/100 of the computational resources required by the latter under our computer configuration.
Collapse
Affiliation(s)
- Hao Du
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masahiro Sato
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-0032, Japan
| | - Atsushi Komuro
- Department of Advanced Energy, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryo Ono
- Department of Advanced Energy, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
21
|
Boča R, Imrich R, Štofko J, Vranovičová B, Rajnák C. Molecular properties of linear amino acids in water. Amino Acids 2024; 56:5. [PMID: 38300332 PMCID: PMC10834582 DOI: 10.1007/s00726-023-03365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024]
Abstract
Four linear amino acids of increased separation of the carboxyl and amino groups, namely glycine (aminoacetic acid), β-alanine (3-aminopropanoic acid), GABA (4-aminobutanoic acid) and DAVA (5-aminopentanoic acid), have been studied by quantum chemical ab initio and DFT methods including the solvent effect in order to get electronic structure and molecular descriptors, such as ionisation energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index, dipole moment, quadrupole moment and dipole polarizability. Thermodynamic functions (zero-point energy, inner energy, enthalpy, entropy, and the Gibbs energy) were evaluated after the complete vibrational analysis at the true energy minimum provided by the full geometry optimization. Reaction Gibbs energy allows evaluating the absolute redox potentials on reduction and/or oxidation. The non-local non-additive molecular descriptors were compared along the series showing which of them behave as extensive, varying in match with the molar mass and/or separation of the carboxyl and amino groups. Amino acidic forms and zwitterionic forms of the substances were studied in parallel in order to compare their relative stability and redox properties. In total, 24 species were investigated by B3LYP/def2-TZVPD method (M1) including neutral molecules, molecular cations and molecular anions. For comparison, MP2/def2-TZVPD method (M2) with full geometry optimization and vibrational analysis in water has been applied for 12 species; analogously, for 24 substances, DLPNO-CCSD(T)/aug-cc-pVTZ method (M3) has been applied in the geometry obtained by MP2 and/or B3LYP. It was found that the absolute oxidation potential correlates with the adiabatic ionisation energy; the absolute reduction potential correlates with the adiabatic electron affinity and the electrophilicity index. In order to validate the used methodology with experimental vertical ionisation energies and vibrational spectrum obtained in gas phase, calculations were done also in vacuo.
Collapse
Affiliation(s)
- Roman Boča
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
| | - Richard Imrich
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| | - Juraj Štofko
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| | - Beáta Vranovičová
- Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| | - Cyril Rajnák
- Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| |
Collapse
|
22
|
Roth M, Toker Y, Major DT. Monte Carlo-Simulated Annealing and Machine Learning-Based Funneled Approach for Finding the Global Minimum Structure of Molecular Clusters. ACS OMEGA 2024; 9:1298-1309. [PMID: 38222530 PMCID: PMC10785639 DOI: 10.1021/acsomega.3c07600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024]
Abstract
Understanding the physical underpinnings and geometry of molecular clusters is of great importance in many fields, ranging from studying the beginning of the universe to the formation of atmospheric particles. To this end, several approaches have been suggested, yet identifying the most stable cluster geometry (i.e., global potential energy minimum) remains a challenge, especially for highly symmetric clusters. Here, we suggest a new funneled Monte Carlo-based simulated annealing (SA) approach, which includes two key steps: generation of symmetrical clusters and classification of the clusters according to their geometry using machine learning (MCSA-ML). We demonstrate the merits of the MCSA-ML method in comparison to other approaches on several Lennard-Jones (LJ) clusters and four molecular clusters-Ser8(Cl-)2, H+(H2O)6, Ag+(CO2)8, and Bet4Cl-. For the latter of these clusters, the correct structure is unknown, and hence, we compare the experimental and simulated fragmentation patterns, and the fragmentation of the proposed global minimum matches experiments closely. Additionally, based on the fragmentation of the predicted betaine cluster, we were able to identify hitherto unknown neutral fragmentation channels. In comparison to results obtained with other methods, we demonstrated a superior ability of MCSA-ML to predict clusters with high symmetry and similar abilities to predict clusters with asymmetrical structures.
Collapse
Affiliation(s)
- Michal Roth
- Department
of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yoni Toker
- Department
of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dan T. Major
- Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Department
of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
23
|
He Y, Xing L, Zhu Q, Lian L, Wang X, Liu M, Cheng Z. Theoretical Kinetic Study on Hydrogen Abstraction Reactions from n-Pentane by NO 2. J Phys Chem A 2023; 127:10243-10252. [PMID: 37983021 DOI: 10.1021/acs.jpca.3c05054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The interaction of fuel with NOx chemistry is important for the construction of the reaction mechanism and engine application. In this work, the reaction pathways of nC5H12 + NO2 were studied by high-level electronic structure calculations (DLPNO-CCSD(T)-F12/cc-pVTZ-F12//B2PLYPD3/cc-pVTZ). The rate constants were calculated by using the multistructural canonical transition-state theory with the Eckart tunneling method (TST/MS-T/ET). The studied condition is in a wide temperature range of 298-2400 K. The influence of MS-T anharmonicity and tunneling effect will be clarified for these site-specific H-abstraction pathways. The result reflects the large deviation introduced by the treatment of MS-T anharmonicity, especially at a high temperature. For the same type of reactions, the rate constants of H-abstraction both occurring at the secondary carbon are not almost identical. The branching ratios show that abstraction from the secondary site forming cis-HONO (R2c) contributes 36-78% to nC5H12 consumption in the temperature range of 298-2400 K. The current results show that the multistructural torsional anharmonicity has a crucial influence on the accurate estimation of branching ratios.
