1
|
Kelly J, Hu F, Damiani A, Chen MS, Snider A, Son M, Lee A, Gupta P, Montoya-Castillo A, Zuehlsdorff TJ, Schlau-Cohen GS, Isborn CM, Markland TE. Two-Dimensional Electronic Spectroscopy in the Condensed Phase Using Equivariant Transformer Accelerated Molecular Dynamics Simulations. J Phys Chem Lett 2025:5561-5569. [PMID: 40434198 DOI: 10.1021/acs.jpclett.5c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Two-dimensional electronic spectroscopy (2DES) provides rich information about how the electronic states of molecules, proteins, and solid-state materials interact with each other and their surrounding environment. Atomistic molecular dynamics simulations offer an appealing route to uncover how nuclear motions mediate electronic energy relaxation and their manifestation in electronic spectroscopies but are computationally expensive. Here we show that by using an equivariant transformer-based machine learning architecture trained with only 2500 ground state and 100 excited state electronic structure calculations, one can construct accurate machine-learned potential energy surfaces for both the ground-state electronic surface and excited-state energy gap. We demonstrate the utility of this approach for simulating the dynamics of Nile blue in ethanol, where we experimentally validate and decompose the simulated 2DES to establish the nuclear motions of the chromophore and the solvent that couple to the excited state, connecting the spectroscopic signals to their molecular origin.
Collapse
Affiliation(s)
- Joseph Kelly
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Frank Hu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Arianna Damiani
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael S Chen
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Andrew Snider
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Minjung Son
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Angela Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Prachi Gupta
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Xu X. Modeling electronic absorption spectra with nuclear quantum effects in constrained nuclear-electronic orbital framework. J Chem Phys 2025; 162:154106. [PMID: 40231874 DOI: 10.1063/5.0254111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/30/2025] [Indexed: 04/16/2025] Open
Abstract
Electronic absorption spectra serve as versatile and powerful tools in experiments. Accurate theoretical simulation of electronic absorption spectra is challenging because multiple factors such as environmental effects and nuclear quantum effects contribute to spectrum lineshapes. This work proposes a protocol to model electronic absorption spectra in the constrained nuclear-electronic orbital framework. Solvent effects, temperature effects, and particularly nuclear quantum effects can be taken into consideration in this unified framework. This protocol is applied to investigate the electronic absorption spectrum of the pyridine molecule in water. Nuclear quantum effects are found to induce a broadening and red shift of the absorption spectrum of pyridine.
Collapse
Affiliation(s)
- Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
3
|
Abstract
Despite the success and widespread use of QM/MM methods in modeling (bio)chemically important processes, their accuracy is still not well understood. A key reason is because these methods are ultimately approximations to direct QM calculations of very large systems, which are impractical to perform in most cases. We highlight recent progress toward the development of realistic model systems where it is possible to obtain full QM reference data to directly and systematically evaluate the effectiveness of different QM/MM generation schemes. These model systems are highly flexible and can be tailored to probe the sensitivity of a QM/MM model to different reaction types and simulation parameters such as pairing of QM and MM potentials, QM region size, and composition. It is envisaged that this strategy could be used to directly validate different QM/MM generation schemes and spur the development of more robust models in the future.
Collapse
Affiliation(s)
- Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Haibo Yu
- Molecular Horizons, School of Chemistry and Molecular Bioscience, and ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Mackenzie Taylor
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junbo Chen
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Kiataki MB, Coutinho K, Varella MTDN. Toward a numerically efficient description of bulk-solvated anionic states. J Chem Phys 2024; 161:034301. [PMID: 39007383 DOI: 10.1063/5.0203247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
We investigate the vertical electron attachment energy (VAE) of 1-methyl-4-nitroimidazole, a model radiosensitizer, employing quantum mechanics/molecular mechanics (QM/MM) and QM/polarized continuum (QM/PCM) solvation models. We considered the solvent-excluded surface (QM/PCM-SES) and Van der Waals (QM/PCM-VDW) cavities within the PCM framework, the electrostatic embedding QM/MM (EE-QM/MM) model, and the self-consistent sequential QM/MM polarizable electrostatic embedding (scPEE-S-QM/MM) model. Due to slow VAE convergence concerning the number of QM solvent molecules, full QM calculations prove inefficient. Ensemble averages in these calculations do not align with VAEs computed for the representative solute-solvent configuration. QM/MM and QM/PCM calculations show agreement with each other for sufficiently large QM regions, although the QM/PCM-VDW model exhibits artifacts linked to the cavity. QM/MM models demonstrate good agreement between ensemble averages and VAEs calculated with the representative configuration. Notably, the VAE computed with the scPEE-S-QM/MM model achieves faster convergence concerning the number of QM water molecules compared to the EE-QM/MM model, attributed to enhanced efficiency from MM charge polarization in the scPEE-S-QM/MM approach. This emphasizes the importance of QM/classical models with accurate solute-solvent and solvent-solvent mutual polarization for obtaining converged VAEs at a reasonable computational cost. The full-QM approach is very inefficient, while the microsolvation model is inaccurate. Computational savings in QM/MM models result from electrostatic embedding and the representative configuration, with the scPEE-S-QM/MM approach emerging as an efficient tool for describing bulk-solvated anions within the QM/MM framework. Its potential extends to improving transient anion state descriptions in biomolecules and radiosensitizers, especially given the frequent employment of microsolvation models.
Collapse
Affiliation(s)
- Matheus B Kiataki
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - Márcio T do N Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| |
Collapse
|
5
|
Bashirova D, Zuehlsdorff TJ. First-Principles Modeling of the Absorption Spectrum of Crystal Violet in Solution: The Importance of Environmentally Driven Symmetry Breaking. J Phys Chem A 2024; 128:5229-5242. [PMID: 38938007 DOI: 10.1021/acs.jpca.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Theoretical spectroscopy plays a crucial role in understanding the properties of the materials and molecules. One of the most promising methods for computing optical spectra of chromophores embedded in complex environments from the first principles is the cumulant approach, where both (generally anharmonic) vibrational degrees of freedom and environmental interactions are explicitly accounted for. In this work, we verify the capabilities of the cumulant approach in describing the effect of complex environmental interactions on linear absorption spectra by studying Crystal Violet (CV) in different solvents. The experimental absorption spectrum of CV strongly depends on the nature of the solvent, indicating strong coupling to the condensed-phase environment. We demonstrate that these changes in absorption line shape are driven by an increased splitting between absorption bands of two low-lying excited states that is caused by a breaking of the D3 symmetry of the molecule and that in polar solvents, this symmetry breaking is mainly driven by electrostatic interactions with the condensed-phase environment rather than distortion of the structure of the molecule, in contrast with conclusions reached in a number of previous studies. Our results reveal the importance of explicitly including a counterion in the calculations in nonpolar solvents due to electrostatic interactions between CV and the ion. In polar solvents, these interactions are strongly reduced due to solvent screening effects, thus minimizing the symmetry breaking. Computed spectra in methanol are found to be in reasonable agreement with the experiment, demonstrating the strengths of the outlined approach in modeling strong environmental interactions.
