1
|
Tuckman H, Ma Z, Neuscamman E. Improving Aufbau Suppressed Coupled Cluster through Perturbative Analysis. J Chem Theory Comput 2025; 21:3993-4005. [PMID: 40208203 DOI: 10.1021/acs.jctc.5c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Guided by perturbative analysis, we improve the accuracy of Aufbau suppressed coupled cluster theory in simple single excitations, multiconfigurational single excitations, and charge transfer excitations while keeping the cost of its leading-order terms precisely in line with ground-state coupled cluster. Combining these accuracy improvements with a more efficient implementation based on spin adaptation, we observe high accuracy in a large test set of single excitations and, in particular, a mean unsigned error for charge transfer states that outperforms equation-of-motion coupled cluster theory by 0.25 eV. We discuss how these results are achieved via a systematic identification of which amplitudes to prioritize for single- and multiconfigurational excited states, and how this prioritization differs in important ways from the ground-state theory. In particular, our data show that a partial linearization of the theory increases accuracy by mitigating unwanted side effects of Aufbau suppression.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ziheng Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Pham HDM, Khaliullin RZ. Direct Unconstrained Optimization of Excited States in Density Functional Theory. J Chem Theory Comput 2025; 21:3902-3912. [PMID: 40175288 DOI: 10.1021/acs.jctc.4c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Orbital-optimized density functional theory (DFT) has emerged as an alternative to time-dependent (TD) DFT, capable of describing difficult excited states with significant electron density redistribution, such as charge-transfer, Rydberg, and double-electron excitations. Here, a simple method is developed to solve the main problem of excited-state optimization─the variational collapse of excited states onto the ground state. In this method, called variable-metric time-independent DFT (VM TIDFT), the electronic states are allowed to be nonorthogonal during the optimization, but their orthogonality is gradually enforced with a continuous penalty function. With nonorthogonal electronic states, VM TIDFT can use molecular orbital coefficients as independent variables, which results in a closed-form analytical expression for the gradient and allows to employ any of the multiple unconstrained optimization algorithms that guarantee convergence of the excited-state optimization. Numerical tests on multiple molecular systems show that the variable-metric optimization of excited states performed with a preconditioned conjugate gradient algorithm is robust and produces accurate energies for well-behaved excitations and, unlike TDDFT, for more challenging charge-transfer and double-electron excitations.
Collapse
Affiliation(s)
- Hanh D M Pham
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, Québec H3A 0B8, Canada
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, Québec H3A 0B8, Canada
| |
Collapse
|
3
|
Inhester L, Moros AS, Macé S, Arnold C, Santra R. Ionization-induced proton and energy transfer in liquid water. J Chem Phys 2025; 162:154503. [PMID: 40231885 DOI: 10.1063/5.0258328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
We report computational simulation results addressing the ionization response of liquid water upon valence ionization. The simulations cover ionizations in the whole valence-orbital range of liquid water, i.e., vacancies in 1b1, 3a1, 1b2, and 2a1 orbitals. It is found that ionization in any of these valence orbitals leads to rapid proton-transfer dynamics. The timescale on which the proton transfer occurs depends on which type of orbital is ionized. For ionization in the 2a1 orbitals, the proton transfer takes place in about 22 fs, competing with the intermolecular Coulombic decay mechanism that takes place on a similar timescale. This result is discussed in the context of earlier experimental results (Richter et al., Nat. Commun. 9, 4988) regarding the intermolecular Coulombic decay in water. For ionization in the outer-valence orbitals (1b1, 3a1, 1b2), we see rapid internal conversion via non-adiabatic transitions to the electronic ground state. The proton transfer occurs 46, 70, and 91 fs after the initial ionization from a 1b1, 3a1, and 1b2 orbital, respectively. The initial valence ionization induces strong vibrational excitations in the surrounding water molecules, leading to a considerable increase in the local effective temperature. The created heat diffuses into the liquid environment on a timescale of several hundred femtoseconds. We compare the results using two different embedding schemes, subtractive and electrostatic embedding, and find overall very similar dynamics.
