1
|
Jara-Cortés J, Resendiz-Pérez A, Hernández-Trujillo J, Peón J. Relaxation and Photochemistry of Nitroaromatic Compounds: Intersystem Crossing through 1ππ* to Higher 3ππ* States, and NO • Dissociation in 9-Nitroanthracene─A Theoretical Study. J Phys Chem A 2025; 129:3220-3230. [PMID: 40138542 DOI: 10.1021/acs.jpca.4c08534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Determination of the photodegradation pathways of nitroaromatic compounds, known for their mutagenic properties and toxicity, is a relevant topic in atmospheric chemistry. In the present theoretical study, mechanisms for the photophysical relaxation and NO• dissociation of 9-nitroanthracene (9-NA) are proposed that challenge the commonly assumed pathways based on the El-Sayed rules. The analysis of the stationary points on the potential energy surfaces obtained with multiconfigurational methods indicates that after light absorption and subsequent relaxation of the S1 state, the system undergoes ultrafast intersystem crossing to T2, which serves as a gate-state to the triplet manifold due to favorable energetic couplings. This occurs despite the nature of the singlet and triplet states being 1ππ* and 3ππ*, where the receiver triplet involves NO2 orbitals that are tilted from the polyaromatic plane, with no involvement of the 3nπ state in the process. After the singlet to triplet manifold crossing, the system evolves along two possible trajectories. One leads to the global minimum of T1 (phosphorescent end state) and the other involves the dissociation into antryloxy and NO• radicals. Overall, the information obtained is in agreement with steady-state and time-resolved spectroscopic data reported for 9-NA. Furthermore, it suggests that the deactivation mechanism of nitroaromatic compounds can take place between 1ππ* and 3ππ* states, which opens a new landscape for the rationalization of the photophysics of these and other systems.
Collapse
Affiliation(s)
- Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Antonio Resendiz-Pérez
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, México
| | - Jorge Peón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
2
|
Xiong Q, Wang P, Ma C, Law ATK, Wang M, Kwok WM. Superior Photostability of the Unnatural Base 6-Amino-5-nitropyridin-2-ol: A Case Study Using Ultrafast Broadband Fluorescence, Transient Absorption, and Theoretical Computation. J Phys Chem Lett 2024; 15:11553-11561. [PMID: 39526600 DOI: 10.1021/acs.jpclett.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
6-Amino-5-nitropyridin-2-ol (Z), a nitroaromatic compound and a base for Hachimoji nucleic acids, holds significant potential in expanding the genetic alphabet, as well as in synthetic biology and biotechnology. Despite its promising applications, the spectral characterization and photoinduced properties of Z have remained largely unexplored until now. This study presents a comprehensive investigation into its excited state dynamics in various solvents, utilizing state-of-the-art ultrafast broadband time-resolved fluorescence and transient absorption spectroscopy, complemented by computational methods. The acquired results provide direct experimental evidence that, upon photoexcitation, Z emits prompt fluorescence from a nearly planar structure in its excited state, independent of solvent properties. This state deactivates nonradiatively within sub-picoseconds through internal conversion with a unitary yield, primarily mediated by the rotation of the nitro group. This unusually rapid deactivation pathway entirely excludes the involvement of long-lived nπ* states, triplet states, and photoproducts, which are commonly observed in most nitroaromatic compounds and natural DNA and RNA bases. Our findings underscore that Z, as an unnatural base, exhibits superior photostability compared to canonical natural bases. This provides valuable insights into the photodynamics of nitroaromatic compounds, which is beneficial for strategic substitution design in environmental and biological applications.
Collapse
Affiliation(s)
- Qingwu Xiong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, People's Republic of China
- College of Physics and optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Ping Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, People's Republic of China
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, People's Republic of China
| | - Alvis Tsz-Kit Law
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, People's Republic of China
| | - Mingliang Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, People's Republic of China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, People's Republic of China
| |
Collapse
|
3
|
Pradeep Kumar AK, Santra S, Ghosh D. Photophysics of Nitro-Substituted Unnatural Nucleic Acid Base. J Phys Chem A 2024; 128:9551-9558. [PMID: 39471278 DOI: 10.1021/acs.jpca.4c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The unnatural nucleic acid base (uNAB), 6-amino-3-methyl-5-nitropyridin-2(1H)one, often referred to as Z can form a base pair with the uNAB 2-aminoimidazo[1,2-a]-1,3,5-triazin-4(8H)-one (referred to as P) and is analogous to a guanine-cytosine (G-C) pair. However, it is well-known that the nonradiative decay pathway of the P-Z pair is significantly different from that of the G-C pair (Cui et al., Front. Chem. 2020, 8, 605117-605125). In this work, we study the excited state processes in Z using state-of-the-art multireference methods and dynamical techniques to ascertain the predominant nonradiative channels. We find that unlike in the natural NABs, the excited state processes in Z are driven primarily by the -NO2 group rotation. The electron-withdrawing effect of the -NO2 substituent plays a crucial role. We further ascertained that ultrafast deactivation channels are possible in Z and identified the stationary point geometries that are responsible for these channels.
Collapse
Affiliation(s)
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Ghosh D, Spinlove KE, Greene HJM, Lau N, Gómez S, Kao MH, Whitaker W, Clark IP, Malakar P, Worth GA, Oliver TAA, Fielding HH, Orr-Ewing AJ. Efficient Ground-State Recovery of UV-Photoexcited p-Nitrophenol in Aqueous Solution by Direct and Multistep Pathways. J Am Chem Soc 2024; 146:30443-30454. [PMID: 39450513 PMCID: PMC11544619 DOI: 10.1021/jacs.4c10965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Nitroaromatic compounds are found in brown carbon aerosols emitted to the Earth's atmosphere by biomass burning, and are important organic chromophores for the absorption of solar radiation. Here, transient absorption spectroscopy spanning 100 fs-8 μs is used to explore the pH-dependent photochemical pathways for aqueous solutions of p-nitrophenol, chosen as a representative nitroaromatic compound. Broadband ultrafast UV-visible and infrared probes are used to characterize the excited states and intermediate species involved in the multistep photochemistry, and to determine their lifetimes under different pH conditions. The assignment of absorption bands, and the dynamical interpretation of our experimental measurements are supported by computational calculations. After 320 nm photoexcitation to the first bright state, which has 1ππ* character in the Franck-Condon region, and ultrafast (∼200 fs) structural relaxation in the adiabatic S1 state to a region with 1nπ* electronic character, the S1 p-nitrophenol population decays on a time scale of ∼12 ps. This decay involves competition between direct internal conversion to the S0 state (∼40%) and rapid intersystem crossing to the triplet manifold (∼60%). Population in the T1-state decays by excited-state proton transfer (ESPT) to the surrounding water and relaxation of the resulting triplet-state p-nitrophenolate anion to its S0 electronic ground state in ∼5 ns. Reprotonation of the S0-state p-nitrophenolate anion recovers p-nitrophenol in its electronic ground state. Overall recovery of the S0 state of aqueous p-nitrophenol via these competing pathways is close to 100% efficient. The experimental observations help to explain why nitroaromatic compounds such as p-nitrophenol resist photo-oxidative degradation in the environment.
