1
|
Wei M, Zuo J, Tian G, Hua W. Simulating temperature and tautomeric effects for vibrationally resolved XPS of biomolecules: Combining time-dependent and time-independent approaches to fingerprint carbonyl groups. J Chem Phys 2024; 161:104303. [PMID: 39248239 DOI: 10.1063/5.0224090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Carbonyl groups (C=O) play crucial roles in the photophysics and photochemistry of biological systems. O1s x-ray photoelectron spectroscopy allows for targeted investigation of the C=O group, and the coupling between C=O vibration and O1s ionization is reflected in the fine structures. To elucidate its characteristic vibronic features, systematic Franck-Condon simulations were conducted for six common biomolecules, including three purines (xanthine, caffeine, and hypoxanthine) and three pyrimidines (thymine, 5F-uracil, and uracil). The complexity of simulation for these biomolecules lies in accounting for temperature effects and potential tautomeric variations. We combined the time-dependent and time-independent methods to efficiently account for the temperature effects and to provide explicit assignments, respectively. For hypoxanthine, the tautomeric effect was considered by incorporating the Boltzmann population ratios of two tautomers. The simulations demonstrated good agreement with experimental spectra, enabling differentiation of two types of carbonyl oxygens with subtle local structural differences, positioned between two nitrogens (O1) or between one carbon and one nitrogen (O2). The analysis provided insights into the coupling between C=O vibration and O1s ionization, consistently showing an elongation of the C=O bond length (by 0.08-0.09 Å) upon O1s ionization.
Collapse
Affiliation(s)
- Minrui Wei
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Junxiang Zuo
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
2
|
Bashirova D, Zuehlsdorff TJ. First-Principles Modeling of the Absorption Spectrum of Crystal Violet in Solution: The Importance of Environmentally Driven Symmetry Breaking. J Phys Chem A 2024; 128:5229-5242. [PMID: 38938007 DOI: 10.1021/acs.jpca.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Theoretical spectroscopy plays a crucial role in understanding the properties of the materials and molecules. One of the most promising methods for computing optical spectra of chromophores embedded in complex environments from the first principles is the cumulant approach, where both (generally anharmonic) vibrational degrees of freedom and environmental interactions are explicitly accounted for. In this work, we verify the capabilities of the cumulant approach in describing the effect of complex environmental interactions on linear absorption spectra by studying Crystal Violet (CV) in different solvents. The experimental absorption spectrum of CV strongly depends on the nature of the solvent, indicating strong coupling to the condensed-phase environment. We demonstrate that these changes in absorption line shape are driven by an increased splitting between absorption bands of two low-lying excited states that is caused by a breaking of the D3 symmetry of the molecule and that in polar solvents, this symmetry breaking is mainly driven by electrostatic interactions with the condensed-phase environment rather than distortion of the structure of the molecule, in contrast with conclusions reached in a number of previous studies. Our results reveal the importance of explicitly including a counterion in the calculations in nonpolar solvents due to electrostatic interactions between CV and the ion. In polar solvents, these interactions are strongly reduced due to solvent screening effects, thus minimizing the symmetry breaking. Computed spectra in methanol are found to be in reasonable agreement with the experiment, demonstrating the strengths of the outlined approach in modeling strong environmental interactions.
Collapse
Affiliation(s)
- Dayana Bashirova
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
3
|
Allan L, Zuehlsdorff TJ. Taming the third order cumulant approximation to linear optical spectroscopy. J Chem Phys 2024; 160:074108. [PMID: 38380749 DOI: 10.1063/5.0182745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
The second order cumulant method offers a promising pathway to predicting optical properties in condensed phase systems. It allows for the computation of linear absorption spectra from excitation energy fluctuations sampled along molecular dynamics (MD) trajectories, fully accounting for vibronic effects, direct solute-solvent interactions, and environmental polarization effects. However, the second order cumulant approximation only guarantees accurate line shapes for energy gap fluctuations obeying Gaussian statistics. A third order correction has recently been derived but often yields unphysical spectra or divergent line shapes for moderately non-Gaussian fluctuations due to the neglect of higher order terms in the cumulant expansion. In this work, we develop a corrected cumulant approach, where the collective effect of neglected higher order contributions is approximately accounted for through a dampening factor applied to the third order cumulant term. We show that this dampening factor can be expressed as a function of the skewness and kurtosis of energy gap fluctuations and can be parameterized from a large set of randomly sampled model Hamiltonians for which exact spectral line shapes are known. This approach is shown to systematically remove unphysical contributions in the form of negative absorbances from cumulant spectra in both model Hamiltonians and condensed phase systems sampled from MD and dramatically improves over the second order cumulant method in describing systems exhibiting Duschinsky mode mixing effects. We successfully apply the approach to the coumarin-153 dye in toluene, obtaining excellent agreement with experiment.