Collapse
Affiliation(s)
- Yunrui He
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Qiongxuan Zhu
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Liuchao Lian
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Xuetao Wang
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Mengjie Liu
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
24
|
Zhang Y, Wang S, Zhang Z, Fu L, Ning H, Zhao HY. Exploring the reaction kinetics of methyl formate + NO 2: implication for ignition behavior of methyl formate/NO 2 mixtures. Phys Chem Chem Phys 2023; 25:32051-32061. [PMID: 37982198 DOI: 10.1039/d3cp04444k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The reaction pathways and potential energy profiles are theoretically explored for H-abstraction, addition and addition-dissociation reactions of methyl formate (MF, HC(O)OCH3) + NO2 using the high level quantum chemical compound method CCSD(T)/cc-pVxZ(x = T, Q)//M062X/6-311+G(2df,2p). Notably, three different HNO2 isomers (cis-HONO, trans-HONO and HNO2) are all considered in each reaction pathway. The corresponding temperature- and pressure-dependent rate constants are then computed by RRKM/ME simulations with one-dimensional hindered rotor approximation and asymmetric Eckart tunneling corrections. The calculations show that the rate constants are pressure independent. Although trans-HONO is the most stable HNO2 isomer, the results reveal that the dominant channels are cis-HONO + HC(O)OCH2/C(O)OCH3 and cis-HC(O)(ONO)OCH3 for the H-abstraction and addition, respectively. Moreover, the lowest energy barrier for the H-abstraction channel (cis-abs) is 11.2 kcal mol-1 lower than the addition channel (cis-add), and thus the addition channel is less kinetically favored. The computed rate constants for the MF + NO2 reaction are then incorporated into a kinetic model and the importance of the title reaction in predicting the ignition behavior of MF/NO2 mixtures is demonstrated by kinetic modeling. The detailed reaction kinetics in this work will be helpful for kinetic model development of other ester-based fuels.
Collapse
Affiliation(s)
- Yiran Zhang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Sihao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhenpeng Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Li Fu
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Hongbo Ning
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - H Y Zhao
- Xiling DigitIntel Institute, Chengdu 610000, P. R. China
| |
Collapse
|
25
|
Wang Y, Guo Y, Neese F, Valeev EF, Li W, Li S. Cluster-in-Molecule Approach with Explicitly Correlated Methods for Large Molecules. J Chem Theory Comput 2023; 19:8076-8089. [PMID: 37920973 DOI: 10.1021/acs.jctc.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In this article, we present a series of explicitly correlated local correlation methods developed under the cluster-in-molecule (CIM) framework, including explicitly correlated second-order Møller-Plesset perturbation (MP2), coupled-cluster singles and doubles (CCSD), domain-based local pair natural orbital CCSD (DLPNO-CCSD), and DLPNO-CCSD with perturbative triples (DLPNO-CCSD(T)). In these methods, F12 correction is decomposed into contributions from each occupied local molecular orbital and then evaluated independently in a given cluster, which consists of a subset of localized orbitals. These newly developed methods allow F12 calculations of large molecules (up to 145 atoms for quasi-one-dimensional systems) on a single node. We use these methods to investigate the relative stability between extended and folded alkane C30H62, the relative stability of four secondary structures of a polyglycine Ace(Gly)10NH2, and the binding energies of two host-guest complexes. The results demonstrate that the combination of CIM with F12 methods is a promising way to investigate large molecules with small basis set errors.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
26
|
Bormann N, Ward JS, Bergmann AK, Wenz P, Rissanen K, Gong Y, Hatz WB, Burbaum A, Mulks FF. Diiminium Nucleophile Adducts Are Stable and Convenient Strong Lewis Acids. Chemistry 2023; 29:e202302089. [PMID: 37427889 DOI: 10.1002/chem.202302089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Strong Lewis acids are essential tools for manifold chemical procedures, but their scalable deployment is limited by their costs and safety concerns. We report a scalable, convenient, and inexpensive synthesis of stable diiminium-based reagents with a Lewis acidic carbon centre. Coordination with pyridine donors stabilises these centres; the 2,2'-bipyridine adduct shows a chelation effect at carbon. Due to high fluoride, hydride, and oxide affinities, the diiminium pyridine adducts are promising soft and hard Lewis acids. They effectively produce acylpyridinium salts from carboxylates that can acylate amines to give amides and imides even from electronically intractable coupling partners.
Collapse
Affiliation(s)
- Niklas Bormann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Ann Kathrin Bergmann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Paula Wenz
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Yiwei Gong
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Wolf-Benedikt Hatz
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexander Burbaum
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Florian F Mulks
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
27
|
Bhadoria P, Ramanathan V. Sulfur Centered Hydrogen Bonding in Thioglycolic Acid and Its Clusters: A Computational Exploration. J Phys Chem A 2023; 127:8095-8109. [PMID: 37738172 DOI: 10.1021/acs.jpca.3c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The conformational landscape of thioglycolic acid (TGA) was investigated by using the CCSD/cc-pVTZ level of theory. The GGC conformer was identified as the global minimum, followed by the GAC conformer. The calculated rotational constant for the GGC conformer exhibited good agreement with the previously reported experimental results. Subsequently, the study delved into the exploration of sulfur-centered hydrogen bonding in TGA's dimer and trimer clusters, employing the CCSD/cc-pVDZ level of theory. These clusters revealed the participation of both oxygen and sulfur atoms in noncovalent H-bonding, contributing to their stability. The presence of these noncovalent interactions in TGA clusters was elucidated through Atoms in Molecule (AIM), reduced density gradient (RDG), and natural bond order (NBO) analysis, while electrostatic potential (ESP) charge and vibrational mode analysis further supported these findings.