Collapse
Affiliation(s)
- Deborin Ghosh
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - K. Eryn Spinlove
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Hallam J. M. Greene
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Nicholas Lau
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Sandra Gómez
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Departamento
de Química Física, Universidad
de Salamanca, Salamanca, 37008, Spain
| | - Min-Hsien Kao
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - William Whitaker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory,
Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Partha Malakar
- Central
Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory,
Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Graham A. Worth
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Thomas A. A. Oliver
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Helen H. Fielding
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
5
|
Yin BW, Wang JL, Dai JL, Jian JW, Jia PK, Cui G, Xie BB. Excited-State Decay and Photolysis of O-Nitrophenol after Proton Transfer. II: A Theoretical Investigation in the Microsolvated Atmospheric Environment. J Phys Chem A 2024; 128:9486-9496. [PMID: 39418636 DOI: 10.1021/acs.jpca.4c04892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Changes in atmospheric humidity affect the number of water molecules surrounding o-nitrophenol (ONP), creating an anisotropic chemical environment. It, in turn, influences the photodynamic behaviors of ONP, differing from those observed in the gas phase and in solution. Recently, we explored the excited-state decay and the generation of the hydroxyl (OH) radical before proton transfer of ONP in the microsolvated environment using the MS-CASPT2//CASSCF approach. As is well known, ONP is capable of converting to its aci-nitro isomer (aciONP) via an excited-state intramolecular proton transfer (ESIPT) process. In the present work, the photoinduced dynamics of aciONP, which can lead to an OH radical and nitrous acid (HONO), was studied using the same computational model. Our calculations demonstrated that increasing the number of water molecules affects the molecular geometries, particularly the key bond lengths and dihedral angles of the HONO group, while also reducing the relative energies of minima and intersections. Moreover, we identified two distinct types of minimum structures: one that retains the intramolecular hydrogen bond and the other that breaks the hydrogen bond with the H atom flipping outward. The latter structure, compared with the former, has a different electronic-state character and facilitates intersystem crossing processes. Subsequently, two major excited-state decay paths were proposed: (PATH I) ESIPT → S1 → S1S0 → S0; (PATH II) ESIPT → S1 → S1-2 → S1T1 → T1 → S0T1 → S0. Furthermore, the T1 state has a relatively long lifetime, allowing for the formation of the OH radical and HONO, and the corresponding energy barriers decrease as the number of water molecules increases. These theoretical findings provide valuable insights into the photodynamics of aciONP in the microsolvated atmospheric environment.
Collapse
Affiliation(s)
- Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, P. R. China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, P. R. China
| | - Jia-Ling Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, P. R. China
| | - Ji-Wen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, P. R. China
| | - Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, P. R. China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, P. R. China
| |
Collapse
|
6
|
Jia PK, Wang JL, Zhao R, Jian JW, Yin BW, Cui G, Xie BB. Excited-State Decay and Photolysis of O-Nitrophenol before Proton Transfer. I: A Theoretical Investigation in the Microsolvated Atmospheric Environment. J Phys Chem A 2024; 128:9497-9509. [PMID: 39425687 DOI: 10.1021/acs.jpca.4c04890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
As a potential source of the hydroxyl (OH) radical and nitrous acid (HONO), photolysis of o-nitrophenol (ONP) is of significant interest in both experimental and theoretical studies. In the atmospheric environment, the number of water molecules surrounding ONP changes with the humidity of the air, leading to an anisotropic chemical environment. This may have an impact on the photodynamics of ONP and provide a mechanism that differs from previously reported ones in the gas phase or in solution. Herein, the high-level MS-CASPT2//CASSCF method was performed to elucidate the excited-state decay and the generation of the OH radical for ONP before proton transfer in the microsolvated surrounding. We found that the varying number of water molecules affects the ground-state structures and alters the energy levels of nπ* and ππ* at the Franck-Condon (FC) region. Nevertheless, this is not the case for the excited-state minima, which exhibit very similar adiabatic excitation properties. In addition, the presence of water molecules also significantly influences the intersection structures since hydrogen bonds will hinder or alleviate the rotation or pyramidalization of the nitro (NO2) group. This will, in turn, change the excited-state relaxation mechanism of ONP. Finally, we speculated that the OH radical might be formed in the hot ground state of ONP in the microsolvated surrounding after exploring all possible electronic states.
Collapse
Affiliation(s)
- Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou 451162, Henan, P. R. China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Rui Zhao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ji-Wen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| |
Collapse
|
7
|
Wang Y, Ye Z, Han T, Du Y, Xue J. Transient spectroscopic insights into nitroindole's T 1 state: Elucidating its intermediates and unique photochemical properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124555. [PMID: 38823242 DOI: 10.1016/j.saa.2024.124555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Indoles are notable for their distinct photophysical and photochemical properties, making them useful indicators in biological systems and promising candidates for a variety of pharmaceutical applications. While some indoles exhibit room temperature phosphorescence, such a phenomenon has not been observed in nitroindoles. Typically, adding of a nitro group into aromatic compounds promotes ultrafast intersystem crossing and increases the formation quantum yield of the lowest excited triplet (T1). Therefore, understanding the reactivity of nitroindoles' T1 states is imperative. This study investigated the physical properties and chemical reactivities of the T1 state of 6-nitroindole (3HN-6NO2) in both polar aprotic and protic solvents, using transient absorption spectroscopy. Our results demonstrate the basicity and acidity of 3HN-6NO2, emphasizing its potential for protonation and dissociation in mildly acidic and basic conditions, respectively. Furthermore, 3HN-6NO2 has a high oxidizing capacity, participating in electron transfer reactions and proton-coupled electron transfer to produce radicals. Interestingly, in protic solvents like alcohols, 3HN-6NO2 dissociates at the -NH group and forms N-H…O hydrogen-bonded complexes with the nitro group. By identifying transient absorption spectra of intermediates and quantifying kinetic reaction rate constants, we illuminate the unique properties of the T1 state nitroindoles, enriching our understanding of their photophysical and photochemical behaviors. The results of this study have significant implications for their potential application in both biological systems and materials science.