Collapse
Affiliation(s)
- Dayana Bashirova
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Iuzzolino G, Perrella F, Valadan M, Petrone A, Altucci C, Rega N. Photophysics of a nucleic acid-protein crosslinking model strongly depends on solvation dynamics: an experimental and theoretical study. Phys Chem Chem Phys 2024; 26:11755-11769. [PMID: 38563904 DOI: 10.1039/d3cp06254f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a combined experimental and theoretical study of the photophysics of 5-benzyluracil (5BU) in methanol, which is a model system for interactions between nucleic acids and proteins. A molecular dynamics study of 5BU in solution through efficient DFT-based hybrid ab initio potentials revealed a remarkable conformational flexibility - allowing the population of two main conformers - as well as specific solute-solvent interactions, which both appear as relevant factors for the observed 5BU optical absorption properties. The simulated absorption spectrum, calculated on such an ensemble, enabled a molecular interpretation of the experimental UV-Vis lowest energy band, which is also involved in the induced photo-reactivity upon irradiation. In particular, the first two excited states (mainly involving the uracil moiety) both contribute to the 5BU lowest energy absorption. Moreover, as a key finding, the nature and brightness of such electronic transitions are strongly influenced by 5BU conformation and the microsolvation of its heteroatoms.
Collapse
Affiliation(s)
- Gabriele Iuzzolino
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
| | - Mohammadhassan Valadan
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, via Pansini 5, Napoli I-80131, Italy
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| | - Carlo Altucci
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, via Pansini 5, Napoli I-80131, Italy
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", URT UNINA, via Cintia 21, Napoli I-80126, Italy
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
- Istituto Nazionale di Fisica Nucleare, Unità di Napoli, via Cintia 21, Napoli I-80126, Italy
| |
Collapse
|
7
|
Wiethorn ZR, Hunter KE, Zuehlsdorff TJ, Montoya-Castillo A. Beyond the Condon limit: Condensed phase optical spectra from atomistic simulations. J Chem Phys 2023; 159:244114. [PMID: 38153146 DOI: 10.1063/5.0180405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
While dark transitions made bright by molecular motions determine the optoelectronic properties of many materials, simulating such non-Condon effects in condensed phase spectroscopy remains a fundamental challenge. We derive a Gaussian theory to predict and analyze condensed phase optical spectra beyond the Condon limit. Our theory introduces novel quantities that encode how nuclear motions modulate the energy gap and transition dipole of electronic transitions in the form of spectral densities. By formulating the theory through a statistical framework of thermal averages and fluctuations, we circumvent the limitations of widely used microscopically harmonic theories, allowing us to tackle systems with generally anharmonic atomistic interactions and non-Condon fluctuations of arbitrary strength. We show how to calculate these spectral densities using first-principles simulations, capturing realistic molecular interactions and incorporating finite-temperature, disorder, and dynamical effects. Our theory accurately predicts the spectra of systems known to exhibit strong non-Condon effects (phenolate in various solvents) and reveals distinct mechanisms for electronic peak splitting: timescale separation of modes that tune non-Condon effects and spectral interference from correlated energy gap and transition dipole fluctuations. We further introduce analysis tools to identify how intramolecular vibrations, solute-solvent interactions, and environmental polarization effects impact dark transitions. Moreover, we prove an upper bound on the strength of cross correlated energy gap and transition dipole fluctuations, thereby elucidating a simple condition that a system must follow for our theory to accurately predict its spectrum.
Collapse
Affiliation(s)
- Zachary R Wiethorn
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kye E Hunter
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
8
|
Herbert JM, Zhu Y, Alam B, Ojha AK. Time-Dependent Density Functional Theory for X-ray Absorption Spectra: Comparing the Real-Time Approach to Linear Response. J Chem Theory Comput 2023; 19:6745-6760. [PMID: 37708349 DOI: 10.1021/acs.jctc.3c00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We simulate X-ray absorption spectra at elemental K-edges using time-dependent density functional theory (TDDFT) in both its conventional linear-response implementation and its explicitly time-dependent or "real-time" formulation. Real-time TDDFT simulations enable broadband spectra calculations without the need to invoke frozen occupied orbitals ("core/valence separation"), but we find that these spectra are often contaminated by transitions to the continuum that originate from lower-energy core and semicore orbitals. This problem becomes acute in triple-ζ basis sets, although it is sometimes sidestepped in double-ζ basis sets. Transitions to the continuum acquire surprisingly large dipole oscillator strengths, leading to spectra that are difficult to interpret. Meaningful spectra can be recovered by means of a filtering technique that decomposes the spectrum into contributions from individual occupied orbitals, and the same procedure can be used to separate L- and K-edge spectra arising from different elements within a given molecule. In contrast, conventional linear-response TDDFT requires core/valence separation but is free of these artifacts. It is also significantly more efficient than the real-time approach, even when hundreds of individual states are needed to reproduce near-edge absorption features and even when Padé approximants are used to reduce the real-time simulations to just 2-4 fs of time propagation. Despite the cost, the real-time approach may be useful to examine the validity of the core/valence separation approximation.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ying Zhu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bushra Alam
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Avik Kumar Ojha
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Pérez-Barcia Á, Cárdenas G, Nogueira JJ, Mandado M. Effect of the QM Size, Basis Set, and Polarization on QM/MM Interaction Energy Decomposition Analysis. J Chem Inf Model 2023; 63:882-897. [PMID: 36661314 PMCID: PMC9930123 DOI: 10.1021/acs.jcim.2c01184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, an Energy Decomposition Analysis (EDA) scheme extended to the framework of QM/MM calculations in the context of electrostatic embeddings (QM/MM-EDA) including atomic charges and dipoles is applied to assess the effect of the QM region size on the convergence of the different interaction energy components, namely, electrostatic, Pauli, and polarization, for cationic, anionic, and neutral systems interacting with a strong polar environment (water). Significant improvements are found when the bulk solvent environment is described by a MM potential in the EDA scheme as compared to pure QM calculations that neglect bulk solvation. The predominant electrostatic interaction requires sizable QM regions. The results reported here show that it is necessary to include a surprisingly large number of water molecules in the QM region to obtain converged values for this energy term, contrary to most cluster models often employed in the literature. Both the improvement of the QM wave function by means of a larger basis set and the introduction of polarization into the MM region through a polarizable force field do not translate to a faster convergence with the QM region size, but they lead to better results for the different interaction energy components. The results obtained in this work provide insight into the effect of each energy component on the convergence of the solute-solvent interaction energy with the QM region size. This information can be used to improve the MM FFs and embedding schemes employed in QM/MM calculations of solvated systems.
