1
|
Wu C. Temperature-Transferable Coarse-Grained Models for Volumetric Properties of Poly(lactic Acid). J Phys Chem B 2024; 128:358-370. [PMID: 38153413 DOI: 10.1021/acs.jpcb.3c07026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A new coarse-grained (CG) model, for which each monomer is mapped as one bead at its center of mass, was developed for simulating the volumetric properties of the polylactide (PLA) bulk. The three bonded CG potentials are first parametrized against the strain energies of the dimer, trimer, and tetramer, and the nonbonded CG potentials are then optimized to match the melt densities of the decamer. With the derived CG potentials, molecular dynamics (MD) simulations are found to reproduce thermal expansion and glass transition. By rescaling the dihedral and nonbonded potentials with temperature-independent factors, the glass transition temperature (Tg) is also satisfactorily restored with little modifications on the volumetric expansive coefficients at both rubbery and glassy states. Therefore, the finally optimized CG potentials exhibit excellent temperature transferability, as rationalized by the Simha-Boyer relation. Furthermore, it is confirmed that the dihedral torsions and nonbonded interactions play key roles in glass transition. Also, the simulated bulk moduli and conformational properties in a wide temperature range compare well with the referenced data. The proposed multiscale scheme has great potential in simulating thermo-mechanical properties of PLA and other polymers.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, P. R. China
| |
Collapse
|
2
|
DeLyser MR, Noid WG. Coarse-grained models for local density gradients. J Chem Phys 2022; 156:034106. [DOI: 10.1063/5.0075291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Michael R. DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Wu C, Li K, Ning X, Zhang L. An Enhanced Scheme for Multiscale Modeling of Thermomechanical Properties of Polymer Bulks. J Phys Chem B 2021; 125:8612-8626. [PMID: 34291641 DOI: 10.1021/acs.jpcb.1c02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While multiscale modeling significantly enhances the capability of molecular simulations of polymer systems, it is well realized that the systematically derived coarse-grained (CG) models generally underestimate the thermomechanical properties. In this work, a charge-based mapping scheme has been adopted to include explicit electrostatic interactions and benchmarked against two typical polymers, atactic poly(methyl methacrylate) (PMMA) and polystyrene (PS). The CG potentials are parameterized against the oligomer bulks of nine monomers per chain to match the essential structural features and the two basic pressure-volume-temperature (PVT) properties, which are obtained from the all-atomistic (AA) molecular dynamics (MD) simulations at a single elevated temperature. The so-parameterized CG potentials are extended with the MD method to simulate the two polymer bulks of one hundred monomers per chain over a wide temperature range. Without any scaling, all the simulated results, including mass densities and bulk moduli at room temperature, thermal expansion coefficients at rubbery and glassy states, and glass transition temperatures (Tg), compare well with the corresponding experimental data. The proposed scheme not only contributes to realistically simulating various thermomechanical properties of both apolar and polar polymers but also allows for directly simulating their electrical properties.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Kewen Li
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Xutao Ning
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| |
Collapse
|
4
|
Wan M, Song J, Yang Y, Gao L, Fang W. Development of coarse-grained force field for alcohols: an efficient meta-multilinear interpolation parameterization algorithm. Phys Chem Chem Phys 2021; 23:1956-1966. [PMID: 33464253 DOI: 10.1039/d0cp05503d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coarse-grained (CG) molecular dynamics are powerful tools to access a mesoscopic phenomenon and simultaneously record microscopic details, but currently the CG force fields (FFs) are still limited by low parameterization efficiency and poor accuracy especially for polar molecules. In this work, we developed a Meta-Multilinear Interpolation Parameterization (Meta-MIP) algorithm to optimize the CG FFs for alcohols. This algorithm significantly boosts parameterization efficiency by constructing on-the-fly local databases to cover the global optimal parameterization path. In specific, an alcohol molecule is mapped to a heterologous model composed of an OH bead and a hydrocarbon portion which consists of alkane beads representing two to four carbon atoms. Non-bonded potentials are described by soft Morse functions that have no tail-corrections but can still retain good continuities at truncation distance. Nearly all of the properties in terms of density, heat of vaporization, surface tension, and solvation free energy for alcohols predicted by the current FFs deviate from experimental values by less than 7%. This Meta-MIP algorithm can be readily applied to force field development for a wide variety of molecules or functional groups, in many situations including but not limited to CG FFs.