Collapse
Affiliation(s)
- Lucas Allan
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
4
|
Segatta F, Aranda D, Aleotti F, Montorsi F, Mukamel S, Garavelli M, Santoro F, Nenov A. Time-Resolved X-ray Absorption Spectroscopy: An MCTDH Quantum Dynamics Protocol. J Chem Theory Comput 2024; 20:307-322. [PMID: 38101807 PMCID: PMC10782456 DOI: 10.1021/acs.jctc.3c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Expressions for linear and nonlinear spectroscopy simulation in the X-ray window in which the time evolution of a photoexcited molecular system is treated via quantum dynamics are derived. By leveraging on the peculiar properties of core-excited/ionized states, first- and third-order response functions are recast in the limit of time-scale separation between the extremely short core-state lifetime and the (comparably longer) electronic-state transfer and nuclear vibrational motion. This work is a natural extension of Segatta et al. (J. Chem. Theory Comput. 2023, 19, 2075-2091), in which some of the present authors coupled MCTDH quantum dynamics to spectroscopy simulation at different levels of sophistication. Full quantum dynamics and approximate expressions are compared by simulating X-ray transient absorption spectroscopy at the carbon K-edge in the pyrene molecule.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Daniel Aranda
- ICMol, Universidad de Valencia, c/Catedrático José
Beltrán,
2, 46980 Paterna, Spain
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Flavia Aleotti
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Francesco Montorsi
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, 92697 California, United States
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
5
|
Ranganathan R, Muñoz LMD, Peric M, Boulesbaa A. Fluorescence in colloidal solutions: Scattering vs physicochemical effects on line shape. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122356. [PMID: 36641918 PMCID: PMC9974911 DOI: 10.1016/j.saa.2023.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Line shapes of anionic fluorescein fluorescence in suspensions of polystyrene nanoparticles (PSNP), anionic and cationic micelles, lipid vesicles, and of laurdan in lipid vesicles were investigated. Computed second harmonic of measured spectra indicated three lines for fluorescein and two for laurdan. Accordingly, fluorescein spectra were fit to three Gaussians and laurdan spectra to two lognormal distributions. Resolved line parameters were examined against particle concentration. Scattering, although wavelength dependent, affected intensity but not line shape. Inner filter effects of scattering on line shape are insignificant because multiple scattering, redirection of scattered photons into the detector, and inclusion of scattered photons in collection and detection minimize wavelength dependent effects. Dominant effects on line width and peak positions are due to physicochemical effects of dye-particle-solvent interactions rather than scattering. Fluorescein does not interact with anionic micelles and lipid vesicles, but remains in the aqueous phase, and responds to pH increase induced by these additives. Blue shift in peak position, decrease in line width, and increase in emission intensity in these systems are like those in NaOH solutions. Fluorescein does interact with cationic micelles and hydrophobic PSNP, and its emission is red shifted. Laurdan in lipid vesicles senses interface polarity. Blue shift and decrease in line width of its emission line indicate decreasing polarity with lipid concentration. Scattering, as well as interactions affect emission intensity. Physicochemical effects distort line shape and modify intrinsic spectra. Line shape changes are better markers than intensity to investigate interactions and reactions.
Collapse
Affiliation(s)
- Radha Ranganathan
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA.