Collapse
Affiliation(s)
- Poonam Bhadoria
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Venkatnarayan Ramanathan
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
28
|
Daas KJ, Kooi DP, Peters NC, Fabiano E, Della Sala F, Gori-Giorgi P, Vuckovic S. Regularized and Opposite Spin-Scaled Functionals from Møller-Plesset Adiabatic Connection─Higher Accuracy at Lower Cost. J Phys Chem Lett 2023; 14:8448-8459. [PMID: 37721318 DOI: 10.1021/acs.jpclett.3c01832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Noncovalent interactions (NCIs) play a crucial role in biology, chemistry, material science, and everything in between. To improve pure quantum-chemical simulations of NCIs, we propose a methodology for constructing approximate correlation energies by combining an interpolation along the Møller-Plesset adiabatic connection (MP AC) with a regularization and spin-scaling strategy applied to MP2 correlation energies. This combination yields cosκos-SPL2, which exhibits superior accuracy for NCIs compared to any of the individual strategies. With the N4 formal scaling, cosκos-SPL2 is competitive or often outperforms more expensive dispersion-corrected double hybrids for NCIs. The accuracy of cosκos-SPL2 particularly shines for anionic halogen bonded complexes, where it surpasses standard dispersion-corrected DFT by a factor of 3 to 5.
Collapse
Affiliation(s)
- Kimberly J Daas
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P Kooi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Nina C Peters
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Microsoft Research AI4Science, Evert van de Beekstraat 354, 1118CZ Schiphol, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
29
|
Gómez-Suárez A, Neumann CN. Stereochemistry in All Its Shapes and Forms: The 56 th Bürgenstock Conference. Angew Chem Int Ed Engl 2023; 62:e202309468. [PMID: 37590448 DOI: 10.1002/anie.202309468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
Collapse
Affiliation(s)
- Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
Martins GF, Castro TS, Ferreira DAC. Theoretical investigation of anion perfluorocubane. J Mol Model 2023; 29:319. [PMID: 37725189 DOI: 10.1007/s00894-023-05725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
CONTEXT In this work, we did a theoretical exploration of C8F8 (Ib) and its anion radical analogue (IIb) in this work. By investigating the thermochemistry of electron capture, we find that the free energy associated with the conversion of C8H8 (Ia) into its anion radical analogue IIa is of the order of + 92.83 kcal.mol-1, while the conversion of Ib into IIb is - 6.42 kcal.mol-1. Therefore, species IIb is thermodynamically more stable than its neutral analogue. Natural bond orbitals (NBO) analyses revealed that compound Ib exhibits a relative electronic stability as a function of intramolecular delocalisations of the type [Formula: see text] of the order of 2.70 kcal.mol-1. Similar delocalizations for Ia are energetically lower (1.45 kcal.mol-1). Topological analyses of compounds Ib and IIb indicate that the addition of an electron to Ib enhances the covalency of the C-C bond, as can be seen by the reduction in the ellipticity of the C-C bond. The opposite is observed for Ia, whose addition of the electron (leading to IIa) reduces the covalency of the C-C bond. By comparing the free and packaged forms of the species, it is found that, in the crystalline form, the system will present greater relative stability due to the dispersive interactions involved, as evidenced by non-covalent interactions (NCI) analysis. Finally, it was possible to verify that the manifestation of the current density with a lower paratropic and less antiaromatic character in Ib and IIb point to C8F8 as a strong candidate for electron capture. METHODS Geometry optimization calculations were carried out, for all monomer structures using the hybrid functional B3LYP-D3 and the 6-31+G(d,p) basis set. To determine the formation thermochemistry of the ions, electronic energy corrections was performed using the DLPNO-CCSD(T)/aug-cc-pVTZ/C method. Starting from the optimised forms, shielding, nuclear magnetic resonance (NMR) spectra employing gauge-independent atomic orbital (GIAO), and NBO calculations were performed for these monomers, using the PBE0 functional and the pCSseg-2 atomic basis set. The magnetochemical analysis of ring currents was performed using the GIMIC formalism. For the topological analysis, it was applied the combination DLPNO-CCSD(T)/aug-cc-pVTZ/C, previously used for correcting the electronic energy.
Collapse
Affiliation(s)
- Guilherme Ferreira Martins
- Instituto de Química, Laboratório de Dinâmica e Reatividade Molecular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília-DF, CEP, 70910-900, Brazil
| | - Thiago Sampaio Castro
- Instituto de Química, Laboratório de Dinâmica e Reatividade Molecular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília-DF, CEP, 70910-900, Brazil
- Instituto Federal do Tocantins-Campus Gurupi, Gurupi, TO, CEP, 77410-470, Brazil
| | - Daví Alexsandro Cardoso Ferreira
- Instituto de Química, Laboratório de Dinâmica e Reatividade Molecular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília-DF, CEP, 70910-900, Brazil.
| |
Collapse
|
31
|
Livraghi M, Pahi S, Nowakowski P, Smith DM, Wick CR, Smith AS. Block Chemistry for Accurate Modeling of Epoxy Resins. J Phys Chem B 2023; 127:7648-7662. [PMID: 37616478 PMCID: PMC10493980 DOI: 10.1021/acs.jpcb.3c04724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Accurate molecular modeling of the physical and chemical behavior of highly cross-linked epoxy resins at the atomistic scale is important for the design of new property-optimized materials. However, a systematic approach to parametrizing and characterizing these systems in molecular dynamics is missing. We therefore present a unified scheme to derive atomic charges for amine-based epoxy resins, in agreement with the AMBER force field, based on defining reactive fragments─blocks─building the network. The approach is applicable to all stages of curing from pure liquid to gelation to fully cured glass. We utilize this approach to study DGEBA/DDS epoxy systems, incorporating dynamic topology changes into atomistic molecular dynamics simulations of the curing reaction with 127,000 atoms. We study size effects in our simulations and predict the gel point utilizing a rigorous percolation theory to recover accurately the experimental data. Furthermore, we observe excellent agreement between the estimated and the experimentally determined glass transition temperatures as a function of curing rate. Finally, we demonstrate the quality of our model by the prediction of the elastic modulus based on uniaxial tensile tests. The presented scheme paves the way for a broadly consistent approach for modeling and characterizing all amine-based epoxy resins.