Collapse
Affiliation(s)
- Yangxin Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhao Ye
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Jiadan Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Loos PF, Jacquemin D. A mountaineering strategy to excited states: Accurate vertical transition energies and benchmarks for substituted benzenes. J Comput Chem 2024; 45:1791-1805. [PMID: 38661240 DOI: 10.1002/jcc.27358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/26/2024]
Abstract
In an effort to expand the existing QUEST database of accurate vertical transition energies [Véril et al. WIREs Comput. Mol. Sci. 2021, 11, e1517], we have modeled more than 100 electronic excited states of different natures (local, charge-transfer, Rydberg, singlet, and triplet) in a dozen of mono- and di-substituted benzenes, including aniline, benzonitrile, chlorobenzene, fluorobenzene, nitrobenzene, among others. To establish theoretical best estimates for these vertical excitation energies, we have employed advanced coupled-cluster methods including iterative triples (CC3 and CCSDT) and, when technically possible, iterative quadruples (CC4). These high-level computational approaches provide a robust foundation for benchmarking a series of popular wave function methods. The evaluated methods all include contributions from double excitations (ADC(2), CC2, CCSD, CIS(D), EOM-MP2, STEOM-CCSD), along with schemes that also incorporate perturbative or iterative triples (ADC(3), CCSDR(3), CCSD(T)(a) ⋆ , and CCSDT-3). This systematic exploration not only broadens the scope of the QUEST database but also facilitates a rigorous assessment of different theoretical approaches in the framework of a homologous chemical series, offering valuable insights into the accuracy and reliability of these methods in such cases. We found that both ADC(2.5) and CCSDT-3 can provide very consistent estimates, whereas among less expensive methods SCS-CC2 is likely the most effective approach. Importantly, we show that some lower order methods may offer reasonable trends in the homologous series while providing quite large average errors, and vice versa. Consequently, benchmarking the accuracy of a model based solely on absolute transition energies may not be meaningful for applications involving a series of similar compounds.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
9
|
Whitaker W, Ghosh D, Malakar P, Karras G, Orr-Ewing AJ. Femtosecond to Microsecond Observation of Photochemical Pathways in Nitroaromatic Phototriggers Using Transient Absorption Spectroscopy. J Phys Chem A 2024; 128:5892-5905. [PMID: 38988292 DOI: 10.1021/acs.jpca.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The synthetic accessibility and tolerance to structural modification of phototriggered compounds (PTs) based on the ortho- nitrobenzene (ONB) protecting group have encouraged a myriad of applications including optimization of biological activity, and supramolecular polymerization. Here, a combination of ultrafast transient absorption spectroscopy techniques is used to study the multistep photochemistry of two nitroaromatic phototriggers based on the ONB chromophore, O-(4,5-dimethoxy-2-nitrobenzyl)-l-serine (DMNB-Ser) and O-[(2-nitrophenyl)methyl]-l-tyrosine hydrochloride (NB-Tyr), in DMSO solutions on femtosecond to microsecond time scales following the absorption of UV light. From a common nitro-S1 excited state, the PTs can either undergo excited state intramolecular hydrogen transfer (ESIHT) to an aci-S1 isomer within the singlet state manifold, leading to direct S1 → S0 internal conversion through a conical intersection, or competitive intersystem crossing (ISC) to access the triplet state manifold on time scales of (1.93 ± 0.03) ps and (13.9 ± 1.2) ps for DMNB-Ser and NB-Tyr, respectively. Deprotonation of aci-T1 species to yield triplet anions is proposed to occur in both PTs, with an illustrative time constant of (9.4 ± 0.7) ns for DMNB-Ser. More than 75% of the photoexcited molecules return to their electronic ground states within 8 μs, either by direct S1 → S0 relaxation or anion reprotonation. Hence, upper limits to the quantum yields of photoproduct formation are estimated to be in the range of 13-25%. Mixed DMSO/H2O solvents show the influence of the environment on the observed photochemistry, for example, revealing two nitro-S1 lifetimes for DMNB-Ser in a 10:1 DMSO/H2O mixture of 1.95 ps and (10.1 ± 1.2) ps, which are attributed to different microsolvation environments.
Collapse
Affiliation(s)
- William Whitaker
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Deborin Ghosh
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Partha Malakar
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Gabriel Karras
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
10
|
Chowdhury PR, Kawade M, Patwari GN. Mechanistic variances in NO release: ortho vs. meta isomers of nitrophenol and nitroaniline. Chem Commun (Camb) 2024; 60:5431-5434. [PMID: 38686426 DOI: 10.1039/d4cc01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The NO release following 266 nm photolysis of ortho and meta isomers of nitrophenol and nitroaniline shows a bimodal translational energy distribution, wherein the slow and fast components originate from dynamics in the S0 and T1 states, respectively. The translational energy distribution profiles for any NO product state show a higher slow-to-fast (s/f) branching ratio for the ortho isomer in comparison with the meta isomer. The observed variation in the s/f branching ratio vis-à-vis the ortho and meta isomers is attributed to the presence of intramolecular hydrogen bonding between the ortho substituent and NO2 moiety, which favours the roaming mechanism.
Collapse
Affiliation(s)
- Prahlad Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Monali Kawade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
11
|
Lau N, Ghosh D, Bourne-Worster S, Kumar R, Whitaker WA, Heitland J, Davies JA, Karras G, Clark IP, Greetham GM, Worth GA, Orr-Ewing AJ, Fielding HH. Unraveling the Ultrafast Photochemical Dynamics of Nitrobenzene in Aqueous Solution. J Am Chem Soc 2024; 146:10407-10417. [PMID: 38572973 PMCID: PMC11027148 DOI: 10.1021/jacs.3c13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth's climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process.
Collapse
Affiliation(s)
- Nicholas
A. Lau
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Deborin Ghosh
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | | | - Rhea Kumar
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - William A. Whitaker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Jonas Heitland
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Julia A. Davies
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Gabriel Karras
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Graham A. Worth
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Helen H. Fielding
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
12
|
Chen XR, Jiang WJ, Guo QH, Liu XY, Cui G, Li L. Theoretical insights into the photophysics of an unnatural base Z: A MS-CASPT2 investigation. Photochem Photobiol 2024; 100:380-392. [PMID: 38041414 DOI: 10.1111/php.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
We have employed the highly accurate multistate complete active space second-order perturbation theory (MS-CASPT2) method to investigate the photoinduced excited state relaxation properties of one unnatural base, namely Z. Upon excitation to the S2 state of Z, the internal conversion to the S1 state would be dominant. From the S1 state, two intersystem crossing paths leading to the T2 and T1 states and one internal conversion path to the S0 state are possible. However, considering the large barrier to access the S1 /S0 conical intersection and the strong spin-orbit coupling between S1 and T2 states (>40 cm-1 ), the intersystem crossing to the triplet manifolds is predicted to be more preferred. Arriving at the T2 state, the internal conversion to the T1 state and the intersystem crossing back to the S1 state are both possible considering the S1 /T2 /T1 three-state intersection near the T2 minimum. Upon arrival at the T1 state, the deactivation to S0 can be efficient after overcoming a small barrier to access T1 /S0 crossing point, where the spin-orbit coupling (SOC) is as large as 39.7 cm-1 . Our present work not only provides in-depth insights into the photoinduced process of unnatural base Z, but can also help the future design of novel unnatural bases with better photostability.