| | - Luis Manuel Davila Muñoz
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA
| | - Miroslav Peric
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA
| | - Abdelaziz Boulesbaa
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330, USA
| |
Collapse
|
6
|
Segatta F, Ruiz DA, Aleotti F, Yaghoubi M, Mukamel S, Garavelli M, Santoro F, Nenov A. Nonlinear Molecular Electronic Spectroscopy via MCTDH Quantum Dynamics: From Exact to Approximate Expressions. J Chem Theory Comput 2023; 19:2075-2091. [PMID: 36961952 PMCID: PMC10100531 DOI: 10.1021/acs.jctc.2c01059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Daniel Aranda Ruiz
- ICMol, Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Flavia Aleotti
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Martha Yaghoubi
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
7
|
Abou Taka A, Lu SY, Gowland D, Zuehlsdorff TJ, Corzo HH, Pribram-Jones A, Shi L, Hratchian HP, Isborn CM. Comparison of Linear Response Theory, Projected Initial Maximum Overlap Method, and Molecular Dynamics-Based Vibronic Spectra: The Case of Methylene Blue. J Chem Theory Comput 2022; 18:3039-3051. [PMID: 35472264 DOI: 10.1021/acs.jctc.1c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The simulation of optical spectra is essential to molecular characterization and, in many cases, critical for interpreting experimental spectra. The most common method for simulating vibronic absorption spectra relies on the geometry optimization and computation of normal modes for ground and excited electronic states. In this report, we show that the utilization of such a procedure within an adiabatic linear response (LR) theory framework may lead to state mixings and a breakdown of the Born-Oppenheimer approximation, resulting in a poor description of absorption spectra. In contrast, computing excited states via a self-consistent field method in conjunction with a maximum overlap model produces states that are not subject to such mixings. We show that this latter method produces vibronic spectra much more aligned with vertical gradient and molecular dynamics (MD) trajectory-based approaches. For the methylene blue chromophore, we compare vibronic absorption spectra computed with the following: an adiabatic Hessian approach with LR theory-optimized structures and normal modes, a vertical gradient procedure, the Hessian and normal modes of maximum overlap method-optimized structures, and excitation energy time-correlation functions generated from an MD trajectory. Because of mixing between the bright S1 and dark S2 surfaces near the S1 minimum, computing the adiabatic Hessian with LR theory and time-dependent density functional theory with the B3LYP density functional predicts a large vibronic shoulder for the absorption spectrum that is not present for any of the other methods. Spectral densities are analyzed and we compare the behavior of the key normal mode that in LR theory strongly couples to the optical excitation while showing S1/S2 state mixings. Overall, our study provides a note of caution in computing vibronic spectra using the excited-state adiabatic Hessian of LR theory-optimized structures and also showcases three alternatives that are less sensitive to adiabatic state mixing effects.
Collapse
Affiliation(s)
- Ali Abou Taka
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Shao-Yu Lu
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Duncan Gowland
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hector H Corzo
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Liang Shi
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Hrant P Hratchian
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
8
|
Zuehlsdorff TJ, Shedge SV, Lu SY, Hong H, Aguirre VP, Shi L, Isborn CM. Vibronic and Environmental Effects in Simulations of Optical Spectroscopy. Annu Rev Phys Chem 2021; 72:165-188. [DOI: 10.1146/annurev-physchem-090419-051350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.
Collapse
Affiliation(s)
- Tim J. Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Sapana V. Shedge
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Shao-Yu Lu
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Hanbo Hong
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Vincent P. Aguirre
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Christine M. Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
9
|
Rabe EJ, Goldwyn HJ, Hwang D, Masiello DJ, Schlenker CW. Intermolecular Hydrogen Bonding Tunes Vibronic Coupling in Heptazine Complexes. J Phys Chem B 2020; 124:11680-11689. [PMID: 33315409 DOI: 10.1021/acs.jpcb.0c07719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better understand how hydrogen bonding influences the excited-state landscapes of aza-aromatic materials, we studied hydrogen-bonded complexes of 2,5,8-tris (4-methoxyphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (TAHz), a molecular photocatalyst related to graphitic carbon nitride, with a variety of phenol derivatives (R-PhOH). By varying the electron-withdrawing character of the para-substituent on the phenol, we can modulate the strength of the hydrogen bond. Using time-resolved photoluminescence, we extract a spectral component associated with the R-PhOH-TAHz hydrogen-bonded complex. Surprisingly, we noticed a striking change in the relative amplitude of vibronic peaks in the TAHz-centered emission as a function of R-group on phenol. To gain a physical understanding of these spectral changes, we employed a displaced-oscillator model of molecular emission to fit these spectra. This fit assumes that two vibrational modes are dominantly coupled to the emissive electronic transition and extracts their frequencies and relative nuclear displacements (related to the Huang-Rhys factor). With the aid of quantum chemical calculations, we found that heptazine ring-breathing and ring-puckering modes are likely responsible for the observed vibronic progression, and both modes indicate decreasing molecular distortion in the excited state with increasing hydrogen bond strength. This finding offers new insights into intermolecular excited-state hydrogen bonding, which is a crucial step toward controlling excited-state proton-coupled electron transfer and proton transfer reactions.