Collapse
Affiliation(s)
- Mattia Livraghi
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute for Theoretical Physics,
PULS Group, Interdisciplinary Center for Nanostructured Films (IZNF), Cauerstrasse 3, Erlangen 91058, Germany
| | - Sampanna Pahi
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute for Theoretical Physics,
PULS Group, Interdisciplinary Center for Nanostructured Films (IZNF), Cauerstrasse 3, Erlangen 91058, Germany
| | - Piotr Nowakowski
- Group
for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| | - David M. Smith
- Group
for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| | - Christian R. Wick
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute for Theoretical Physics,
PULS Group, Interdisciplinary Center for Nanostructured Films (IZNF), Cauerstrasse 3, Erlangen 91058, Germany
| | - Ana-Sunčana Smith
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute for Theoretical Physics,
PULS Group, Interdisciplinary Center for Nanostructured Films (IZNF), Cauerstrasse 3, Erlangen 91058, Germany
- Group
for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| |
Collapse
|
32
|
Ashworth EK, Dezalay J, Ryan CRM, Ieritano C, Hopkins WS, Chambrier I, Cammidge AN, Stockett MH, Noble JA, Bull JN. Protomers of the green and cyan fluorescent protein chromophores investigated using action spectroscopy. Phys Chem Chem Phys 2023. [PMID: 37465988 DOI: 10.1039/d3cp02661b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The photophysics of biochromophore ions often depends on the isomeric or protomeric distribution, yet this distribution, and the individual isomer contributions to an action spectrum, can be difficult to quantify. Here, we use two separate photodissociation action spectroscopy instruments to record electronic spectra for protonated forms of the green (pHBDI+) and cyan (Cyan+) fluorescent protein chromophores. One instrument allows for cryogenic (T = 40 ± 10 K) cooling of the ions, while the other offers the ability to perform protomer-selective photodissociation spectroscopy. We show that both chromophores are generated as two protomers when using electrospray ionisation, and that the protomers have partially overlapping absorption profiles associated with the S1 ← S0 transition. The action spectra for both species span the 340-460 nm range, although the spectral onset for the pHBDI+ protomer with the proton residing on the carbonyl oxygen is red-shifted by ≈40 nm relative to the lower-energy imine protomer. Similarly, the imine and carbonyl protomers are the lowest energy forms of Cyan+, with the main band for the carbonyl protomer red-shifted by ≈60 nm relative to the lower-energy imine protomer. The present strategy for investigating protomers can be applied to a wide range of other biochromophore ions.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Jordan Dezalay
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Isabelle Chambrier
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Andrew N Cammidge
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
33
|
Ariai J, Gellrich U. The entropic penalty for associative reactions and their physical treatment during routine computations. Phys Chem Chem Phys 2023; 25:14005-14015. [PMID: 37161492 DOI: 10.1039/d3cp00970j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A systematic study of the entropic penalty for associative reactions is presented. It is shown that computed solution-phase Gibbs free energies typically overestimate entropic contributions. This entropic penalty for associative reactions in solution, i.e., if the number of particles decreases along the reaction coordinate (sum of stoichiometric numbers ), originates from the insufficient treatment of entropic effects by implicit solvent models. We propose an additive correction scheme to Gibbs free energies that is suitable for routine applications by non-expert users. This correction is based on Garza's formalism for the solution-phase entropy [A. J. Garza, J. Chem. Theory Comput., 2019, 15, 3204.] that is physically sound and embedded into an efficient black-box type algorithm. To critically evaluate the entropic penalty and its proposed treatment, we compiled an experimental benchmark set of 31 ΔrG and 22 in 15 different solvents. Using a representative best-practice computational protocol (at wave function theory (WFT) based DLPNO-CCSD(T) and density functional theory (DFT) based revDSD-PBEP86-D4 level with an implicit solvent model), we determined a sizeable entropic penalty ranging from 2-11 kcal mol-1. Using the correction scheme presented herein, the entropic penalty is corrected to the chemical accuracy of ≤1 kcal mol-1 (WFT and DFT). The same applies to at the WFT level. Barriers at the DFT level are overestimated by 2 kcal mol-1 (classic) and underestimated by 2 kcal mol-1 (corrected). This effect is attributed to the finding that barriers computed at the DFT level are systematically 2-3 kcal mol-1 lower than barriers obtained with WFT.