Collapse
Affiliation(s)
- Xin-Rui Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Wen-Jun Jiang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Qian-Hong Guo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
13
|
Giussani A, Worth GA. A First Proposal on the Nitrobenzene Photorelease Mechanism of NO 2 and Its Relation to NO Formation through a Roaming Mechanism. J Phys Chem Lett 2024; 15:2216-2221. [PMID: 38373198 PMCID: PMC10910573 DOI: 10.1021/acs.jpclett.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Despite the fact that NO2 is considered to be the main photoproduct of nitrobenzene photochemistry, no mechanism has ever been proposed to rationalize its formation. NO photorelease is instead a more studied process, probably due to its application in the drug delivery sector and the study of roaming mechanisms. In this contribution, a photoinduced mechanism accounting for the formation of NO2 in nitrobenzene is theorized based on CASPT2, CASSCF, and DFT electronic structure calculations and CASSCF classical dynamics. A triplet nπ* state is shown to evolve toward C-NO2 dissociation, being, in fact, the only low-lying excited state favoring such a deformation. Along the triplet dissociation path, the possibility to decay to the singlet ground state results in the frustration of the dissociation and in the recombination of the fragments, either back to the nitro or the nitrite isomer. The thermal decomposition of the latter to NO constitutes globally a roaming mechanism of NO formation.
Collapse
Affiliation(s)
- Angelo Giussani
- Instituto
de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain
| | - Graham A. Worth
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
14
|
Crane S, Garrow M, Lane PD, Robertson K, Waugh A, Woolley JM, Stavros VG, Paterson MJ, Greaves SJ, Townsend D. The Value of Different Experimental Observables: A Transient Absorption Study of the Ultraviolet Excitation Dynamics Operating in Nitrobenzene. J Phys Chem A 2023; 127:6425-6436. [PMID: 37494478 PMCID: PMC10424241 DOI: 10.1021/acs.jpca.3c02654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Indexed: 07/28/2023]
Abstract
Excess energy redistribution dynamics operating in nitrobenzene under hexane and isopropanol solvation were investigated using ultrafast transient absorption spectroscopy (TAS) with a 267 nm pump and a 340-750 nm white light continuum probe. The use of a nonpolar hexane solvent provides a proxy to the gas-phase environment, and the findings are directly compared with a recent time-resolved photoelectron imaging (TRPEI) study on nitrobenzene using the same excitation wavelength [L. Saalbach et al., J. Phys. Chem. A 2021, 125, 7174-7184]. Of note is the observation of a 1/e lifetime of 3.5-6.7 ps in the TAS data that was absent in the TRPEI measurements. This is interpreted as a dynamical signature of the T2 state in nitrobenzene─analogous to observations in the related nitronaphthalene system, and additionally supported by previous quantum chemistry calculations. The discrepancy between the TAS and TRPEI measurements is discussed, with the overall findings providing an example of how different spectroscopic techniques can exhibit varying sensitivity to specific steps along the overall reaction coordinate connecting reactants to photoproducts.
Collapse
Affiliation(s)
- Stuart
W. Crane
- Institute
of Photonics & Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Malcolm Garrow
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Paul D. Lane
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Kate Robertson
- Institute
of Photonics & Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Alex Waugh
- Institute
of Photonics & Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Jack M. Woolley
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Vasilios G. Stavros
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Martin J. Paterson
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Stuart J. Greaves
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Dave Townsend
- Institute
of Photonics & Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
15
|
Bejoy NB, Roy Chowdhury P, Patwari GN. Modulating the Roaming Dynamics for the NO Release in ortho-Nitrobenzenes. J Phys Chem Lett 2023; 14:2816-2822. [PMID: 36912644 DOI: 10.1021/acs.jpclett.3c00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dynamics of NO release upon photodissociation of nitroaromatic compounds is dependent on the nature of the interaction between the NO2 group and substituent in the ortho position. A bimodal (slow and fast) translational energy distribution of the NO photofragment indicates the presence of two distinct NO elimination channels. The slow-to-fast branching ratio for the NO release is regulated by the hydrogen bonding ability of the ortho substituent and follows the order [OH > NH2 > CH3 > OCH3], indicating that the intramolecular hydrogen bonding plays a pivotal role in NO release dynamics. Further, the topology of the triplet state potential energy surface acts as a doorway to the dissociation pathway switching between the roaming and nonroaming mechanisms, with hydrogen bonding substituents (OH and NH2) favoring the roaming mechanism.
Collapse
Affiliation(s)
- Namitha Brijit Bejoy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prahlad Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Lasso JD, Castillo-Pazos DJ, Sim M, Barroso-Flores J, Li CJ. EDA mediated S-N bond coupling of nitroarenes and sodium sulfinate salts. Chem Sci 2023; 14:525-532. [PMID: 36741536 PMCID: PMC9847664 DOI: 10.1039/d2sc06087f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Despite their long-known photochemical properties and their industrial value, the use of nitroarenes as a productive photochemical handle in organic synthesis has remained relatively unexplored. More specifically, the photochemical formation of nitrogen-sulfur bonds from nitroarenes remains to be demonstrated. Herein, we report the design and application of a sulfinate-nitroarene electron donor-acceptor (EDA) complex and its subsequent use in the first light mediated catalyst-free synthesis of N-hydroxy-sulfonamides. The presence of the EDA was assessed spectroscopically and studied via DFT and TD-DFT calculations. A total of 32 examples including both electron withdrawing and electron donating groups were synthesized under our oxygen- and water-tolerant conditions.
Collapse
Affiliation(s)
- Juan D Lasso
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Durbis J Castillo-Pazos
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Malcolm Sim
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Joaquín Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano Toluca Estado de México C. P. 50200 México
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
17
|
Shao XZ, Xu GY, Fan W, Zhang S, Li MB. Photo-induced redox cascade reaction of nitroarenes and amines. Org Chem Front 2023. [DOI: 10.1039/d2qo01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A photo-induced redox cascade reaction has been developed for the chemoselective construction of isoxazolidine derivatives from stable and easily available nitroarenes and amines.
Collapse
Affiliation(s)
- Xing-Zhuo Shao
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Weigang Fan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Sheng Zhang
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
18
|
Bao Z, Zou J, Mou C, Jin Z, Ren SC, Chi YR. Direct Reaction of Nitroarenes and Thiols via Photodriven Oxygen Atom Transfer for Access to Sulfonamides. Org Lett 2022; 24:8907-8913. [PMID: 36421405 DOI: 10.1021/acs.orglett.2c03770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sulfonamide is a common motif in medicines and agrochemicals. Typically, this class of functional groups is prepared by reacting amines with sulfonyl chlorides that are presynthesized from nitro compounds and thiols, respectively. Here, we report a novel strategy that directly couples nitro compounds and thiols to form sulfonamides atom- and redox-economically. Mechanistic studies suggest our reaction proceeds via direct photoexcitation of nitroarenes that eventually transfers the oxygen atoms from the nitro group to the thiol unit.