Collapse
Affiliation(s)
- Emily J Rabe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Harrison J Goldwyn
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Doyk Hwang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Cody W Schlenker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195-1652, United States.,Clean Energy Institute, University of Washington, Seattle, Washington 98195-1653, United States
| |
Collapse
|
10
|
Sláma V, Perlík V, Langhals H, Walter A, Mančal T, Hauer J, Šanda F. Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads. Front Chem 2020; 8:579166. [PMID: 33330367 PMCID: PMC7732524 DOI: 10.3389/fchem.2020.579166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Spectral and dynamical properties of molecular donor-acceptor systems strongly depend on the steric arrangement of the constituents with exciton coupling J as a key control parameter. In the present work we study two peri-arylene based dyads with orthogonal and parallel transition dipoles for donor and acceptor moieties, respectively. We show that the anharmonic multi-well character of the orthogonal dyad's intramolecular potential explains findings from both stationary and time-resolved absorption experiments. While for a parallel dyad, standard quantum chemical estimates of J at 0 K are in good agreement with experimental observations, J becomes vanishingly small for the orthogonal dyad, in contrast to its ultrafast experimental transfer times. This discrepancy is not resolved even by accounting for harmonic fluctuations along normal coordinates. We resolve this problem by supplementing quantum chemical approaches with dynamical sampling of fluctuating geometries. In contrast to the moderate Gaussian fluctuations of J for the parallel dyad, fluctuations for the orthogonal dyad are found to follow non-Gaussian statistics leading to significantly higher effective J in good agreement with experimental observations. In effort to apply a unified framework for treating the dynamics of optical coherence and excitonic populations of both dyads, we employ a vibronic approach treating electronic and selected vibrational degrees on an equal footing. This vibronic model is used to model absorption and fluorescence spectra as well as donor-acceptor transport dynamics and covers the more traditional categories of Förster and Redfield transport as limiting cases.
Collapse
Affiliation(s)
- Vladislav Sláma
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Václav Perlík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Heinz Langhals
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Walter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomáš Mančal
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Jürgen Hauer
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Munich, Germany
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
12
|
Zuehlsdorff TJ, Hong H, Shi L, Isborn CM. Nonlinear spectroscopy in the condensed phase: The role of Duschinsky rotations and third order cumulant contributions. J Chem Phys 2020; 153:044127. [PMID: 32752702 DOI: 10.1063/5.0013739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
First-principles modeling of nonlinear optical spectra in the condensed phase is highly challenging because both environment and vibronic interactions can play a large role in determining spectral shapes and excited state dynamics. Here, we compute two dimensional electronic spectroscopy (2DES) signals based on a cumulant expansion of the energy gap fluctuation operator, with specific focus on analyzing mode mixing effects introduced by the Duschinsky rotation and the role of the third order term in the cumulant expansion for both model and realistic condensed phase systems. We show that for a harmonic model system, the third order cumulant correction captures effects introduced by a mismatch in curvatures of ground and excited state potential energy surfaces, as well as effects of mode mixing. We also demonstrate that 2DES signals can be accurately reconstructed from purely classical correlation functions using quantum correction factors. We then compute nonlinear optical spectra for the Nile red and methylene blue chromophores in solution, assessing the third order cumulant contribution for realistic systems. We show that the third order cumulant correction is strongly dependent on the treatment of the solvent environment, revealing the interplay between environmental polarization and the electronic-vibrational coupling.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Hanbo Hong
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Liang Shi
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
13
|
Smith LD, Dijkstra AG. Quantum dissipative systems beyond the standard harmonic model: Features of linear absorption and dynamics. J Chem Phys 2019; 151:164109. [PMID: 31675870 DOI: 10.1063/1.5122896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current simulations of ultraviolet-visible absorption lineshapes and dynamics of condensed phase systems largely adopt a harmonic description to model vibrations. Often, this involves a model of displaced harmonic oscillators that have the same curvature. Although convenient, for many realistic molecular systems, this approximation no longer suffices. We elucidate nonstandard harmonic and anharmonic effects on linear absorption and dynamics using a stochastic Schrödinger equation approach to account for the environment. First, a harmonic oscillator model with ground and excited potentials that differ in curvature is utilized. Using this model, it is shown that curvature difference gives rise to an additional substructure in the vibronic progression of absorption spectra. This effect is explained and subsequently quantified via a derived expression for the Franck-Condon coefficients. Subsequently, anharmonic features in dissipative systems are studied, using a Morse potential and parameters that correspond to the diatomic molecule H2 for differing displacements and environment interaction. Finally, using a model potential, the population dynamics and absorption spectra for the stiff-stilbene photoswitch are presented and features are explained by a combination of curvature difference and anharmonicity in the form of potential energy barriers on the excited potential.