Collapse
Affiliation(s)
- Álvaro Pérez-Barcia
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain
| | - Gustavo Cárdenas
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain,Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049Madrid, Spain,E-mail:
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain,E-mail:
| |
Collapse
|
10
|
Myneni H, Jónsson EÖ, Jónsson H, Dohn AO. Polarizable Force Field for Acetonitrile Based on the Single-Center Multipole Expansion. J Phys Chem B 2022; 126:9339-9348. [PMID: 36343220 DOI: 10.1021/acs.jpcb.2c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A polarizable potential function describing the interaction between acetonitrile molecules is introduced. The molecules are described as rigid and linear, with three mass sites corresponding to the CH3 group (methyl, Me), the central carbon atom (C), and the nitrogen atom (N). The electrostatic interaction is represented using a single-center multipole expansion as has been done previously for H2O [Wikfeldt et al., Phys. Chem. Chem. Phys. 15, 16542 (2013)], by including multipole moments from dipole up to and including hexadecapole, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model is free of point charges. The non-electrostatic part is described in a pair-wise fashion by a Born-Mayer repulsion and damped dispersion attraction. The potential function is parameterized to fit the interaction energy of small (CH3CN)n, n = 2-6, clusters calculated using the PBE0 hybrid functional with an additional atomic many-body dispersion contribution. The parameterized potential function is found to compare well with results of the electronic structure calculations of dissociation curves for different dimer orientations and cohesive properties (the equilibrium volume, cohesive energy, and the bulk modulus) of the α-phase of acetonitrile crystal. The average value of the molecular dipole moment obtained in the α-phase is 5.53 D, corresponding to ca. 40% increase as compared to the dipole moment of an isolated acetonitrile molecule, 3.92 D. The calculated densities of solid and liquid acetonitrile turn out to be 8-10% higher than experimental values. This appears to be caused by an overestimate of the atomic many-body dispersion interaction in the density functional calculations used as input in the parametrization of the potential function.
Collapse
Affiliation(s)
- Hemanadhan Myneni
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| |
Collapse
|
11
|
Shen C, Wang X, He X. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs. Front Chem 2022; 9:801062. [PMID: 35004616 PMCID: PMC8727457 DOI: 10.3389/fchem.2021.801062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Fluorescent RNA aptamers have been successfully applied to track and tag RNA in a biological system. However, it is still challenging to predict the excited-state properties of the RNA aptamer–fluorophore complex with the traditional electronic structure methods due to expensive computational costs. In this study, an accurate and efficient fragmentation quantum mechanical (QM) approach of the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) scheme was applied for calculations of excited-state properties of the RNA aptamer–fluorophore complex. In this method, the excited-state properties were first calculated with one-body fragment quantum mechanics/molecular mechanics (QM/MM) calculation (the excited-state properties of the fluorophore) and then corrected with a series of two-body fragment QM calculations for accounting for the QM effects from the RNA on the excited-state properties of the fluorophore. The performance of the EE-GMFCC on prediction of the absolute excitation energies, the corresponding transition electric dipole moment (TEDM), and atomic forces at both the TD-HF and TD-DFT levels was tested using the Mango-II RNA aptamer system as a model system. The results demonstrate that the calculated excited-state properties by EE-GMFCC are in excellent agreement with the traditional full-system time-dependent ab initio calculations. Moreover, the EE-GMFCC method is capable of providing an accurate prediction of the relative conformational excited-state energies for different configurations of the Mango-II RNA aptamer system extracted from the molecular dynamics (MD) simulations. The fragmentation method further provides a straightforward approach to decompose the excitation energy contribution per ribonucleotide around the fluorophore and then reveals the influence of the local chemical environment on the fluorophore. The applications of EE-GMFCC in calculations of excitation energies for other RNA aptamer–fluorophore complexes demonstrate that the EE-GMFCC method is a general approach for accurate and efficient calculations of excited-state properties of fluorescent RNAs.
Collapse
Affiliation(s)
- Chenfei Shen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China
| |
Collapse
|
12
|
Lu SY, Zuehlsdorff TJ, Hong H, Aguirre VP, Isborn CM, Shi L. The Influence of Electronic Polarization on Nonlinear Optical Spectroscopy. J Phys Chem B 2021; 125:12214-12227. [PMID: 34726915 DOI: 10.1021/acs.jpcb.1c05914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The environment surrounding a chromophore can dramatically affect the energy absorption and relaxation process, as manifested in optical spectra. Simulations of nonlinear optical spectroscopy, such as two-dimensional electronic spectroscopy (2DES) and transient absorption (TA), will be influenced by the computational model of the environment. We here compare a fixed point charge molecular mechanics model and a quantum mechanical (QM) model of the environment in computed 2DES and TA spectra of Nile red in water and the chromophore of photoactive yellow protein (PYP) in water and protein environments. In addition to simulating these nonlinear optical spectra, we directly juxtapose the computed excitation energy correlation function to the dynamic Stokes shift function often used to analyze environment dynamics. Overall, we find that for the three systems studied here the mutual electronic polarization provided by the QM environment manifests in broader 2DES signals, as well as a larger reorganization energy and a larger static Stokes shift due to stronger coupling between the chromophore and the environment.
Collapse
Affiliation(s)
- Shao-Yu Lu
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hanbo Hong
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Vincent P Aguirre
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Liang Shi
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
13
|
Fehér PP, Madarász Á, Stirling A. Multiscale Modeling of Electronic Spectra Including Nuclear Quantum Effects. J Chem Theory Comput 2021; 17:6340-6352. [PMID: 34582200 PMCID: PMC8515811 DOI: 10.1021/acs.jctc.1c00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Theoretical prediction of electronic absorption spectra without input from experiments is no easy feat, as it requires addressing all of the factors that affect line shapes. In practice, however, the methodologies are limited to treat these ingredients only to a certain extent. Here, we present a multiscale protocol that addresses the temperature, solvent, and nuclear quantum effects as well as anharmonicity and the reconstruction of the final spectra from individual transitions. First, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics is conducted to obtain trajectories of solute-solvent configurations, from which the corresponding quantum-corrected ensembles are generated through the generalized smoothed trajectory analysis (GSTA). The optical spectra of the ensembles are then produced by calculating vertical transitions using time-dependent density-functional theory (TDDFT) with implicit solvation. To obtain the final spectral shapes, the stick spectra from TDDFT are convoluted with Gaussian kernels where the half-widths are determined by a statistically motivated strategy. We have tested our method by calculating the UV-vis spectra of a recently discovered acridine photocatalyst in two redox states. Vibronic progressions and broadenings due to the finite lifetime of the excited states are not included in the methodology yet. Nuclear quantization affects the relative peak intensities and widths, which is necessary to reproduce the experimental spectrum. We have also found that using only the optimized geometry of each molecule works surprisingly well if a proper empirical broadening factor is applied. This is explained by the rigidity of the conjugated chromophore moieties of the selected molecules, which are mainly responsible for the excitations in the spectra. In contrast, we have also shown that other parts of the molecules are flexible enough to feature anharmonicities that impair the use of other techniques such as Wigner sampling.