Collapse
Affiliation(s)
- Zhaowei Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Juan Zou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shi-Chao Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
19
|
Giussani A, Worth GA. On the photorelease of nitric oxide by nitrobenzene derivatives: A CASPT2//CASSCF model. J Chem Phys 2022; 157:204301. [PMID: 36456224 DOI: 10.1063/5.0125460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nitroaromatic compounds can photorelease nitric oxide after UV absorption. The efficiency of the photoreaction depends on the molecular structure, and two features have been pointed out as particularly important for the yield of the process: the presence of methyl groups at the ortho position with respect to the nitro group and the degree of conjugation of the molecule. In this paper, we provide a theoretical characterization at the CASPT2//CASSCF (complete active space second-order perturbation theory//complete active space self-consistent field) level of theory of the photorelease of NO for four molecules derived from nitrobenzene through the addition of ortho methyl groups and/or the elongation of the conjugation. Our previously described mechanism obtained for the photorelease of NO in nitrobenzene has been adopted as a model for the process. According to this model, the process proceeds through a reactive singlet-triplet crossing (STC) region that the system can reach from the triplet 3(πOπ*) minimum. The energy barrier that must be surmounted in order to populate the reactive STC can be associated with the efficiency of the photoreaction. Here, the obtained results display clear differences in the efficiency of the photoreaction in the studied systems and can be correlated with experimental results. Thus, the model proves its ability to highlight the differences in the photoreaction efficiency for the nitroaromatic compounds studied here.
Collapse
Affiliation(s)
- Angelo Giussani
- Instituto de Ciencia Molecular, Universitat de València, Apartado22085, ES-46071 Valencia, Spain
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
20
|
Sarkar R, Loos PF, Boggio-Pasqua M, Jacquemin D. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. J Chem Theory Comput 2022; 18:2418-2436. [PMID: 35333060 DOI: 10.1021/acs.jctc.1c01197] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events but also to provide reference values for vertical transition energies, hence allowing benchmarking of lower-order models. In this category, both the complete-active-space second-order perturbation theory (CASPT2) and the N-electron valence state second-order perturbation theory (NEVPT2) are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches, the present work relies on highly accurate (±0.03 eV) aug-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 n → π*, 119 π → π*, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially contracted (PC) and strongly contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of 0.11 and 0.13 eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focused on single-reference wave function methods ( J. Chem. Theory Comput. 2018, 14, 4360; J. Chem. Theory Comput. 2020, 16, 1711), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character.
Collapse
Affiliation(s)
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
21
|
Mazumder A, Sebastian E, Hariharan M. Solvent dielectric delimited nitro–nitrito photorearrangement in a perylenediimide derivative. Chem Sci 2022; 13:8860-8870. [PMID: 35975155 PMCID: PMC9350666 DOI: 10.1039/d2sc02979k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery of vibrant excited-state dynamics and distinctive photochemistry has established nitrated polycyclic aromatic hydrocarbons as an exhilarating class of organic compounds. Herein, we report the atypical photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI), triggered by visible-light excitation and giving rise to linkage isomers in the polar aprotic solvent acetonitrile. ONO-PDI has been isolated and unambiguously characterized using standard spectroscopic, spectrometric, and elemental composition techniques. Although nitritoaromatic compounds are conventionally considered to be crucial intermediates in the photodissociation of nitroaromatics, experimental evidence for this has not been observed heretofore. Ultrafast transient absorption spectroscopy combined with computational investigations revealed the prominence of a conformationally relaxed singlet excited-state (SCR1) of NO2-PDI in the photoisomerization pathway. Theoretical transition state (TS) analysis indicated the presence of a six-membered cyclic TS, which is pivotal in connecting the SCR1 state to the photoproduct state. This article addresses prevailing knowledge gaps in the field of organic linkage isomers and provides a comprehensive understanding of the unprecedented photoisomerization mechanism operating in the case of NO2-PDI. The unprecedented photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI) is shown to occur through a cyclic six-membered transition state triggered by visible-light excitation.![]()
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
22
|
Rodríguez-Córdoba W, Gutiérrez-Arzaluz L, Cortés-Guzmán F, Peon J. Excited state dynamics and photochemistry of nitroaromatic compounds. Chem Commun (Camb) 2021; 57:12218-12235. [PMID: 34735557 DOI: 10.1039/d1cc04999b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitrated aromatic molecules have unique photoinduced channels. Due to the presence of oxygen-centered non-bonding orbitals, they can undergo sub-picosecond intersystem crossing showing one of the strongest couplings between the singlet and triplet manifolds among organic molecules. Several nitroaromatic compounds also have a distinctive nitric oxide photodissociation channel which occurs through a complex sequence of atom rearrangements and state changes. These remarkable processes have stimulated the attention of several research groups over the last few years who have applied modern femtosecond spectroscopies and new computational methods to these topics. Nitroaromatic molecules also have demonstrated their value as case-studies, where they can serve to understand the influence of torsional motions between the nitro substituent and the aromatic system in the conversions between states. In this contribution we highlight several of the recent results in this area. Due to the importance of the atmospheric photochemistry of nitrated compounds and their accumulating applications as nitric oxide release agents, continued research about the effects of the different state orderings, substitution patterns, and solvent effects is central to the development of future applications and for a better understanding of their environmental pathways. From this analysis, several pending issues are highlighted, which include the nature of the dominant singlet state involved in intersystem crossing, the role of the formation of charge-transfer states, the yield of the internal conversion channel to the electronic ground state, and a more generalized understanding of the sequence of steps which lead to nitric oxide dissociation.
Collapse
Affiliation(s)
- William Rodríguez-Córdoba
- Facultad de ciencias, Escuela de Física, Laboratorio de Fotónica y Optoelectrónica, Universidad Nacional de Colombia - Sede Medellín, Calle 59 A No. 63-20, A.A. 3840, Medellín, Colombia.
| | - Luis Gutiérrez-Arzaluz
- Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Fernando Cortés-Guzmán
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, 04510 D.F., Mexico.
| | - Jorge Peon
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, 04510 D.F., Mexico.
| |
Collapse
|
23
|
Soto J, Algarra M. Electronic Structure of Nitrobenzene: A Benchmark Example of the Accuracy of the Multi-State CASPT2 Theory. J Phys Chem A 2021; 125:9431-9437. [PMID: 34677962 PMCID: PMC8573753 DOI: 10.1021/acs.jpca.1c04595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The electronic structure
of nitrobenzene (C6H5NO2) has been
studied by means of the complete active
space self-consistent field (CASSCF) and multi-state second-order
perturbation (MS-CASPT2) methods. To this end, an active space of
20 electrons distributed in 17 orbitals has been selected to construct
the reference wave function. In this work, we have calculated the
vertical excitation energies and the energy barrier for the dissociation
of the molecule on the ground state into phenyl and nitrogen dioxide.
After applying the corresponding vibrational corrections to the electronic
energies, it is demonstrated that the MS-CASPT2//CASSCF values obtained
in this work yield an excellent agreement between calculated and experimental
data. In addition, other active spaces of lower size have been applied
to the system in order to check the active space dependence in the
results.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| |
Collapse
|
24
|
Saalbach L, Kotsina N, Crane SW, Paterson MJ, Townsend D. Ultraviolet Excitation Dynamics of Nitrobenzenes. J Phys Chem A 2021; 125:7174-7184. [PMID: 34379417 DOI: 10.1021/acs.jpca.1c04893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved photoelectron imaging was used to investigate nonadiabatic processes operating in the excited electronic states of nitrobenzene and three methyl-substituted derivatives: 3,5-, 2,6-, and 2,4-dimethylnitrobenzene. The primary goal was evaluating the dynamical impact of the torsional angle between the NO2 group and the benzene ring plane-something previously implicated in mediating the propensity for branching into different photodissociation pathways (NO vs NO2 elimination). Targeted, photoinitiated release of NO radicals is of interest for clinical medicine applications, and there is a need to establish basic structure-dynamics-function principles in systematically varied model systems following photoexcitation. Within our 200 ps experimental detection window, we observed no significant differences in the excited-state lifetimes exhibited by all species under study using a 267 nm pump and ionization with an intense 400 nm probe. In agreement with previous theoretical predictions, this suggests that the initial energy redistribution dynamics within the singlet and triplet manifolds are driven by motions localized predominantly on the NO2 group. Our findings also imply that both NO and NO2 elimination occur from a vibrationally hot ground state on extended (nanosecond) timescales, and any variations in NO vs NO2 branching upon site-selective methylation are due to steric effects influencing isomerization prior to dissociation.