Collapse
Affiliation(s)
- Luke D Smith
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arend G Dijkstra
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
14
|
Zuehlsdorff TJ, Montoya-Castillo A, Napoli JA, Markland TE, Isborn CM. Optical spectra in the condensed phase: Capturing anharmonic and vibronic features using dynamic and static approaches. J Chem Phys 2019; 151:074111. [PMID: 31438704 DOI: 10.1063/1.5114818] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Simulating optical spectra in the condensed phase remains a challenge for theory due to the need to capture spectral signatures arising from anharmonicity and dynamical effects, such as vibronic progressions and asymmetry. As such, numerous simulation methods have been developed that invoke different approximations and vary in their ability to capture different physical regimes. Here, we use several models of chromophores in the condensed phase and ab initio molecular dynamics simulations to rigorously assess the applicability of methods to simulate optical absorption spectra. Specifically, we focus on the ensemble scheme, which can address anharmonic potential energy surfaces but relies on the applicability of extreme nuclear-electronic time scale separation; the Franck-Condon method, which includes dynamical effects but generally only at the harmonic level; and the recently introduced ensemble zero-temperature Franck-Condon approach, which straddles these limits. We also devote particular attention to the performance of methods derived from a cumulant expansion of the energy gap fluctuations and test the ability to approximate the requisite time correlation functions using classical dynamics with quantum correction factors. These results provide insights as to when these methods are applicable and able to capture the features of condensed phase spectra qualitatively and, in some cases, quantitatively across a range of regimes.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | | | - Joseph A Napoli
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
15
|
Anda A, Hansen T, De Vico L. Qy and Qx Absorption Bands for Bacteriochlorophyll a Molecules from LH2 and LH3. J Phys Chem A 2019; 123:5283-5292. [DOI: 10.1021/acs.jpca.9b02877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André Anda
- Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Thorsten Hansen
- Department of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Luca De Vico
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy
| |
Collapse
|
16
|
Jansen TLC, Saito S, Jeon J, Cho M. Theory of coherent two-dimensional vibrational spectroscopy. J Chem Phys 2019; 150:100901. [DOI: 10.1063/1.5083966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas la Cour Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan and The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
17
|
Yan YA. Stochastic simulation of anharmonic dissipation. II. Harmonic bath potentials with quadratic couplings. J Chem Phys 2019; 150:074106. [PMID: 30795680 DOI: 10.1063/1.5052527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The workhorse simulating the dissipative dynamics is mainly based on the harmonic bath potentials together with linear system-bath couplings, but a realistic bath always assumes anharmonicity. In this work, we extend the linear dissipation model to include quadratic couplings and suggest a stochastic simulation scheme for the anharmonic dissipation. We show that the non-Gaussian noises induced by the anharmonic bath can be rigorously constructed, and the resulting stochastic Liouville equation has the same form as that for the linear dissipation model. As a preliminary application, we use this stochastic method to investigate the vibration-induced symmetry breaking in two-level electronic systems and find that the characteristic function of the non-Gaussian noises determines the absorption and fluorescence spectra.
Collapse
Affiliation(s)
- Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
18
|
Farag MH, Hoenders BJ, Knoester J, Jansen TLC. Spectral line shapes in linear absorption and two-dimensional spectroscopy with skewed frequency distributions. J Chem Phys 2018. [PMID: 28641417 DOI: 10.1063/1.4985665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The effect of Gaussian dynamics on the line shapes in linear absorption and two-dimensional correlation spectroscopy is well understood as the second-order cumulant expansion provides exact spectra. Gaussian solvent dynamics can be well analyzed using slope line analysis of two-dimensional correlation spectra as a function of the waiting time between pump and probe fields. Non-Gaussian effects are not as well understood, even though these effects are common in nature. The interpretation of the spectra, thus far, relies on complex case to case analysis. We investigate spectra resulting from two physical mechanisms for non-Gaussian dynamics, one relying on the anharmonicity of the bath and the other on non-linear couplings between bath coordinates. These results are compared with outcomes from a simpler log-normal dynamics model. We find that the skewed spectral line shapes in all cases can be analyzed in terms of the log-normal model, with a minimal number of free parameters. The effect of log-normal dynamics on the spectral line shapes is analyzed in terms of frequency correlation functions, maxline slope analysis, and anti-diagonal linewidths. A triangular line shape is a telltale signature of the skewness induced by log-normal dynamics. We find that maxline slope analysis, as for Gaussian dynamics, is a good measure of the solvent dynamics for log-normal dynamics.