Collapse
Affiliation(s)
- Péter P. Fehér
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Ádám Madarász
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - András Stirling
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Department
of Chemistry, Eszterházy Károly
University, Leányka
u. 6, 3300 Eger, Hungary
| |
Collapse
|
14
|
Liao K, Wang S, Li W, Li S. Generalized energy-based fragmentation approach for calculations of solvation energies of large systems. Phys Chem Chem Phys 2021; 23:19394-19401. [PMID: 34490874 DOI: 10.1039/d1cp02814f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A generalized energy-based fragmentation (GEBF) approach has been combined with a universal solvation model based on solute electron density (SMD) to compute the solvation energies of general large systems (such as protein molecules) in solutions. In the GEBF-SMD method, the solvation energy of a target system could be combined by the corresponding solvation energies of various subsystems, each of which is embedded in the background point charges and surface charges on the surface of solute cavity at the positions of its atoms and neighbouring atoms outside of the subsystem. Our results show that the GEBF-SMD model could reproduce the conventional SMD solvation energies quite well for various proteins in solutions, and could significantly reduce the computational costs for the SMD calculations of large proteins. In addition, the GEBF-SMD approach is almost independent of the basis sets and the types of solvents (including protic, polar, and nonpolar ones). Also, the GEBF-SMD approach could reproduce the relative energies of various conformers of large systems in solutions. Therefore, the GEBF-SMD method is expected to be applicable for computing the solvation energies of a broad range of large systems.
Collapse
Affiliation(s)
- Kang Liao
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| | - Shirong Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
15
|
Stepaniuk DS, Blazhynska MM, Koverga V, Kyrychenko A, Miannay FA, Idrissi A, Kalugin ON. Solvatochromism of a D205 indoline dye at the interface of a small TiO2-anatase nanoparticle in acetonitrile: a combined molecular dynamics simulation and DFT calculation study. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1962526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Daria S. Stepaniuk
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Margaret M. Blazhynska
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
- University of Lille, CNRS, UMR 8516- LASIRe, Laboratoire Avancé de Spectroscopie pour les Interations, Lille, France
| | - Volodymyr Koverga
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l’Adour, Nouvelle Aquitaine, France
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - François-Alexandre Miannay
- University of Lille, CNRS, UMR 8516- LASIRe, Laboratoire Avancé de Spectroscopie pour les Interations, Lille, France
| | - Abdenacer Idrissi
- University of Lille, CNRS, UMR 8516- LASIRe, Laboratoire Avancé de Spectroscopie pour les Interations, Lille, France
| | - Oleg N. Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
16
|
Kostal V, Brezina K, Marsalek O, Jungwirth P. Benzene Radical Anion Microsolvated in Ammonia Clusters: Modeling the Transition from an Unbound Resonance to a Bound Species. J Phys Chem A 2021; 125:5811-5818. [PMID: 34165987 DOI: 10.1021/acs.jpca.1c04594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The benzene radical anion, well-known in organic chemistry as the first intermediate in the Birch reduction of benzene in liquid ammonia, exhibits intriguing properties from the point of view of quantum chemistry. Notably, it has the character of a metastable shape resonance in the gas phase, while measurements in solution find it to be experimentally detectable and stable. In this light, our previous calculations performed in bulk liquid ammonia explicitly reveal that solvation leads to stabilization. Here, we focus on the transition of the benzene radical anion from an unstable gas-phase ion to a fully solvated bound species by explicit ionization calculations of the radical anion solvated in molecular clusters of increasing size. The computational cost of the largest systems is mitigated by combining density functional theory with auxiliary methods including effective fragment potentials or approximating the bulk by polarizable continuum models. Using this methodology, we obtain the cluster size dependence of the vertical binding energy of the benzene radical anion converging to the value of -2.3 eV at a modest computational cost.
Collapse
Affiliation(s)
- Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Krystof Brezina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
17
|
Zuehlsdorff TJ, Shedge SV, Lu SY, Hong H, Aguirre VP, Shi L, Isborn CM. Vibronic and Environmental Effects in Simulations of Optical Spectroscopy. Annu Rev Phys Chem 2021; 72:165-188. [DOI: 10.1146/annurev-physchem-090419-051350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.
Collapse
Affiliation(s)
- Tim J. Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Sapana V. Shedge
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Shao-Yu Lu
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Hanbo Hong
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Vincent P. Aguirre
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| | - Christine M. Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
18
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
19
|
Dhali R, Phan Huu DKA, Terenziani F, Sissa C, Painelli A. Thermally activated delayed fluorescence: A critical assessment of environmental effects on the singlet-triplet energy gap. J Chem Phys 2021; 154:134112. [PMID: 33832272 DOI: 10.1063/5.0042058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The effective design of dyes optimized for thermally activated delayed fluorescence (TADF) requires the precise control of two tiny energies: the singlet-triplet gap, which has to be maintained within thermal energy, and the strength of spin-orbit coupling. A subtle interplay among low-energy excited states having dominant charge-transfer and local character then governs TADF efficiency, making models for environmental effects both crucial and challenging. The main message of this paper is a warning to the community of chemists, physicists, and material scientists working in the field: the adiabatic approximation implicitly imposed to the treatment of fast environmental degrees of freedom in quantum-classical and continuum solvation models leads to uncontrolled results. Several approximation schemes were proposed to mitigate the issue, but we underline that the adiabatic approximation to fast solvation is inadequate and cannot be improved; rather, it must be abandoned in favor of an antiadiabatic approach.
Collapse
Affiliation(s)
- Rama Dhali
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - D K Andrea Phan Huu
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Terenziani
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Anna Painelli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
20
|
Shedge SV, Zuehlsdorff TJ, Khanna A, Conley S, Isborn CM. Explicit environmental and vibronic effects in simulations of linear and nonlinear optical spectroscopy. J Chem Phys 2021; 154:084116. [PMID: 33639769 DOI: 10.1063/5.0038196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurately simulating the linear and nonlinear electronic spectra of condensed phase systems and accounting for all physical phenomena contributing to spectral line shapes presents a significant challenge. Vibronic transitions can be captured through a harmonic model generated from the normal modes of a chromophore, but it is challenging to also include the effects of specific chromophore-environment interactions within such a model. We work to overcome this limitation by combining approaches to account for both explicit environment interactions and vibronic couplings for simulating both linear and nonlinear optical spectra. We present and show results for three approaches of varying computational cost for combining ensemble sampling of chromophore-environment configurations with Franck-Condon line shapes for simulating linear spectra. We present two analogous approaches for nonlinear spectra. Simulated absorption spectra and two-dimensional electronic spectra (2DES) are presented for the Nile red chromophore in different solvent environments. Employing an average Franck-Condon or 2DES line shape appears to be a promising method for simulating linear and nonlinear spectroscopy for a chromophore in the condensed phase.
Collapse
Affiliation(s)
- Sapana V Shedge
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Ajay Khanna
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Stacey Conley
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
21
|
Maldonado AM, Hagiwara S, Choi TH, Eckert F, Schwarz K, Sundararaman R, Otani M, Keith JA. Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms. J Phys Chem A 2021; 125:154-164. [PMID: 33393781 DOI: 10.1021/acs.jpca.0c08961] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Computational quantum chemistry provides fundamental chemical and physical insights into solvated reaction mechanisms across many areas of chemistry, especially in homogeneous and heterogeneous renewable energy catalysis. Such reactions may depend on explicit interactions with ions and solvent molecules that are nontrivial to characterize. Rigorously modeling explicit solvent effects with molecular dynamics usually brings steep computational costs while the performance of continuum solvent models such as polarizable continuum model (PCM), charge-asymmetric nonlocally determined local-electric (CANDLE), conductor-like screening model for real solvents (COSMO-RS), and effective screening medium method with the reference interaction site model (ESM-RISM) are less well understood for reaction mechanisms. Here, we revisit a fundamental aqueous hydride transfer reaction-carbon dioxide (CO2) reduction by sodium borohydride (NaBH4)-as a test case to evaluate how different solvent models perform in aqueous phase charge migrations that would be relevant to renewable energy catalysis mechanisms. For this system, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations almost exactly reproduced energy profiles from QM simulations, and the Na+ counterion in the QM/MM simulations plays an insignificant role over ensemble averaged trajectories that describe the reaction pathway. However, solvent models used on static calculations gave much more variability in data depending on whether the system was modeled using explicit solvent shells and/or the counterion. We pinpoint this variability due to unphysical descriptions of charge-separated states in the gas phase (i.e., self-interaction errors), and we show that using more accurate hybrid functionals and/or explicit solvent shells lessens these errors. This work closes with recommended procedures for treating solvation in future computational efforts in studying renewable energy catalysis mechanisms.