Collapse
Affiliation(s)
- Mingwei Wan
- Institution of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | | | | | | | | |
Collapse
|
5
|
Walker CC, Genzer J, Santiso EE. Extending the fused-sphere SAFT-γ Mie force field parameterization approach to poly(vinyl butyral) copolymers. J Chem Phys 2020; 152:044903. [DOI: 10.1063/1.5126213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Christopher C. Walker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Erik E. Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
6
|
Lebold KM, Noid WG. Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability. J Chem Phys 2019; 151:164113. [PMID: 31675902 DOI: 10.1063/1.5125246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dual-potential approach promises coarse-grained (CG) models that accurately reproduce both structural and energetic properties, while simultaneously providing predictive estimates for the temperature-dependence of the effective CG potentials. In this work, we examine the dual-potential approach for implicit solvent CG models that reflect large entropic effects from the eliminated solvent. Specifically, we construct implicit solvent models at various resolutions, R, by retaining a fraction 0.10 ≤ R ≤ 0.95 of the molecules from a simple fluid of Lennard-Jones spheres. We consider the dual-potential approach in both the constant volume and constant pressure ensembles across a relatively wide range of temperatures. We approximate the many-body potential of mean force for the remaining solutes with pair and volume potentials, which we determine via multiscale coarse-graining and self-consistent pressure-matching, respectively. Interestingly, with increasing temperature, the pair potentials appear increasingly attractive, while the volume potentials become increasingly repulsive. The dual-potential approach not only reproduces the atomic energetics but also quite accurately predicts this temperature-dependence. We also derive an exact relationship between the thermodynamic specific heat of an atomic model and the energetic fluctuations that are observable at the CG resolution. With this generalized fluctuation relationship, the approximate CG models quite accurately reproduce the thermodynamic specific heat of the underlying atomic model.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
7
|
Jin J, Pak AJ, Voth GA. Understanding Missing Entropy in Coarse-Grained Systems: Addressing Issues of Representability and Transferability. J Phys Chem Lett 2019; 10:4549-4557. [PMID: 31319036 PMCID: PMC6782054 DOI: 10.1021/acs.jpclett.9b01228] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Coarse-grained (CG) models facilitate efficient simulation of complex systems by integrating out the atomic, or fine-grained (FG), degrees of freedom. Systematically derived CG models from FG simulations often attempt to approximate the CG potential of mean force (PMF), an inherently multidimensional and many-body quantity, using additive pairwise contributions. However, they currently lack fundamental principles that enable their extensible use across different thermodynamic state points, i.e., transferability. In this work, we investigate the explicit energy-entropy decomposition of the CG PMF as a means to construct transferable CG models. In particular, despite its high-dimensional nature, we find for liquid systems that the entropic component to the CG PMF can similarly be represented using additive pairwise contributions, which we show is highly coupled to the CG configurational entropy. This approach formally connects the missing entropy that is lost due to the CG representation, i.e., translational, rotational, and vibrational modes associated with the missing degrees of freedom, to the CG entropy. By design, the present framework imparts transferable CG interactions across different temperatures due to the explicit definition of an additive entropic contribution. Furthermore, we demonstrate that transferability across composition state points, such as between bulk liquids and their mixtures, is also achieved by designing combining rules to approximate cross-interactions from bulk CG PMFs. Using the predicted CG model for liquid mixtures, structural correlations of the fitted CG model were found to corroborate a high-fidelity combining rule. Our findings elucidate the physical nature and compact representation of CG entropy and suggest a new approach for overcoming the transferability problem. We expect that this approach will further extend the current view of CG modeling into predictive multiscale modeling.