Collapse
Affiliation(s)
- Lisa Saalbach
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Stuart W Crane
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Martin J Paterson
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.,Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
25
|
Loos PF, Comin M, Blase X, Jacquemin D. Reference Energies for Intramolecular Charge-Transfer Excitations. J Chem Theory Comput 2021; 17:3666-3686. [DOI: 10.1021/acs.jctc.1c00226] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, F-31400 Toulouse, France
| | | | - Xavier Blase
- Univ. Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
26
|
Chumak AY, Mudrak VO, Kotlyar VM, Doroshenko AO. 4’-Nitroflavonol fluorescence: Excited state intramolecular proton transfer reaction from the non-emissive excited state. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Poronik YM, Baryshnikov GV, Deperasińska I, Espinoza EM, Clark JA, Ågren H, Gryko DT, Vullev VI. Deciphering the unusual fluorescence in weakly coupled bis-nitro-pyrrolo[3,2-b]pyrroles. Commun Chem 2020; 3:190. [PMID: 36703353 PMCID: PMC9814504 DOI: 10.1038/s42004-020-00434-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/13/2020] [Indexed: 01/29/2023] Open
Abstract
Electron-deficient π-conjugated functional dyes lie at the heart of organic optoelectronics. Adding nitro groups to aromatic compounds usually quenches their fluorescence via inter-system crossing (ISC) or internal conversion (IC). While strong electronic coupling of the nitro groups with the dyes ensures the benefits from these electron-withdrawing substituents, it also leads to fluorescence quenching. Here, we demonstrate how such electronic coupling affects the photophysics of acceptor-donor-acceptor fluorescent dyes, with nitrophenyl acceptors and a pyrrolo[3,2-b]pyrrole donor. The position of the nitro groups and the donor-acceptor distance strongly affect the fluorescence properties of the bis-nitrotetraphenylpyrrolopyrroles. Concurrently, increasing solvent polarity quenches the emission that recovers upon solidifying the media. Intramolecular charge transfer (CT) and molecular dynamics, therefore, govern the fluorescence of these nitro-aromatics. While balanced donor-acceptor coupling ensures fast radiative deactivation and slow ISC essential for large fluorescence quantum yields, vibronic borrowing accounts for medium dependent IC via back CT. These mechanistic paradigms set important design principles for molecular photonics and electronics.
Collapse
Affiliation(s)
- Yevgen M. Poronik
- grid.413454.30000 0001 1958 0162Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Glib V. Baryshnikov
- grid.8993.b0000 0004 1936 9457Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Irena Deperasińska
- grid.413454.30000 0001 1958 0162Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Eli M. Espinoza
- grid.266097.c0000 0001 2222 1582Department of Chemistry, University of California, Riverside, CA USA ,grid.47840.3f0000 0001 2181 7878Present Address: College of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - John A. Clark
- grid.266097.c0000 0001 2222 1582Department of Bioengineering, University of California, Riverside, CA USA
| | - Hans Ågren
- grid.8993.b0000 0004 1936 9457Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden ,grid.77602.340000 0001 1088 3909Department of Physics, Tomsk State University, 36 Lenin Avenue, Tomsk, 634050 Russian Federation
| | - Daniel T. Gryko
- grid.413454.30000 0001 1958 0162Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Valentine I. Vullev
- grid.266097.c0000 0001 2222 1582Department of Chemistry, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Department of Bioengineering, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Department of Biochemistry, University of California, Riverside, CA USA ,grid.266097.c0000 0001 2222 1582Materials Science and Engineering Program, University of California, Riverside, CA USA
| |
Collapse
|
28
|
Wilson J, Octaviani M, Bandowe BAM, Wietzoreck M, Zetzsch C, Pöschl U, Berkemeier T, Lammel G. Modeling the Formation, Degradation, and Spatiotemporal Distribution of 2-Nitrofluoranthene and 2-Nitropyrene in the Global Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14224-14234. [PMID: 33112146 PMCID: PMC7676291 DOI: 10.1021/acs.est.0c04319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 05/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common atmospheric pollutants and known to cause adverse health effects. Nitrated PAHs (NPAHs) are formed in combustion activities and by nitration of PAHs in the atmosphere and may be equally or more toxic, but their spatial and temporal distribution in the atmosphere is not well characterized. Using the global EMAC model with atmospheric chemistry and surface compartments coupled, we investigate the formation, abundance, and fate of two secondarily formed NPAHs, 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR). The default reactivity scenario, the model with the simplest interpretation of parameters from the literature, tends to overestimate both absolute concentrations and NPAH/PAH ratios at observational sites. Sensitivity scenarios indicate that NO2-dependent NPAH formation leads to better agreement between measured and predicted NPAH concentrations and that photodegradation is the most important loss process of 2-NFLT and 2-NPYR. The highest concentrations of 2-NFLT and 2-NPYR are found in regions with strong PAH emissions, but because of continued secondary formation from the PAH precursors, these two NPAHs are predicted to be spread across the globe.
Collapse
Affiliation(s)
- Jake Wilson
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Mega Octaviani
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | | | - Marco Wietzoreck
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Cornelius Zetzsch
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
- Bayreuth
Centre for Ecology and Environmental Research, University of Bayreuth, 95448 Bayreuth, Germany
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Thomas Berkemeier
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
| | - Gerhard Lammel
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
- Research
Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
29
|
Ovsyannikov DV, Zelentsov SV. Reactivity of Aliphatic and Aromatic Nitrocompounds in the Triplet State with Respect to Amines. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420080221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Anstöter CS, Mensa-Bonsu G, Nag P, Ranković M, Kumar T P R, Boichenko AN, Bochenkova AV, Fedor J, Verlet JRR. Mode-Specific Vibrational Autodetachment Following Excitation of Electronic Resonances by Electrons and Photons. PHYSICAL REVIEW LETTERS 2020; 124:203401. [PMID: 32501066 DOI: 10.1103/physrevlett.124.203401] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Electronic resonances commonly decay via internal conversion to vibrationally hot anions and subsequent statistical electron emission. We observed vibrational structure in such an emission from the nitrobenzene anion, in both the 2D electron energy loss and 2D photoelectron spectroscopy of the neutral and anion, respectively. The emission peaks could be correlated with calculated nonadiabatic coupling elements for vibrational modes to the electronic continuum from a nonvalence dipole-bound state. This autodetachment mechanism via a dipole-bound state is likely to be a common feature in both electron and photoelectron spectroscopies.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Golda Mensa-Bonsu
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Pamir Nag
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Miloš Ranković
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Ragesh Kumar T P
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Anton N Boichenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
31
|
Thurston R, Brister MM, Belkacem A, Weber T, Shivaram N, Slaughter DS. Time-resolved ultrafast transient polarization spectroscopy to investigate nonlinear processes and dynamics in electronically excited molecules on the femtosecond time scale. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:053101. [PMID: 32486703 DOI: 10.1063/1.5144482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
We report a novel experimental technique to investigate ultrafast dynamics in photoexcited molecules by probing the 3rd-order nonlinear optical susceptibility. A non-collinear 3-pulse scheme is developed to probe the ultrafast dynamics of excited electronic states using the optical Kerr effect. Optical homodyne and optical heterodyne detections are demonstrated to measure the 3rd-order nonlinear optical response for the S1 excited state of liquid nitrobenzene, which is populated by 2-photon absorption of a 780 nm 40 fs excitation pulse.