Collapse
Affiliation(s)
- Jama Ariai
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| | - Urs Gellrich
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| |
Collapse
|
34
|
Wu X, Zeng Y, Meng L, Li X. Mechanistic insights and computational design of Cu/M bimetallic synergistic catalysts for Suzuki-Miyaura coupling of arylboronic esters with alkyl halides. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Xie F, Sun W, Pinacho P, Schnell M. CO 2 Aggregation on Monoethanolamine: Observations from Rotational Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202218539. [PMID: 36719030 DOI: 10.1002/anie.202218539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
The initial stages of the gas-phase nucleation between CO2 and monoethanolamine were investigated via broadband rotational spectroscopy with the aid of extensive theoretical structure sampling. Sub-nanometer-scale aggregation patterns of monoethanolamine-(CO2 )n , n=1-4, were identified. An interesting competition between the monoethanolamine intramolecular hydrogen bond and the intermolecular interactions between monoethanolamine and CO2 upon cluster growth was discovered, revealing an intriguing CO2 binding priority to the hydroxyl group over the amine group. These findings are in sharp contrast to the general results for aqueous solutions. In the quinary complex, a cap-like CO2 tetramer was observed cooperatively surrounding the monoethanolamine. As the cluster approaches the critical size of new particle formation, the contribution of CO2 self-assembly to the overall stability increases.
Collapse
Affiliation(s)
- Fan Xie
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Wenhao Sun
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Pablo Pinacho
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| |
Collapse
|
36
|
Attia AAA, Lupan A, King RB. Polyhedral Dicobaltadithiaboranes and Dicobaltdiselenaboranes as Examples of Bimetallic Nido Structures without Bridging Hydrogens. Molecules 2023; 28:molecules28072988. [PMID: 37049751 PMCID: PMC10095674 DOI: 10.3390/molecules28072988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The geometries and energetics of the n-vertex polyhedral dicobaltadithiaboranes and dicobaltadiselenaboranes Cp2Co2E2Bn−4Hn−4 (E = S, Se; n = 8 to 12) have been investigated via the density functional theory. Most of the lowest-energy structures in these systems are generated from the (n + 1)-vertex most spherical closo deltahedra by removal of a single vertex, leading to a tetragonal, pentagonal, or hexagonal face depending on the degree of the vertex removed. In all of these low-energy structures, the chalcogen atoms are located at the vertices of the non-triangular face. Alternatively, the central polyhedron in most of the 12-vertex structures can be derived from a Co2E2B8 icosahedron with adjacent chalcogen (E) vertices by breaking the E–E edge and 1 or more E–B edges to create a hexagonal face. Examples of the arachno polyhedra with two tetragonal and/or pentagonal faces derived from the removal of two vertices from isocloso deltahedra were found among the set of lowest-energy Cp2Co2E2Bn−4Hn−4 (E = S, Se; n = 8 and 12) structures.
Collapse
|
37
|
Tripathi MK, Ramanathan V. Nature and Strength of Sulfur-Centered Hydrogen Bond in Methanethiol Aqueous Solutions. J Phys Chem A 2023; 127:2265-2273. [PMID: 36867672 DOI: 10.1021/acs.jpca.2c08314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Methanethiol (M) and water (W) clusters like dimers (M1W1, M2, and W2), trimers (M1W2, M2W1, M3, and W3), and tetramers (M1W3, M2W2, M3W1, M4, and W4) were studied to assess the strength of sulfur-centered hydrogen bonding using different levels of theories, viz, HF, MP2, MP3, MP4, B3LYP, B3LYP-D3, CCSD, CCSD(T)-F12, and CCSD(T) along with aug-cc-pVNZ (where N = D, T, and Q) basis sets. Interaction energies were found to be in the range of -3.3 to -5.3 kcal/mol for the dimers, -8.0 to -16.7 kcal/mol for the trimers, and -13.5 to -29.5 kcal/mol for the tetramers at the B3LYP-D3/CBS limit level of theory. Normal modes of vibrations computed at the B3LYP/cc-pVDZ level of theory were seen to be in good agreement with the experimental values. Local energy decomposition calculations using the DLPNO-CCSD(T) level of theory indicated the domination of electrostatic interactions' contribution to the interaction energy in all cluster systems. Furthermore, atoms in molecules and natural bond orbital calculations both carried out at the B3LYP-D3/aug-cc-pVQZ level of theory aided in visualizing the hydrogen bonds besides proving a rationale for the strength of the hydrogen bonds and thereby the stability of these cluster systems.
Collapse
Affiliation(s)
| | - V Ramanathan
- Department of Chemistry, IIT(BHU) Varanasi, Varanasi, U.P. 221005 India
| |
Collapse
|
38
|
Attia AAA, Muñoz-Castro A, Lupan A, King RB. Aromaticity in P 8 allotropes and (CH) 8 analogues: significance of their 40 valence electrons? Phys Chem Chem Phys 2023; 25:9364-9372. [PMID: 36920848 DOI: 10.1039/d3cp00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The currently unknown phosphorus allotrope P8 is of interest since its 40 total valence electrons is a "magic number" corresponding to a filled 1S21P61D101S21F142P6 shell such as found in the relatively stable main group element clusters Al13- and Ge94-. However, P8 still remains as an elusive structure not realized experimentally. The lowest energy P8 structure by a margin of ∼9 kcal mol-1 is shown by density functional theory to be a cuneane analogue with no PP double bonds and two each of P5, P4, and P3 rings. Higher energy P8 structures are polycyclic systems having at most a single PP double bond. These P8 systems are not "carbon copies" of the corresponding (CH)8 hydrocarbons with exactly one hydrogen atom bonded to each carbon atom. Thus the lowest energy (CH)8 structure is cyclooctatetraene with four CC bonds followed by benzocyclobutene with three CC bonds. The cuneane (CH)8 structure is a relatively high energy isomer lying ∼36 kcal mol-1 above cyclooctatetraene. The cubane P8 and (CH)8 structures are even higher energy structures, lying ∼37 and ∼74 kcal mol-1 in energy above the corresponding global minima. Our results demonstrate differences in medium sized aggregates of elemental phosphorus and isolobal hydrocarbon species.