Collapse
Affiliation(s)
- Marwa H Farag
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bernhard J Hoenders
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
19
|
Costa GJ, Borin AC, Custodio R, Vidal LN. Fully Anharmonic Vibrational Resonance Raman Spectrum of Diatomic Systems. J Chem Theory Comput 2018; 14:843-855. [DOI: 10.1021/acs.jctc.7b01034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gustavo J. Costa
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Av. Dep. Heitor de Alencar Furtado, 5000, Curitiba/PR 81280-340, Brazil
| | - Antonio C. Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, NAP-Photo Tech the USP Consortium of Photochemical Technology, Av. Prof. Lineu Prestes, 748, São Paulo/SP 05508-000, Brazil
| | - Rogério Custodio
- Instituto de Química, Universidade Estadual de Campinas, R. Josué de Castro, 126, Campinas/SP 13083-970, Brazil
| | - Luciano N. Vidal
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Av. Dep. Heitor de Alencar Furtado, 5000, Curitiba/PR 81280-340, Brazil
| |
Collapse
|
20
|
Anda A, Abramavičius D, Hansen T. Two-dimensional electronic spectroscopy of anharmonic molecular potentials. Phys Chem Chem Phys 2018; 20:1642-1652. [PMID: 29261201 DOI: 10.1039/c7cp06583c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful tool in the study of coupled electron-phonon dynamics, yet very little is known about how nonlinearities in the electron-phonon coupling, arising from anharmonicities in the nuclear potentials, affect the spectra. These become especially relevant when the coupling is strong. From the linear spectroscopies, anharmonicities are known to give structure to the zero-phonon line and to break mirror-symmetry between absorption and emission, but the 2D analogues of these effects have not been identified. Using a simple two-level model where the electronic states are described by (displaced) harmonic oscillators with differing curvatures or displaced Morse oscillators, we find that the zero-phonon line shape is essentially transferred to the diagonal in 2DES spectra, and that anharmonicities break a horizontal mirror-symmetry in the infinite waiting time limit. We also identify anharmonic effects that are only present in 2DES spectra: twisting of cross-peaks stemming from stimulated emission signals; and oscillation period mismatch between ground state bleach and stimulated emission (for harmonic oscillators with differing curvatures), or inherently chaotic oscillations (for Morse oscillators). Our findings will facilitate an improved understanding of 2DES spectra and aid the interpretation of signals that are more realistic than those arising from simple models.
Collapse
Affiliation(s)
- André Anda
- Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
21
|
Chorošajev V, Marčiulionis T, Abramavicius D. Temporal dynamics of excitonic states with nonlinear electron-vibrational coupling. J Chem Phys 2017; 147:074114. [DOI: 10.1063/1.4985910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Vladimir Chorošajev
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - Tomas Marčiulionis
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - Darius Abramavicius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
22
|
Anda A, De Vico L, Hansen T. Intermolecular Modes between LH2 Bacteriochlorophylls and Protein Residues: The Effect on the Excitation Energies. J Phys Chem B 2017; 121:5499-5508. [PMID: 28485594 DOI: 10.1021/acs.jpcb.7b02071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.
Collapse
Affiliation(s)
- André Anda
- Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Luca De Vico
- Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen, Denmark.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena , via Aldo Moro 2, 53100 Siena, Italy
| | - Thorsten Hansen
- Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Galestian Pour A, Lincoln CN, Perlík V, Šanda F, Hauer J. Anharmonic vibrational effects in linear and two-dimensional electronic spectra. Phys Chem Chem Phys 2017; 19:24752-24760. [DOI: 10.1039/c7cp05189a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anharmonic modulation of electronic gap is manifested in changing magnitudes of cross peaks of 2D electronic spectrum.
Collapse
Affiliation(s)
| | | | - Václav Perlík
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague
- Czech Republic
| | - František Šanda
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague
- Czech Republic
| | | |
Collapse
|