Collapse
Affiliation(s)
- Richard Thurston
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Matthew M Brister
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ali Belkacem
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thorsten Weber
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Niranjan Shivaram
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel S Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
32
|
Dobrowolski JC, Karpińska G. Substituent Effect in the First Excited Triplet State of Monosubstituted Benzenes. ACS OMEGA 2020; 5:9477-9490. [PMID: 32363300 PMCID: PMC7191863 DOI: 10.1021/acsomega.0c00712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/16/2020] [Indexed: 05/08/2023]
Abstract
The structure of 30 monosubstituted benzenes in the first excited triplet T1 state was optimized with both unrestricted (U) and restricted open shell (RO) approximations combined with the ωB97XD/aug-cc-pVTZ basis method. The substituents exhibited diverse σ- and π-electron-donating and/or -withdrawing groups. Two different positions of the substituents are observed in the studied compounds in the T1 state: one distorted from the plane and the other coplanar with a quinoidal ring. The majority of the substituents are π-electron donating in the first group while π-electron withdrawing in the second one. Basically, U- and RO-ωB97XD approximations yield concordant results except for the B-substituents and a few of the planar groups. In the T1 state, the studied molecules are not aromatic, yet aromaticity estimated using the HOMA (harmonic oscillator model of aromaticity) index increases from ca. -0.2 to ca. 0.4 with substituent distortion, while in the S1 state, they are only slightly less aromatic than in the ground state (HOMA ≈0.8 vs ≈1.0, respectively). Unexpectedly, the sEDA(T1) and pEDA(T1) substituent effect descriptors do not correlate with analogous parameters for the ground and first excited singlet states. This is because in the T1 state, the geometry of the ring changes dramatically and the sEDA(T1) and pEDA(T1) descriptors do not characterize only the functional group but the entire molecule. Thus, they cannot provide useful scales for the substituents in the T1 states. We found that the spin density in the T1 states is accumulated at the Cipso and Cp atoms, and with the substituent deformation angle, it nonlinearly increases at the former while decreases at the latter. It appeared that the gap between singly unoccupied molecular orbital and singly occupied molecular orbital (SUMO-SOMO) is determined by the change of the SOMO energy because the former is essentially constant. For the nonplanar structures, SOMO correlates with the torsion angle of the substituent and the ground-state pEDA(S0) descriptor of the π-electron-donating substituents ranging from 0.02 to 0.2 e. Finally, shapes of the SOMO-1 instead of SOMO frontier orbitals in the T1 state somehow resemble the highest occupied molecular orbital ones of the S0 and S1 states. For several planar systems, the shape of the U- and RO-density functional theory-calculated SOMO-1 orbitals differs substantially.
Collapse
|
33
|
Thurston R, Brister MM, Tan LZ, Champenois EG, Bakhti S, Muddukrishna P, Weber T, Belkacem A, Slaughter DS, Shivaram N. Ultrafast Dynamics of Excited Electronic States in Nitrobenzene Measured by Ultrafast Transient Polarization Spectroscopy. J Phys Chem A 2020; 124:2573-2579. [DOI: 10.1021/acs.jpca.0c01943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard Thurston
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew M. Brister
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z. Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Elio G. Champenois
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Graduate Group in Applied Science and Technology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Said Bakhti
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pavan Muddukrishna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thorsten Weber
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ali Belkacem
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel S. Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Niranjan Shivaram
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Giussani A, Worth GA. How important is roaming in the photodegradation of nitrobenzene? Phys Chem Chem Phys 2020; 22:15945-15952. [DOI: 10.1039/d0cp02077j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three pathways have been found for the formation of NO from nitrobenzene photodegradation that lead to either low or high translational energy, with a roaming mechanism involved at high excitation energies.
Collapse
Affiliation(s)
- Angelo Giussani
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Graham A. Worth
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| |
Collapse
|
35
|
Blackshaw KJ, Marracci M, Korb RT, Quartey NK, Ajmani AK, Hood DJ, Abelt CJ, Ortega BI, Luong K, Petit AS, Kidwell NM. Dynamical signatures from competing, nonadiabatic fragmentation pathways of S-nitrosothiophenol. Phys Chem Chem Phys 2020; 22:12187-12199. [DOI: 10.1039/d0cp00941e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A joint experiment-theory study of the UV photolysis of S-nitrosothiophenol reveals competing photodissociation pathways that produce NO in its spin–orbit ground state and thiophenoxy radical in either its ground or excited electronic state.