Collapse
|
8
|
Pervaje AK, Walker CC, Santiso EE. Molecular simulation of polymers with a SAFT-γ Mie approach. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1645331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Amulya K. Pervaje
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher C. Walker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Erik E. Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Griffiths MZ, Shinoda W. tSPICA: Temperature- and Pressure-Dependent Coarse-Grained Force Field for Organic Molecules. J Chem Inf Model 2019; 59:3829-3838. [DOI: 10.1021/acs.jcim.9b00480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mark Z. Griffiths
- Department of Materials Chemistry, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
10
|
Papavasileiou KD, Peristeras LD, Bick A, Economou IG. Molecular Dynamics Simulation of Pure n-Alkanes and Their Mixtures at Elevated Temperatures Using Atomistic and Coarse-Grained Force Fields. J Phys Chem B 2019; 123:6229-6243. [PMID: 31251061 DOI: 10.1021/acs.jpcb.9b02840] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The properties of higher n-alkanes and their mixtures is a topic of significant interest for the oil and chemical industry. However, the experimental data at high temperatures are scarce. The present study focuses on simulating n-dodecane, n-octacosane, their binary mixture at a n-dodecane mole fraction of 0.3, and a model mixture of the commercially available hydrocarbon wax SX-70 to evaluate the performance of several force fields on the reproduction of properties such as liquid densities, surface tension, and viscosities. Molecular dynamics simulations over a broad temperature range from 323.15 to 573.15 K were employed in examining a broad set of atomistic molecular models assessed for the reproduction of experimental data. The well-established united atom TraPPE (TraPPE-UA) was compared against the all atom optimized potentials for liquid simulations (OPLS) reparametrization for long n-alkanes, L-OPLS, as well as Lipid14 and MARTINI force fields. All models qualitatively reproduce the temperature dependence of the aforementioned properties, but TraPPE-UA was found to reproduce liquid densities most accurately and consistently over the entire temperature range. TraPPE-UA and MARTINI were very successful in reproducing surface tensions, and L-OPLS was found to be the most accurate in reproducing the measured viscosities as compared to the other models. Our simulations show that these widely used force fields originating from the world of biomolecular simulations are suitable candidates in the study of n-alkane properties, both in the pure and mixture states.
Collapse
Affiliation(s)
- Konstantinos D Papavasileiou
- Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory , National Center for Scientific Research "Demokritos" , Aghia Paraskevi, Attikis, GR-15310 Athens , Greece.,Scienomics SARL , 16 rue de l'Arcade , 75008 , Paris , France
| | - Loukas D Peristeras
- Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory , National Center for Scientific Research "Demokritos" , Aghia Paraskevi, Attikis, GR-15310 Athens , Greece
| | - Andreas Bick
- Scienomics SARL , 16 rue de l'Arcade , 75008 , Paris , France
| | - Ioannis G Economou
- Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory , National Center for Scientific Research "Demokritos" , Aghia Paraskevi, Attikis, GR-15310 Athens , Greece.,Chemical Engineering Program , Texas A&M University at Qatar , Education City , P.O. Box 23874, Doha , Qatar
| |
Collapse
|
11
|
Deichmann G, van der Vegt NFA. Conditional Reversible Work Coarse-Grained Models with Explicit Electrostatics—An Application to Butylmethylimidazolium Ionic Liquids. J Chem Theory Comput 2019; 15:1187-1198. [DOI: 10.1021/acs.jctc.8b00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
12
|
Lebold KM, Noid WG. Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids. J Chem Phys 2019; 150:014104. [DOI: 10.1063/1.5050509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Kathryn M. Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
13
|
Huang H, Wu L, Xiong H, Sun H. A Transferrable Coarse-Grained Force Field for Simulations of Polyethers and Polyether Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Huang
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Huiming Xiong
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Huai Sun
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
14
|
Gong Z, Wu Y, Wu L, Sun H. Predicting Thermodynamic Properties of Alkanes by High-Throughput Force Field Simulation and Machine Learning. J Chem Inf Model 2018; 58:2502-2516. [DOI: 10.1021/acs.jcim.8b00407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zheng Gong
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Yanze Wu