Collapse
Affiliation(s)
- Alex M Maldonado
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Satoshi Hagiwara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Tae Hoon Choi
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Frank Eckert
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Minoru Otani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - John A Keith
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
22
|
Segalina A, Cerezo J, Prampolini G, Santoro F, Pastore M. Accounting for Vibronic Features through a Mixed Quantum-Classical Scheme: Structure, Dynamics, and Absorption Spectra of a Perylene Diimide Dye in Solution. J Chem Theory Comput 2020; 16:7061-7077. [DOI: 10.1021/acs.jctc.0c00919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alekos Segalina
- Université de Lorraine & CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR) SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR) SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | | |
Collapse
|
23
|
Raucci U, Chiariello MG, Rega N. Modeling Excited-State Proton Transfer to Solvent: A Dynamics Study of a Super Photoacid with a Hybrid Implicit/Explicit Solvent Model. J Chem Theory Comput 2020; 16:7033-7043. [PMID: 33112132 PMCID: PMC8016186 DOI: 10.1021/acs.jctc.0c00782] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The rapid growth of time-resolved
spectroscopies and the theoretical
advances in ab initio molecular dynamics (AIMD) pave the way to look
at the real-time molecular motion following the electronic excitation.
Here, we exploited the capabilities of AIMD combined with a hybrid
implicit/explicit model of solvation to investigate the ultrafast
excited-state proton transfer (ESPT) reaction of a super photoacid,
known as QCy9, in water solution. QCy9 transfers a proton to a water
solvent molecule within 100 fs upon the electronic excitation in aqueous
solution, and it is the strongest photoacid reported in the literature
so far. Because of the ultrafast kinetics, it has been experimentally
hypothesized that the ESPT escapes the solvent dynamics control (Huppert
et al., J. Photochem. Photobiol. A2014,277, 90). The sampling of the solvent configuration
space on the ground electronic state is the first key step toward
the simulation of the ESPT event. Therefore, several configurations
in the Franck–Condon region, describing an average solvation,
were chosen as starting points for the excited-state dynamics. In
all cases, the excited-state evolution spontaneously leads to the
proton transfer event, whose rate is strongly dependent on the hydrogen
bond network around the proton acceptor solvent molecule. Our study
revealed that the explicit representation at least of three solvation
shells around the proton acceptor molecule is necessary to stabilize
the excess proton. Furthermore, the analysis of the solvent molecule
motions in proximity of the reaction site suggested that even in the
case of the strongest photoacid, the ESPT is actually assisted by
the solvation dynamics of the first and second solvation shells of
the water accepting molecule.
Collapse
Affiliation(s)
- Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy
| | - Maria Gabriella Chiariello
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy.,CRIB, Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio, I-80125 Napoli, Italy
| |
Collapse
|
24
|
Bononi FC, Chen Z, Rocca D, Andreussi O, Hullar T, Anastasio C, Donadio D. Bathochromic Shift in the UV–Visible Absorption Spectra of Phenols at Ice Surfaces: Insights from First-Principles Calculations. J Phys Chem A 2020; 124:9288-9298. [DOI: 10.1021/acs.jpca.0c07038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fernanda C. Bononi
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Zekun Chen
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Dario Rocca
- Université de Lorraine, CNRS, LPTC, F-54000 Nancy, France
| | - Oliviero Andreussi
- Department of Physics, University of North Texas Denton, Texas 76203, United States
| | - Ted Hullar
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| |
Collapse
|
25
|
Chen MS, Zuehlsdorff TJ, Morawietz T, Isborn CM, Markland TE. Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments. J Phys Chem Lett 2020; 11:7559-7568. [PMID: 32808797 DOI: 10.1021/acs.jpclett.0c02168] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The excited-state dynamics of chromophores in complex environments determine a range of vital biological and energy capture processes. Time-resolved, multidimensional optical spectroscopies provide a key tool to investigate these processes. Although theory has the potential to decode these spectra in terms of the electronic and atomistic dynamics, the need for large numbers of excited-state electronic structure calculations severely limits first-principles predictions of multidimensional optical spectra for chromophores in the condensed phase. Here, we leverage the locality of chromophore excitations to develop machine learning models to predict the excited-state energy gap of chromophores in complex environments for efficiently constructing linear and multidimensional optical spectra. By analyzing the performance of these models, which span a hierarchy of physical approximations, across a range of chromophore-environment interaction strengths, we provide strategies for the construction of machine learning models that greatly accelerate the calculation of multidimensional optical spectra from first principles.
Collapse
Affiliation(s)
- Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Tobias Morawietz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Raucci U, Perrella F, Donati G, Zoppi M, Petrone A, Rega N. Ab-initio molecular dynamics and hybrid explicit-implicit solvation model for aqueous and nonaqueous solvents: GFP chromophore in water and methanol solution as case study. J Comput Chem 2020; 41:2228-2239. [PMID: 32770577 DOI: 10.1002/jcc.26384] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022]
Abstract
Solute-solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical-physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute-solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.