Collapse
Affiliation(s)
- Amr A A Attia
- Faculty of Chemistry and Chemical Engineering, Babe-Bolyai University, Cluj-Napoca, Romania.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| | - Alexandru Lupan
- Faculty of Chemistry and Chemical Engineering, Babe-Bolyai University, Cluj-Napoca, Romania.
| | - R Bruce King
- Department of Chemistry, University of Georgia, Athens 30602, Georgia.
| |
Collapse
|
39
|
Altun A, Riplinger C, Neese F, Bistoni G. Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes. J Chem Theory Comput 2023; 19:2039-2047. [PMID: 36917767 PMCID: PMC10100528 DOI: 10.1021/acs.jctc.3c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
While the domain-based local pair natural orbital coupled-cluster method with singles, doubles, and perturbative triples (DLPNO-CCSD(T)) has proven instrumental for computing energies and properties of large and complex systems accurately, calculations on first-row transition metals with a complex electronic structure remain challenging. In this work, we identify and address the two main error sources that influence the DLPNO-CCSD(T) accuracy in this context, namely, (i) correlation effects from the 3s and 3p semicore orbitals and (ii) dynamic correlation-induced orbital relaxation (DCIOR) effects that are not described by the local MP2 guess. We present a computational strategy that allows us to completely eliminate the DLPNO error associated with semicore correlation effects, while increasing, at the same time, the efficiency of the method. As regards the DCIOR effects, we introduce a diagnostic for estimating the deviation between DLPNO-CCSD(T) and canonical CCSD(T) for systems with significant orbital relaxation.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
40
|
Rivic F, Lehr A, Fuchs TM, Schäfer R. Joint electric and magnetic beam deflection experiments and quantum chemical studies of MSn 12 clusters (M = Al, Ga, In): on the interplay of geometric structure and magnetic properties in nanoalloys. Faraday Discuss 2023; 242:231-251. [PMID: 36260024 DOI: 10.1039/d2fd00091a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MSn12 clusters (M = Al, Ga, In) were studied in electric and magnetic beam deflection experiments at temperatures of 16 K and 30 K. For all three species, the results of the electric beam deflection experiments indicate the presence of two structural isomers of which one is considerably polar. The magnetic beam deflection experiments show atom-like beam splitting (superatomic behavior) with g-factors of 2.6-2.7 for a fraction of the clusters in the molecular beam, indicating significant spin-orbit coupling. On the one hand, we investigate by several experiments combining electric and magnetic deflectors how the superatomic and polar fractions are linked proving the correlation of the Stark and Zeeman effects. On the other hand, the magnetic deflection behavior is examined more thoroughly by performing quantum chemical calculations. By systematic distortion of an artificial icosahedral tin cage towards the global minimum structure, which has a pyritohedral geometry, the shifts in the magnitude of the g-factor are found to be mainly caused by a single dominant electronic excitation. This allows one to develop a semi-quantitative understanding of the magnetic behavior. On the basis of avoided crossings in the rotational Zeeman diagram, simulations of the magnetic beam deflection comprising computed rotational constants, vibrational modes, g-factors and spin-rotation coupling constants are performed which resemble our experimental findings in satisfactory agreement. With this, a better understanding of the magnetic properties of nanoalloy clusters can be achieved. However, the geometric structures of the polar isomers are still unknown.
Collapse
Affiliation(s)
- Filip Rivic
- Technical University of Darmstadt, Eduard-Zintl-Institut, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
| | - Andreas Lehr
- Technical University of Darmstadt, Eduard-Zintl-Institut, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
| | - Thomas M Fuchs
- Technical University of Darmstadt, Eduard-Zintl-Institut, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
| | - Rolf Schäfer
- Technical University of Darmstadt, Eduard-Zintl-Institut, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
| |
Collapse
|
41
|
Liu B, Zhou Z, Zhang Z, Ning H. Theoretical Study on Abstraction and Addition Reaction Kinetics for a Medium-Size Unsaturated Methyl Ester: Methyl-3-hexenoate + H/OH Radicals. J Phys Chem A 2022; 126:9461-9474. [DOI: 10.1021/acs.jpca.2c06249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bo Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu610031, P. R. China
| | - Zihao Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu610031, P. R. China
| | - Zhenpeng Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu610031, P. R. China
| | - Hongbo Ning
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu610031, P. R. China
| |
Collapse
|
42
|
Mitnik N, Haba S, Grinberg Dana A. Non-physical Species in Chemical Kinetic Models: A Case Study of Diazenyl Hydroxy and Diazenyl Peroxide. Chemphyschem 2022; 23:e202200373. [PMID: 35949193 PMCID: PMC10087891 DOI: 10.1002/cphc.202200373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Indexed: 01/04/2023]
Abstract
Predictive chemical kinetic models often consider hundreds to thousands of intermediate species. An even greater number of species are required to generate pressure-dependent reaction networks for gas-phase systems. As this immense chemical search space is being explored using automated tools by applying reaction templates, it is probable that non-physical species will infiltrate the model without being recognized by the compute or a human as such. These non-physical species might obey chemical intuition as well as requirements coded in the software, e. g., obeying element electron valence constraints, and may consequently remain unnoticed. Non-physical species become an acute problem when their presence affects a model observable. Correcting a pressure-dependent network containing a non-physical species may significantly affect the computed rate coefficient. The present work discusses and analyzes two specific cases of such species, diazenyl hydroxy (⋅N=NOH) and diazenyl peroxide (⋅N=NOOH), both previously suggested as intermediates in nitrogen combustion systems. A comprehensive conformational search did not identify any non-fragmented energy well, and energy scans performed for diazenyl peroxide (⋅N=NOOH), at DFT and CCSD(T) show that it barrierlessly decomposes. This work highlights a broad implication for future automated chemical kinetic model generation, and provides a significant motivation to standardize non-physical species identification in chemical kinetic models.