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Huai Sun
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
15
|
Rahman S, Lobanova O, Jiménez-Serratos G, Braga C, Raptis V, Müller EA, Jackson G, Avendaño C, Galindo A. SAFT-γ Force Field for the Simulation of Molecular Fluids. 5. Hetero-Group Coarse-Grained Models of Linear Alkanes and the Importance of Intramolecular Interactions. J Phys Chem B 2018; 122:9161-9177. [DOI: 10.1021/acs.jpcb.8b04095] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sadia Rahman
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Olga Lobanova
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Guadalupe Jiménez-Serratos
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Carlos Braga
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Vasilios Raptis
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Amparo Galindo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
An Y, Bejagam KK, Deshmukh SA. Development of New Transferable Coarse-Grained Models of Hydrocarbons. J Phys Chem B 2018; 122:7143-7153. [DOI: 10.1021/acs.jpcb.8b03822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karteek K. Bejagam
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A. Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Wu L, Sun H. Cholesteric ordering predicted using a coarse-grained polymeric model with helical interactions. SOFT MATTER 2018; 14:344-353. [PMID: 29211101 DOI: 10.1039/c7sm02077e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The understanding of cholesteric liquid crystals at a molecular level is challenging. Limited insights are available to bridge between molecular structures and macroscopic chiral organization. In the present study, we introduce a novel coarse-grained (CG) molecular model, which is represented by flexible chain particles with helical interactions (FCh), to study the liquid crystalline phase behavior of cholesteric molecules such as double strand DNA and α-helix polypeptides using molecular dynamics (MD) simulations. The isotropic-cholesteric phase transitions of FCh molecules were simulated for varying chain flexibilities. A wall confinement was used to break the periodicity along the cholesteric helix director in order to predict the equilibrium cholesteric pitch. The left-handed cholesteric phase was shown for FCh molecules with right-handed chiral interactions, and a spatially inhomogeneous distribution of the nematic order parameter profile was observed in cholesteric phases. It was found that the chain flexibility plays an important role in determining the macroscopic cholesteric pitch and the structure of the cholesteric liquid crystal phase. The simulations provide insight into the relationship between microscopic molecular characteristics and the macroscopic phase behavior.
Collapse
Affiliation(s)
- Liang Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | | |
Collapse
|
18
|
Wu C. Multiscale Modeling Scheme for Simulating Polymeric Melts: Application to Poly(Ethylene Oxide). MACROMOL THEOR SIMUL 2017. [DOI: 10.1002/mats.201700066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- C. Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials; Hunan University of Humanities Science & Technology; Dixing Road 487, Louxing District Loudi 417000 Hunan Province P. R. China
- College of Materials and Environment Engineering; Hunan University of Humanities Science & Technology; Dixing Road 487, Louxing District Loudi 417000 Hunan Province P. R. China
| |
Collapse
|
19
|
Deichmann G, van der Vegt NFA. Conditional Reversible Work Coarse-Grained Models of Molecular Liquids with Coulomb Electrostatics – A Proof of Concept Study on Weakly Polar Organic Molecules. J Chem Theory Comput 2017; 13:6158-6166. [DOI: 10.1021/acs.jctc.7b00611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
20
|
Kuo AT, Okazaki S, Shinoda W. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes. J Chem Phys 2017; 147:094904. [DOI: 10.1063/1.4986287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Gong Z, Sun H. A Coarse-Grained Force Field Parameterized for MgCl2 and CaCl2 Aqueous Solutions. J Chem Inf Model 2017; 57:1599-1608. [DOI: 10.1021/acs.jcim.7b00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zheng Gong
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huai Sun
- School of Chemistry and Chemical
Engineering and Ministry of Education Key Laboratory of Scientific
and Engineering Computing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Yang C, Shen Z, Wu L, Tang H, Zhao L, Cao F, Sun H. Prediction of self-assemblies of sodium dodecyl sulfate and fragrance additives using coarse-grained force fields. J Mol Model 2017. [DOI: 10.1007/s00894-017-3364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Huang H, Cao F, Wu L, Sun H. All-atom and coarse-grained force fields for polydimethylsiloxane. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1328597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hao Huang