Collapse
Affiliation(s)
- Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Fulvio Perrella
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Greta Donati
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy.,Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Fisciano, Italy
| | - Maria Zoppi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Alessio Petrone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Naples, Italy
| |
Collapse
|
27
|
Zuehlsdorff TJ, Hong H, Shi L, Isborn CM. Nonlinear spectroscopy in the condensed phase: The role of Duschinsky rotations and third order cumulant contributions. J Chem Phys 2020; 153:044127. [PMID: 32752702 DOI: 10.1063/5.0013739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
First-principles modeling of nonlinear optical spectra in the condensed phase is highly challenging because both environment and vibronic interactions can play a large role in determining spectral shapes and excited state dynamics. Here, we compute two dimensional electronic spectroscopy (2DES) signals based on a cumulant expansion of the energy gap fluctuation operator, with specific focus on analyzing mode mixing effects introduced by the Duschinsky rotation and the role of the third order term in the cumulant expansion for both model and realistic condensed phase systems. We show that for a harmonic model system, the third order cumulant correction captures effects introduced by a mismatch in curvatures of ground and excited state potential energy surfaces, as well as effects of mode mixing. We also demonstrate that 2DES signals can be accurately reconstructed from purely classical correlation functions using quantum correction factors. We then compute nonlinear optical spectra for the Nile red and methylene blue chromophores in solution, assessing the third order cumulant contribution for realistic systems. We show that the third order cumulant correction is strongly dependent on the treatment of the solvent environment, revealing the interplay between environmental polarization and the electronic-vibrational coupling.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Hanbo Hong
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Liang Shi
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
28
|
Jin X, Glover WJ, He X. Fragment Quantum Mechanical Method for Excited States of Proteins: Development and Application to the Green Fluorescent Protein. J Chem Theory Comput 2020; 16:5174-5188. [PMID: 32551640 DOI: 10.1021/acs.jctc.9b00980] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Understanding the excited-state properties of luminescent biomolecules is of central importance to their biophysical applications. In this study, we develop the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method for quantitatively characterizing properties of covalently bonded systems with localized excitations (i.e., involving a single chromophore), such as fluorescent proteins. The excitation energy, transition dipole moment, and oscillator strength of wild-type Green Fluorescent Protein (wt-GFP) calculated by EE-GMFCC are found to be in excellent agreement with full system time-dependent density functional theory results. We also applied the Polarized Protein-Specific Charge model to wt-GFP, and found that electronic polarization of the protein is critical in stabilizing hydrogen bonding interactions in wt-GFP, which influences its absorption spectrum. The predicted absorption spectra of wt-GFP in the A and B states qualitatively agree with experiment. The fragmentation approach further allows a straightforward per residue decomposition of the excitation which reveals the influence of the protein environment on the absorption spectra of wt-GFP A and B states. Our results demonstrate that the EE-GMFCC method is both accurate and efficient for excited-state property calculations on proteins.
Collapse
Affiliation(s)
- Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - William J Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
29
|
Mehmood R, Kulik HJ. Both Configuration and QM Region Size Matter: Zinc Stability in QM/MM Models of DNA Methyltransferase. J Chem Theory Comput 2020; 16:3121-3134. [PMID: 32243149 DOI: 10.1021/acs.jctc.0c00153] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantum-mechanical/molecular-mechanical (QM/MM) methods are essential to the study of metalloproteins, but the relative importance of sampling and degree of QM treatment in achieving quantitative predictions is poorly understood. We study the relative magnitude of configurational and QM-region sensitivity of energetic and electronic properties in a representative Zn2+ metal binding site of a DNA methyltransferase. To quantify property variations, we analyze snapshots extracted from 250 ns of molecular dynamics simulation. To understand the degree of QM-region sensitivity, we perform analysis using QM regions ranging from a minimal 49-atom region consisting only of the Zn2+ metal and its four coordinating Cys residues up to a 628-atom QM region that includes residues within 12 Å of the metal center. Over the configurations sampled, we observe that illustrative properties (e.g., rigid Zn2+ removal energy) exhibit large fluctuations that are well captured with even minimal QM regions. Nevertheless, for both energetic and electronic properties, we observe a slow approach to asymptotic limits with similarly large changes in absolute values that converge only with larger (ca. 300-atom) QM region sizes. For the smaller QM regions, the electronic description of Zn2+ binding is incomplete: the metal binds too tightly and is too stabilized by the strong electrostatic potential of MM point charges, and the Zn-S bond covalency is overestimated. Overall, this work suggests that efficient sampling with QM/MM in small QM regions is an effective method to explore the influence of enzyme structure on target properties. At the same time, accurate descriptions of electronic and energetic properties require a larger QM region than the minimal metal-coordinating residues in order to converge treatment of both metal-local bonding and the overall electrostatic environment.
Collapse
Affiliation(s)
- Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Simm GN, Türtscher PL, Reiher M. Systematic microsolvation approach with a cluster-continuum scheme and conformational sampling. J Comput Chem 2020; 41:1144-1155. [PMID: 32027384 DOI: 10.1002/jcc.26161] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Solvation is a notoriously difficult and nagging problem for the rigorous theoretical description of chemistry in the liquid phase. Successes and failures of various approaches ranging from implicit solvation modeling through dielectric continuum embedding and microsolvated quantum chemical modeling to explicit molecular dynamics highlight this situation. Here, we focus on quantum chemical microsolvation and discuss an explicit conformational sampling ansatz to make this approach systematic. For this purpose, we introduce an algorithm for rolling and automated microsolvation of solutes. Our protocol takes conformational sampling and rearrangements in the solvent shell into account. Its reliability is assessed by monitoring the evolution of the spread and average of the observables of interest.
Collapse
Affiliation(s)
- Gregor N Simm
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Paul L Türtscher
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
31
|
Tóth Z, Kubečka J, Muchová E, Slavíček P. Ionization energies in solution with the QM:QM approach. Phys Chem Chem Phys 2020; 22:10550-10560. [PMID: 32010902 DOI: 10.1039/c9cp06154a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We discuss a fragment-based QM:QM scheme as a practical way to access the energetics of vertical electronic processes in the condensed phase. In the QM:QM scheme, we decompose the large molecular system into small fragments, which interact solely electrostatically. The energies of the fragments are calculated in a self-consistent field generated by the other fragments and the total energy of the system is calculated as a sum of the fragment energies. We show on two test cases (cytosine and a sodium cation) that the method allows one to accurately simulate the shift of vertical ionization energies (VIE) while going from the gas phase to the bulk. For both examples, the predicted solvent shifts and peak widths estimated at the DFT level agree well with the experimental observations. We argue that the QM:QM approach is more suitable than either an electrostatic embedding based QM/MM approach, a full quantum description at the DFT level with a generally used functional or a combination of both. We also discuss the potential scope of the applicability for other electronic processes such as Auger decay.