Collapse
Affiliation(s)
- Nelly Mitnik
- Wolfson Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Sharon Haba
- Wolfson Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Alon Grinberg Dana
- Wolfson Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Grand Technion Energy Program (GTEP)Technion – Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
43
|
Daru J, Forbert H, Behler J, Marx D. Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark. PHYSICAL REVIEW LETTERS 2022; 129:226001. [PMID: 36493459 DOI: 10.1103/physrevlett.129.226001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Coupled cluster theory is a general and systematic electronic structure method, but in particular the highly accurate "gold standard" coupled cluster singles, doubles and perturbative triples, CCSD(T), can only be applied to small systems. To overcome this limitation, we introduce a framework to transfer CCSD(T) accuracy of finite molecular clusters to extended condensed phase systems using a high-dimensional neural network potential. This approach, which is automated, allows one to perform high-quality coupled cluster molecular dynamics, CCMD, as we demonstrate for liquid water including nuclear quantum effects. The machine learning strategy is very efficient, generic, can be systematically improved, and is applicable to a variety of complex systems.
Collapse
Affiliation(s)
- János Daru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jörg Behler
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
44
|
Tran Q, Sengupta A, Houk KN. Probative Evidence and Quantitative Energetics for the Unimolecular Mechanism of the 1,5-Sigmatropic Hydrogen Shift of Cyclopentadiene. J Org Chem 2022; 87:14995-15000. [PMID: 36318665 DOI: 10.1021/acs.joc.2c02145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
While the 1,5-sigmatropic hydrogen shift in cyclopentadiene is generally thought to be a unimolecular pericyclic reaction, Yamabe proposed a more complex bimolecular mechanism proceeding through the exo dimer of cyclopentadiene. DFT computations by Yamabe were claimed to show that the bimolecular mechanism was kinetically more favorable than the unimolecular mechanism. Reinvestigation of the unimolecular concerted mechanism and Yamabe's bimolecular mechanism with ωB97X-D and DLPNO-CCSD(T) calculations demonstrates a 25 kcal/mol preference for the unimolecular mechanism relative to the bimolecular mechanism. While Yamabe's calculations were performed with the less accurate B3LYP functional, the incorrect conclusion was the result of a different error discovered here. We have also computed corrections for tunneling that result in computed activation barriers within 1.5 kcal/mol of the experimental values.
Collapse
Affiliation(s)
- Quan Tran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Bready CJ, Fowler VR, Juechter LA, Kurfman LA, Mazaleski GE, Shields GC. The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1469-1486. [PMID: 36561556 PMCID: PMC9648633 DOI: 10.1039/d2ea00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of uncertainty for understanding global warming. The beginning stages for formation of prenucleation complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. We find that the detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength. Addition of a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W) cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum chemical ΔG° values for cluster formation and realistic estimates of the concentrations of these monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results from the combination of many different molecules that are able to form highly stable complexes with acid molecules such as SA, NA, and FA.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Vance R Fowler
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Leah A Juechter
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Luke A Kurfman
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Grace E Mazaleski
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - George C Shields
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| |
Collapse
|
46
|
Wang Y, Ni Z, Neese F, Li W, Guo Y, Li S. Cluster-in-Molecule Method Combined with the Domain-Based Local Pair Natural Orbital Approach for Electron Correlation Calculations of Periodic Systems. J Chem Theory Comput 2022; 18:6510-6521. [PMID: 36240189 DOI: 10.1021/acs.jctc.2c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cluster-in-molecule (CIM) method was extended to systems with periodic boundary conditions (PBCs) in a previous work (PBC-CIM) [J. Chem. Theory Comput.2019, 15, 2933], which is able to compute the electronic structures of periodic systems at second-order Møller-Plesset perturbation theory (MP2) and coupled cluster singles and doubles (CCSD) levels. However, the high computational costs of CCSD with respect to the size of clusters limit the usage of PBC-CIM to crystals with small or medium unit cells. In this work, we further develop the PBC-CIM method by employing the domain-based local pair natural orbital (DLPNO) methods for the electron correlation calculations of clusters to reduce the computational costs. The combined approach allows CCSD with perturbative triples, denoted as CCSD(T), to be computationally available for accurate descriptions of periodic systems. The distant-pair correction is also implemented to improve the accuracy of PBC-CIM. As in the molecular cases, the distant pair correction significantly improves the accuracy of various PBC-CIM methods with few additional costs. The PBC-CIM-DLPNO-CCSD(T) approach has been applied to investigate the optimized lattice parameter of the cubic LiCl crystal and two adsorption problems (CO on the NaCl(100) surface and H2O on the h-BN surface). The results show that the CIM-DLPNO-CCSD(T) method offers accurate and efficient descriptions for the studied systems. Another application to the cohesive energy of the acetic acid crystal reveals that large basis sets are necessary for reliable calculations on the cohesive energies of molecular crystals.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing210023, P. R. China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou311121, P. R. China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der RuhrD-45470, Germany
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing210023, P. R. China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
47
|
Tikhonov DS, Scutelnic V, Sharapa DI, Krotova AA, Dmitrieva AV, Obenchain DA, Schnell M. Structures of the (Imidazole)nH+ ... Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations. Struct Chem 2022. [DOI: 10.1007/s11224-022-02053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractHere, we present new cryogenic infrared spectra of the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) ions. The data was obtained using helium tagging infrared predissociation spectroscopy. The new results were compared with the data obtained by Gerardi et al. (Chem. Phys. Lett. 501:172–178, 2011) using the same technique but with argon as a tag. Comparison of the two experiments, assisted by theoretical calculations, allowed us to evaluate the preferable attachment positions of argon to the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
frame. Argon attaches to nitrogen-bonded hydrogen in the case of the (Imidazole)H$$^+$$
+
ion, while in (Imidazole)$$_{2}\mathrm{H}^{+}$$
2
H
+
and (Imidazole)$$_{3}\mathrm{H}^{+}$$
3
H
+
the preferred docking sites for the argon are in the center of the complex. This conclusion is supported by analyzing the spectral features attributed to the N–H stretching vibrations. Symmetry adapted perturbation theory (SAPT) analysis of the non-covalent forces between argon and the (Imidazole)$$_{n}\mathrm{H}^{+}$$
n
H
+
(n=1,2,3) frame revealed that this switch of docking preference with increasing complex size is caused by an interplay between induction and dispersion interactions.