- School of Chemistry and Chemical Engineering and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Fenglei Cao
- School of Chemistry and Chemical Engineering and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Huai Sun
- School of Chemistry and Chemical Engineering and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Cao F, Deetz JD, Sun H. Free Energy-Based Coarse-Grained Force Field for Binary Mixtures of Hydrocarbons, Nitrogen, Oxygen, and Carbon Dioxide. J Chem Inf Model 2017; 57:50-59. [DOI: 10.1021/acs.jcim.6b00685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fenglei Cao
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Joshua D. Deetz
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai Sun
- School
of Chemistry and Chemical Engineering and Key Laboratory of Scientific
and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
25
|
Xia W, Song J, Jeong C, Hsu DD, Phelan FR, Douglas JF, Keten S. Energy-Renormalization for Achieving Temperature Transferable Coarse-Graining of Polymer Dynamics. Macromolecules 2017; 50:10.1021/acs.macromol.7b01717. [PMID: 30996475 PMCID: PMC6463524 DOI: 10.1021/acs.macromol.7b01717] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bottom-up prediction of the properties of polymeric materials based on molecular dynamics simulation is a major challenge in soft matter physics. Coarse-grained (CG) models are often employed to access greater spatiotemporal scales required for many applications, but these models normally experience significantly altered thermodynamics and highly accelerated dynamics due to the reduced number of degrees of freedom upon coarse-graining. While CG models can be calibrated to meet certain properties at particular state points, there is unfortunately no temperature transferable and chemically specific coarse-graining method that allows for modeling of polymer dynamics over a wide temperature range. Here, we pragmatically address this problem by "correcting" for deviations in activation free energies that occur upon coarse-graining the dynamics of a model polymeric material (polystyrene). In particular, we propose a new strategy based on concepts drawn from the Adam-Gibbs (AG) theory of glass formation. Namely we renormalize the cohesive interaction strength and effective interaction length-scale parameters to modify the activation free energy. We show that this energy-renormalization method for CG modeling allows accurate prediction of atomistic dynamics over the Arrhenius regime, the non-Arrhenius regime of glass formation, and even the non-equilibrium glassy regime, thus allowing for the predictive modeling of dynamic properties of polymer over the entire range of glass formation. Our work provides a practical scheme for establishing temperature transferable coarse-grained models for predicting and designing the properties of polymeric materials.
Collapse
Affiliation(s)
- Wenjie Xia
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, Evanston, Illinois 60208-3109, United States
| | - Jake Song
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Cheol Jeong
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David D. Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Frederick R. Phelan
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
26
|
Solano Canchaya JG, Dequidt A, Goujon F, Malfreyt P. Development of DPD coarse-grained models: From bulk to interfacial properties. J Chem Phys 2016; 145:054107. [DOI: 10.1063/1.4960114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- José G. Solano Canchaya
- Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, Université Clermont Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, ICCF, F-63178 Aubiere, France
| | - Alain Dequidt
- Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, Université Clermont Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, ICCF, F-63178 Aubiere, France
| | - Florent Goujon
- Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, Université Clermont Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, ICCF, F-63178 Aubiere, France
| | - Patrice Malfreyt
- Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, Université Clermont Auvergne, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, ICCF, F-63178 Aubiere, France
| |
Collapse
|
27
|
Dunn NJH, Noid WG. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures. J Chem Phys 2016; 144:204124. [DOI: 10.1063/1.4952422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nicholas J. H. Dunn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|