Collapse
Affiliation(s)
- Zsuzsanna Tóth
- University of Chemistry and Technology Prague, Department of Physical Chemistry, Technická 5, 16628 Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
32
|
Zuehlsdorff TJ, Hong H, Shi L, Isborn CM. Influence of Electronic Polarization on the Spectral Density. J Phys Chem B 2019; 124:531-543. [DOI: 10.1021/acs.jpcb.9b10250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tim J. Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Hanbo Hong
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Liang Shi
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Christine M. Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
33
|
Zuehlsdorff TJ, Montoya-Castillo A, Napoli JA, Markland TE, Isborn CM. Optical spectra in the condensed phase: Capturing anharmonic and vibronic features using dynamic and static approaches. J Chem Phys 2019; 151:074111. [PMID: 31438704 DOI: 10.1063/1.5114818] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Simulating optical spectra in the condensed phase remains a challenge for theory due to the need to capture spectral signatures arising from anharmonicity and dynamical effects, such as vibronic progressions and asymmetry. As such, numerous simulation methods have been developed that invoke different approximations and vary in their ability to capture different physical regimes. Here, we use several models of chromophores in the condensed phase and ab initio molecular dynamics simulations to rigorously assess the applicability of methods to simulate optical absorption spectra. Specifically, we focus on the ensemble scheme, which can address anharmonic potential energy surfaces but relies on the applicability of extreme nuclear-electronic time scale separation; the Franck-Condon method, which includes dynamical effects but generally only at the harmonic level; and the recently introduced ensemble zero-temperature Franck-Condon approach, which straddles these limits. We also devote particular attention to the performance of methods derived from a cumulant expansion of the energy gap fluctuations and test the ability to approximate the requisite time correlation functions using classical dynamics with quantum correction factors. These results provide insights as to when these methods are applicable and able to capture the features of condensed phase spectra qualitatively and, in some cases, quantitatively across a range of regimes.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | | | - Joseph A Napoli
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
34
|
Shedge SV, Zuehlsdorff TJ, Servis MJ, Clark AE, Isborn CM. Effect of Ions on the Optical Absorption Spectra of Aqueously Solvated Chromophores. J Phys Chem A 2019; 123:6175-6184. [DOI: 10.1021/acs.jpca.9b03163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sapana V. Shedge
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Tim J. Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Michael J. Servis
- Department of Chemistry and the Material Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
| | - Aurora E. Clark
- Department of Chemistry and the Material Science and Engineering Program, Washington State University, Pullman, Washington 99164, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Christine M. Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
35
|
Yost DC, Yao Y, Kanai Y. Propagation of maximally localized Wannier functions in real-time TDDFT. J Chem Phys 2019; 150:194113. [DOI: 10.1063/1.5095631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Dillon C. Yost
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi Yao
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yosuke Kanai
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
36
|
Haldar S, Riplinger C, Demoulin B, Neese F, Izsak R, Dutta AK. Multilayer Approach to the IP-EOM-DLPNO-CCSD Method: Theory, Implementation, and Application. J Chem Theory Comput 2019; 15:2265-2277. [DOI: 10.1021/acs.jctc.8b01263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soumi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | | - Baptiste Demoulin
- Max-Planck-Institut
für Kohlenforschung, 1 Kaiser-Wilhelm Platz, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, 1 Kaiser-Wilhelm Platz, Mülheim an der Ruhr 45470, Germany
| | - Robert Izsak
- Max-Planck-Institut
für Kohlenforschung, 1 Kaiser-Wilhelm Platz, Mülheim an der Ruhr 45470, Germany
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
37
|
Stendevad J, Kongsted J, Steinmann C. Combining polarizable embedding with the Frenkel exciton model: applications to absorption spectra with overlapping solute–solvent bands. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Yang Z, Mehmood R, Wang M, Qi HW, Steeves AH, Kulik HJ. Revealing quantum mechanical effects in enzyme catalysis with large-scale electronic structure simulation. REACT CHEM ENG 2019; 4:298-315. [PMID: 31572618 PMCID: PMC6768422 DOI: 10.1039/c8re00213d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes have evolved to facilitate challenging reactions at ambient conditions with specificity seldom matched by other catalysts. Computational modeling provides valuable insight into catalytic mechanism, and the large size of enzymes mandates multi-scale, quantum mechanical-molecular mechanical (QM/MM) simulations. Although QM/MM plays an essential role in balancing simulation cost to enable sampling with full QM treatment needed to understand electronic structure in enzyme active sites, the relative importance of these two strategies for understanding enzyme mechanism is not well known. We explore challenges in QM/MM for studying the reactivity and stability of three diverse enzymes: i) Mg2+-dependent catechol O-methyltransferase (COMT), ii) radical enzyme choline trimethylamine lyase (CutC), and iii) DNA methyltransferase (DNMT1), which has structural Zn2+ binding sites. In COMT, strong non-covalent interactions lead to long range coupling of electronic structure properties across the active site, but the more isolated nature of the metallocofactor in DNMT1 leads to faster convergence of some properties. We quantify these effects in COMT by computing covariance matrices of by-residue electronic structure properties during dynamics and along the reaction coordinate. In CutC, we observe spontaneous bond cleavage following initiation events, highlighting the importance of sampling and dynamics. We use electronic structure analysis to quantify the relative importance of CHO and OHO non-covalent interactions in imparting reactivity. These three diverse cases enable us to provide some general recommendations regarding QM/MM simulation of enzymes.
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mengyi Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Helena W. Qi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam H. Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
39
|
Wei WJ, Qian HX, Wang WJ, Liao RZ. Computational Understanding of the Selectivities in Metalloenzymes. Front Chem 2018; 6:638. [PMID: 30622942 PMCID: PMC6308299 DOI: 10.3389/fchem.2018.00638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
Metalloenzymes catalyze many different types of biological reactions with high efficiency and remarkable selectivity. The quantum chemical cluster approach and the combined quantum mechanics/molecular mechanics methods have proven very successful in the elucidation of the reaction mechanism and rationalization of selectivities in enzymes. In this review, recent progress in the computational understanding of various selectivities including chemoselectivity, regioselectivity, and stereoselectivity, in metalloenzymes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Assessing Configurational Sampling in the Quantum Mechanics/Molecular Mechanics Calculation of Temoporfin Absorption Spectrum and Triplet Density of States. Molecules 2018; 23:molecules23112932. [PMID: 30424014 PMCID: PMC6278509 DOI: 10.3390/molecules23112932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
The absorption properties of Temoporfin, a second-generation photosensitizer employed in photodynamic therapy, are calculated with an electrostatic-embedding quantum mechanics/molecular mechanics (QM/MM) scheme in methanol. The suitability of several ensembles of geometries generated by different sampling techniques, namely classical-molecular-dynamics (MD) and QM/MM-MD thermal sampling, Wigner quantum sampling and a hybrid protocol, which combines the thermal and quantum approaches, is assessed. It is found that a QM description of the chromophore during the sampling is needed in order to achieve a good agreement with respect to the experimental spectrum. Such a good agreement is obtained with both QM/MM-MD and Wigner samplings, demonstrating that a proper description of the anharmonic motions of the chromophore is not relevant in the computation of the absorption properties. In addition, it is also found that solvent organization is a rather fast process and a long sampling is not required. Finally, it is also demonstrated that the same exchange-correlation functional should be employed in the sampling and in the computation of the excited states properties to avoid unphysical triplet states with relative energies close or below 0 eV.
Collapse
|
41
|
Reinholdt P, Nørby MS, Kongsted J. Modeling of Magnetic Circular Dichroism and UV/Vis Absorption Spectra Using Fluctuating Charges or Polarizable Embedding within a Resonant-Convergent Response Theory Formalism. J Chem Theory Comput 2018; 14:6391-6404. [DOI: 10.1021/acs.jctc.8b00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Morten S. Nørby
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
42
|
Do Better Quality Embedding Potentials Accelerate the Convergence of QM/MM Models? The Case of Solvated Acid Clusters. Molecules 2018; 23:molecules23102466. [PMID: 30261616 PMCID: PMC6222911 DOI: 10.3390/molecules23102466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/28/2022] Open
Abstract
This study examines whether the use of more accurate embedding potentials improves the convergence of quantum mechanics/molecular mechanics (QM/MM) models with respect to the size of the QM region. In conjunction with density functional theory calculations using the ωB97X-D functional, various embedding potentials including the TIP3P water model, the effective fragment potential (EFP), and semi-empirical methods (PM6, PM7, and DFTB) were used to simulate the deprotonation energies of solvated acid clusters. The calculations were performed on solvated neutral (HA) and cationic (HB⁺) acids clusters containing 160 and 480 water molecules using configurations sampled from molecular dynamics simulations. Consistently, the ωB97X-D/EFP model performed the best when using a minimal QM region size. The performance for the other potentials appears to be highly sensitive to the charge character of the acid/base pair. Neutral acids display the expected trend that semi-empirical methods generally perform better than TIP3P; however, an opposite trend was observed for the cationic acids. Additionally, electronic embedding provided an improvement over mechanical embedding for the cationic systems, but not the neutral acids. For the best performing ωB97X-D/EFP model, a QM region containing about 6% of the total number of solvent molecules is needed to approach within 10 kJ mol-1 of the pure QM result if the QM region was chosen based on the distance from the reaction centre.