Collapse
|
48
|
Sharma J, Champagne PA. Benchmark of density functional theory methods for the study of organic polysulfides. J Comput Chem 2022; 43:2131-2138. [PMID: 36169869 DOI: 10.1002/jcc.27007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Elemental sulfur is often used in organic synthesis as its low cost and high abundance make it a highly desirable source of sulfur atoms. However, sulfur's unpredictable catenation behavior poses challenges to its widespread usage due to difficulties in designing new reactions that can account for its multifaceted reactivity. In order to accurately model sulfur's mechanisms using computational approaches, it is necessary to identify density functional theory (DFT) methods that are accurate on these systems. This study benchmarks 12 well-known DFT functionals that include local, non-local, and hybrid methods against DLPNO-CCSD(T)/aug-cc-pV(Q+d)Z//MP2/aug-cc-pV(T+d)Z/SMD(MeCN) for the accurate treatment of organic polysulfides, taking cyanide as a nucleophile. Our benchmarking results indicate that the M06-2X and B3LYP-D3(BJ) density functionals are the most accurate for calculating reaction energies, while local functionals performed the worst. For activation energies, MN15, MN15-L, M06-2X, and ωB97X-D are the most accurate. Our analysis of structural parameters shows that all functionals perform well for ground state optimizations except B97D3, while MN15-L and M06-2X performed best for transition structure optimizations. Overall, the four hybrid functionals MN15, M06-2X, ωB97X-D, and B3LYP-D3(BJ) appear adequate for studying the reaction mechanisms of polysulfides.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
49
|
Beckmann R, Brieuc F, Schran C, Marx D. Infrared Spectra at Coupled Cluster Accuracy from Neural Network Representations. J Chem Theory Comput 2022; 18:5492-5501. [PMID: 35998360 DOI: 10.1021/acs.jctc.2c00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared spectroscopy is key to elucidating molecular structures, monitoring reactions, and observing conformational changes, while providing information on both structural and dynamical properties. This makes the accurate prediction of infrared spectra based on first-principle theories a highly desirable pursuit. Molecular dynamics simulations have proven to be a particularly powerful approach for this task, albeit requiring the computation of energies, forces and dipole moments for a large number of molecular configurations as a function of time. This explains why highly accurate first-principles methods, such as coupled cluster theory, have so far been inapplicable for the prediction of fully anharmonic vibrational spectra of large systems at finite temperatures. Here, we push cutting-edge machine learning techniques forward by using neural network representations of energies, forces, and in particular dipoles to predict such infrared spectra fully at "gold standard" coupled cluster accuracy as demonstrated for protonated water clusters as large as the protonated water hexamer, in its extended Zundel configuration. Furthermore, we show that this methodology can be used beyond the scope of the data considered during the development of the neural network models, allowing for the computation of finite-temperature infrared spectra of large systems inaccessible to explicit coupled cluster calculations. This substantially expands the hitherto existing limits of accuracy, speed, and system size for theoretical spectroscopy and opens up a multitude of avenues for the prediction of vibrational spectra and the understanding of complex intra- and intermolecular couplings.
Collapse
Affiliation(s)
- Richard Beckmann
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Fabien Brieuc
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
50
|
Viegas MF, Neves RPP, Ramos MJ, Fernandes PA. QM/MM Study of the Reaction Mechanism of Thermophilic Glucuronoyl Esterase for Biomass Treatment. Chemphyschem 2022; 23:e202200269. [PMID: 35925549 DOI: 10.1002/cphc.202200269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/23/2022] [Indexed: 11/06/2022]
Abstract
Hydrolysis of lignocellulosic biomass, composed of a lignin-carbohydrate-complex (LCC) matrix, is critical for producing bioethanol from glucose. However, current methods for LCC processing require costly and polluting processes. The fungal Thermothelomyces thermophila glucuronoyl esterase (TtGE) is a promising thermophilic enzyme that hydrolyses LCC ester bonds. This study describes the TtGE catalytic mechanism using QM/MM methods. Two nearly-degenerate rate-determining transition states were found, with barriers of 16 and 17 kcal ⋅ mol-1 , both with a zwitterionic nature that results from a proton interplay from His346 to either the Ser213-hydroxyl or the lignin leaving group and the rehybridisation of the ester moiety of the substrate to an alkoxide. An oxyanion hole, characteristic of esterases, was provided by the conserved Arg214 through its backbone and sidechain. Our work further suggests that a mutation of Glu267 to a non-negative residue will decrease the energetic barrier in ca. -5 kcal ⋅ mol-1 , improving the catalytic rate of TtGE.
Collapse
Affiliation(s)
- Matilde F Viegas
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Rui P P Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro A Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|