Collapse
Affiliation(s)
| | - Marcus Marracci
- Department of Chemistry and Biochemistry
- California State University – Fullerton
- Fullerton
- USA
| | - Robert T. Korb
- Department of Chemistry
- The College of William and Mary
- Williamsburg
- USA
| | | | | | - David J. Hood
- Department of Chemistry
- The College of William and Mary
- Williamsburg
- USA
| | | | - Belinda I. Ortega
- Department of Chemistry and Biochemistry
- California State University – Fullerton
- Fullerton
- USA
| | - Kate Luong
- Department of Chemistry and Biochemistry
- California State University – Fullerton
- Fullerton
- USA
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry
- California State University – Fullerton
- Fullerton
- USA
| | | |
Collapse
|
36
|
Zobel JP, González L. Nonadiabatic Dynamics Simulation Predict Intersystem Crossing in Nitroaromatic Molecules on a Picosecond Time Scale. CHEMPHOTOCHEM 2019; 3:833-845. [PMID: 31681833 PMCID: PMC6813632 DOI: 10.1002/cptc.201900108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Previous time-resolved spectroscopic experiments and static quantum-chemical calculations attributed nitronaphthalene derivatives one of the fastest time scales for intersystem crossing within organic molecules, reaching the 100 fs mark. Nonadiabatic dynamics simulations on three nitronaphthalene derivatives challenge this view, showing that the experimentally observed ∼100 fs process corresponds to internal conversion in the singlet manifolds. Intersystem crossing, instead, takes place on a longer time scale of ∼1 ps. The dynamics simulations further reveal that the spin transitions occur via two distinct pathways with different contribution for the three systems, which are determined by electronic factors and the torsion of the nitro group. This study, therefore, indicates that the existence of sub-picosecond intersystem crossing in other nitroaromatic molecules should be questioned.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Division of Theoretical Chemistry, KemicentrumLund UniversityP.O. Box 124SE-221 00LundSweden
| | - Leticia González
- Institute of Theoretical ChemistryUniversity of ViennaWähringer Straße 17A-1090ViennaAustria
| |
Collapse
|
37
|
Blackshaw KJ, Ortega BI, Quartey NK, Fritzeen WE, Korb RT, Ajmani AK, Montgomery L, Marracci M, Vanegas GG, Galvan J, Sarvas Z, Petit AS, Kidwell NM. Nonstatistical Dissociation Dynamics of Nitroaromatic Chromophores. J Phys Chem A 2019; 123:4262-4273. [DOI: 10.1021/acs.jpca.9b02312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Jacob Blackshaw
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Belinda I. Ortega
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United States
| | - Naa-Kwarley Quartey
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Wade E. Fritzeen
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Robert T. Korb
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Annalise K. Ajmani
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Lehman Montgomery
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Marcus Marracci
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United States
| | - Geronimo Gudino Vanegas
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United States
| | - John Galvan
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United States
| | - Zach Sarvas
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United States
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United States
| | - Nathanael M. Kidwell
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| |
Collapse
|
38
|
Giussani A, Worth GA. Similar chemical structures, dissimilar triplet quantum yields: a CASPT2 model rationalizing the trend of triplet quantum yields in nitroaromatic systems. Phys Chem Chem Phys 2019; 21:10514-10522. [DOI: 10.1039/c9cp00705a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S1/S0 accessibility strongly influences the triplet quantum yields of nitronaphthalenes.
Collapse
Affiliation(s)
- Angelo Giussani
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Graham A. Worth
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| |
Collapse
|
39
|
A Photophysical Deactivation Channel of Laser-Excited TATB Based on Semiclassical Dynamics Simulation and TD-DFT Calculation. Molecules 2018; 23:molecules23071593. [PMID: 29966325 PMCID: PMC6099943 DOI: 10.3390/molecules23071593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/02/2022] Open
Abstract
A deactivation channel for laser-excited 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) was studied by semiclassical dynamics. Results indicate that the excited state resulting from an electronic transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular mrbital (LUMO) is deactivated via pyramidalization of the activated N atom in a nitro group, with a lifetime of 2.4 ps. An approximately 0.5-electron transfer from the aromatic ring to the activated nitro group led to a significant increase of the C–NO2 bond length, which suggests that C–NO2 bond breaking could be a trigger for an explosive reaction. The time-dependent density functional theory (TD-DFT) method was used to calculate the energies of the ground and S1 excited states for each configuration in the simulated trajectory. The S1←S0 energy gap at the instance of non-adiabatic decay was found to be 0.096 eV, suggesting that the decay geometry is close to the conical intersection.
Collapse
|
40
|
Dobrowolski JC, Lipiński PFJ, Karpińska G. Substituent Effect in the First Excited Singlet State of Monosubstituted Benzenes. J Phys Chem A 2018; 122:4609-4621. [PMID: 29698609 DOI: 10.1021/acs.jpca.8b02209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
sEDA, pEDA, and cSAR descriptors of the substituent effect were determined for >30 monosubstituted benzenes in the first excited singlet S1 state at the LC-ωB97XD/aug-cc-pVTZ level. It was found that in the S1 state, the σ- and π-valence electrons are a bit less and a bit more affected, respectively, than in the S0 state, but basically, the effect in both states remains the same. In the S0 and S1 states, the d(C-X) distances to the substituent's first atom and the ring perimeter correlate with the sEDA and pEDA in the appropriate states, respectively. The energies and the gap of the frontier orbitals in the two states are linearly correlated and for the HOMO(S1), LUMO(S1), and HOMO(S1)-LUMO(S1) gap correlate also with the pEDA(S1) and cSAR(S1) descriptors. In all studied correlations, three similar groups of substituents can be distinguished, for which correlations (i) are very good, (ii) deviate slightly, and (iii) deviate significantly. Comparison of the shape of the HOMO(S0) and HOMO(S1) orbitals shows that for case (i) HOMO orbitals exhibit almost perfect antisymmetry against the benzene plane, for case (ii) the antisymmetry of HOMO in one of the states is either perturbed or changed, and for case (iii) one HOMO state has σ-character.
Collapse
Affiliation(s)
- Jan Cz Dobrowolski
- Department for Medicines Biotechnology and Bioinformatics , National Medicines Institute , 30/34 Chełmska Street , 00-725 Warsaw , Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides , Mossakowski Medical Research Centre PAS , 5 Pawińskiego Street , 02-106 Warsaw , Poland
| | - Grażyna Karpińska
- Department for Medicines Biotechnology and Bioinformatics , National Medicines Institute , 30/34 Chełmska Street , 00-725 Warsaw , Poland
| |
Collapse
|
41
|
Zobel JP, Nogueira JJ, González L. Mechanism of Ultrafast Intersystem Crossing in 2-Nitronaphthalene. Chemistry 2018; 24:5379-5387. [PMID: 29377370 PMCID: PMC5947663 DOI: 10.1002/chem.201705854] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Indexed: 01/10/2023]
Abstract
Nitronaphthalene derivatives efficiently populate their electronically excited triplet states upon photoexcitation through ultrafast intersystem crossing (ISC). Despite having been studied extensively by time-resolved spectroscopy, the reasons behind their ultrafast ISC remain unknown. Herein, we present the first ab initio nonadiabatic molecular dynamics study of a nitronaphthalene derivative, 2-nitronaphthalene, including singlet and triplet states. We find that there are two distinct ISC reaction pathways involving different electronic states at distinct nuclear configurations. The high ISC efficiency is explained by the very small electronic and nuclear alterations that the chromophore needs to undergo during the singlet-triplet transition in the dominating ISC pathway after initial dynamics in the singlet manifold. The insights gained in this work are expected to shed new light on the photochemistry of other nitro polycyclic aromatic hydrocarbons that exhibit ultrafast intersystem crossing.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| | - Juan J. Nogueira
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Straße 171090ViennaAustria
| |
Collapse
|
42
|
Stepwise photoinduced transformation of fused aziridines via stable biradicals and azomethine ylides. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Xu C, Gu FL, Zhu C. Ultrafast intersystem crossing for nitrophenols: ab initio nonadiabatic molecular dynamics simulation. Phys Chem Chem Phys 2018; 20:5606-5616. [DOI: 10.1039/c7cp08601f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast intersystem crossing mechanisms for two p- and m-nitrophenol groups (PNP and MNP) have been investigated using ab initio nonadiabatic molecular dynamics simulations at the 6SA-CASSCF level of theory.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao-Tung University
- Hsinchu 30010
| |
Collapse
|