Collapse
|
43
|
Kulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys 2018; 20:20650-20660. [PMID: 30059109 PMCID: PMC6085747 DOI: 10.1039/c8cp03871f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations provide key insights into enzyme structure-function relationships. Numerous studies have demonstrated that large QM regions are needed to systematically converge ground state, zero temperature properties with electrostatic embedding QM/MM. However, it is not well known if ab initio QM/MM free energy simulations have this same dependence, in part due to the hundreds of thousands of energy evaluations required for free energy estimations that in turn limit QM region size. Here, we leverage recent advances in electronic structure efficiency and accuracy to carry out range-separated hybrid density functional theory free energy simulations in a representative methyltransferase. By studying 200 ps of ab initio QM/MM dynamics for each of five QM regions from minimal (64 atoms) to one-sixth of the protein (544 atoms), we identify critical differences between large and small QM region QM/MM in charge transfer between substrates and active site residues as well as in geometric structure and dynamics that coincide with differences in predicted free energy barriers. Distinct geometric and electronic structure features in the largest QM region indicate that important aspects of enzymatic rate enhancement in methyltransferases are identified with large-scale electronic structure.
Collapse
Affiliation(s)
- Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Zuehlsdorff TJ, Napoli JA, Milanese JM, Markland TE, Isborn CM. Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water. J Chem Phys 2018; 149:024107. [PMID: 30007372 DOI: 10.1063/1.5025517] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many physical phenomena must be accounted for to accurately model solution-phase optical spectral line shapes, from the sampling of chromophore-solvent configurations to the electronic-vibrational transitions leading to vibronic fine structure. Here we thoroughly explore the role of nuclear quantum effects, direct and indirect solvent effects, and vibronic effects in the computation of the optical spectrum of the aqueously solvated anionic chromophores of green fluorescent protein and photoactive yellow protein. By analyzing the chromophore and solvent configurations, the distributions of vertical excitation energies, the absorption spectra computed within the ensemble approach, and the absorption spectra computed within the ensemble plus zero-temperature Franck-Condon approach, we show how solvent, nuclear quantum effects, and vibronic transitions alter the optical absorption spectra. We find that including nuclear quantum effects in the sampling of chromophore-solvent configurations using ab initio path integral molecular dynamics simulations leads to improved spectral shapes through three mechanisms. The three mechanisms that lead to line shape broadening and a better description of the high-energy tail are softening of heavy atom bonds in the chromophore that couple to the optically bright state, widening the distribution of vertical excitation energies from more diverse solvation environments, and redistributing spectral weight from the 0-0 vibronic transition to higher energy vibronic transitions when computing the Franck-Condon spectrum in a frozen solvent pocket. The absorption spectra computed using the combined ensemble plus zero-temperature Franck-Condon approach yield significant improvements in spectral shape and width compared to the spectra computed with the ensemble approach. Using the combined approach with configurations sampled from path integral molecular dynamics trajectories presents a significant step forward in accurately modeling the absorption spectra of aqueously solvated chromophores.
Collapse
Affiliation(s)
- Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Joseph A Napoli
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Joel M Milanese
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
45
|
Zuehlsdorff TJ, Isborn CM. Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution. J Chem Phys 2018; 148:024110. [PMID: 29331131 DOI: 10.1063/1.5006043] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The correct treatment of vibronic effects is vital for the modeling of absorption spectra of many solvated dyes. Vibronic spectra for small dyes in solution can be easily computed within the Franck-Condon approximation using an implicit solvent model. However, implicit solvent models neglect specific solute-solvent interactions on the electronic excited state. On the other hand, a straightforward way to account for solute-solvent interactions and temperature-dependent broadening is by computing vertical excitation energies obtained from an ensemble of solute-solvent conformations. Ensemble approaches usually do not account for vibronic transitions and thus often produce spectral shapes in poor agreement with experiment. We address these shortcomings by combining zero-temperature vibronic fine structure with vertical excitations computed for a room-temperature ensemble of solute-solvent configurations. In this combined approach, all temperature-dependent broadening is treated classically through the sampling of configurations and quantum mechanical vibronic contributions are included as a zero-temperature correction to each vertical transition. In our calculation of the vertical excitations, significant regions of the solvent environment are treated fully quantum mechanically to account for solute-solvent polarization and charge-transfer. For the Franck-Condon calculations, a small amount of frozen explicit solvent is considered in order to capture solvent effects on the vibronic shape function. We test the proposed method by comparing calculated and experimental absorption spectra of Nile red and the green fluorescent protein chromophore in polar and non-polar solvents. For systems with strong solute-solvent interactions, the combined approach yields significant improvements over the ensemble approach. For systems with weak to moderate solute-solvent interactions, both the high-energy vibronic tail and the width of the spectra are in excellent agreement with experiments.
Collapse
Affiliation(s)
- T J Zuehlsdorff
- School of Natural Sciences, University of California Merced, N. Lake Road, Merced, California 95344, USA
| | - C M Isborn
- School of Natural Sciences, University of California Merced, N. Lake Road, Merced, California 95344, USA
| |
Collapse
|
46
|
|
47
|
Schröder H, Schwabe T. Corrected Polarizable Embedding: Improving the Induction Contribution to Perichromism for Linear Response Theory. J Chem Theory Comput 2018; 14:833-842. [DOI: 10.1021/acs.jctc.7b01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heiner Schröder
- ZBH−Center for Bioinformatics
and Institute of Physical Chemistry, University of Hamburg, Bundesstraße
43, 20146 Hamburg, Germany
| | - Tobias Schwabe
- ZBH−Center for Bioinformatics
and Institute of Physical Chemistry, University of Hamburg, Bundesstraße
43, 20146 Hamburg, Germany
| |
Collapse
|
48
|
Rubešová M, Muchová E, Slavíček P. Optimal Tuning of Range-Separated Hybrids for Solvated Molecules with Time-Dependent Density Functional Theory. J Chem Theory Comput 2017; 13:4972-4983. [DOI: 10.1021/acs.jctc.7b00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martina Rubešová
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| |
Collapse
|
49
|
Ghosh S, Andersen A, Gagliardi L, Cramer CJ, Govind N. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians. J Chem Theory Comput 2017; 13:4410-4420. [DOI: 10.1021/acs.jctc.7b00618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumen Ghosh
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Amity Andersen
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99338, United States
| | - Laura Gagliardi
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Niranjan Govind
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99338, United States
| |
Collapse
|
50
|
Nørby MS, Olsen JMH, Steinmann C, Kongsted J. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach. J Chem Theory Comput 2017; 13:4442-4451. [DOI: 10.1021/acs.jctc.7b00712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Morten S. Nørby
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Casper Steinmann
- Department
of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|