Collapse
Affiliation(s)
- Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arturo Sopena Moros
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sam Macé
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- École normale supérieure Paris-Saclay, Université Paris-Saclay, 94235 Cachan cedex, France
| | - Caroline Arnold
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Loos PF, Giarrusso S. Excited-state-specific Kohn-Sham formalism for the asymmetric Hubbard dimer. J Chem Phys 2025; 162:144104. [PMID: 40197591 DOI: 10.1063/5.0255324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Building on our recent study [Giarrusso and Loos, J. Phys. Chem. Lett. 14, 8780 (2023)], we explore the generalization of the ground-state Kohn-Sham (KS) formalism of density-functional theory (DFT) to the (singlet) excited states of the asymmetric Hubbard dimer at half-filling. While we found that the KS-DFT framework can be straightforwardly generalized to the highest-lying doubly excited state, the treatment of the first excited state presents significant challenges. In particular, using a density-fixed adiabatic connection, we show that the density of the first excited state lacks non-interacting v-representability. However, by employing an analytic continuation of the adiabatic path, we demonstrate that the density of the first excited state can be generated by a complex-valued external potential in the non-interacting case. More practically, by performing state-specific KS calculations with exact and approximate correlation functionals-each state possessing a distinct correlation functional-we observe that spurious stationary solutions of the KS equations may arise due to the approximate nature of the functional.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sara Giarrusso
- Institut de Chimie Physique (UMR 8000), Université Paris-Saclay, CNRS, Paris, France
| |
Collapse
|
5
|
Di Prima D, Pedraza-González L, Reinholdt P, Kongsted J, Mennucci B. Fluorescent Rhodopsins: A Challenging Test for Cost-Effective QM/MM Approaches. J Phys Chem A 2025; 129:1769-1778. [PMID: 39902719 DOI: 10.1021/acs.jpca.4c07733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
In this study, we evaluate the performance of two cost-effective models, namely, TD-DFT and ΔSCF methods, combined with different molecular mechanics models, to predict the photophysical and photochemical properties of a set of fluorescent mutants of the microbial rhodopsin Archaerhodopsin-3. We investigate absorption energies and excited-state isomerization barriers of the embedded retinal protonated Schiff-base chromophore by comparing different DFT functionals as well as different approximations of the embedding model. For absorption energies, CAM-B3LYP demonstrates the most consistent alignment with experiments among the functionals tested, whereas the embedding potentials exhibit similar accuracy. However, incorporating linear response corrections within the polarizable TD-DFT/MM framework enhances accuracy. The photoisomerization barriers, instead, exhibit a pronounced sensitivity to the choice of embedding model, underscoring the complex role that environmental factors play in modulating predictions of excited-state processes. For the two properties here investigated, ΔSCF/MM presents qualitatively similar behavior with respect to TD-DFT for all the tested embedding models.
Collapse
Affiliation(s)
- Duccio Di Prima
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Laura Pedraza-González
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
6
|
Kunze L, Hansen A, Grimme S, Mewes JM. The Best of Both Worlds: ΔDFT Describes Multiresonance TADF Emitters with Wave-Function Accuracy at Density-Functional Cost. J Phys Chem Lett 2025; 16:1114-1125. [PMID: 39846377 DOI: 10.1021/acs.jpclett.4c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
With their narrow-band emission, high quantum yield, and good chemical stability, multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising materials for OLED technology. However, accurately modeling key properties, such as the singlet-triplet (ST) energy gap and fluorescence energy, remains challenging. While time-dependent density functional theory (TD-DFT), the workhorse of computational materials science, suffers from fundamental issues, wave function-based coupled-cluster (CC) approaches, like approximate CC of second-order (CC2), are accurate but suffer from high computational cost and unfavorable scaling with system size. This work demonstrates that a state-specific ΔDFT approach based on unrestricted Kohn-Sham (ΔUKS) combines the best of both worlds: on a diverse benchmark set of 35 MR-TADF emitters, ΔUKS performs as good as or better than CC2, recovering experimental ST gaps with a mean absolute deviation (MAD) of 0.03 eV at a small fraction of the computational cost of CC2. When combined with a tuned range-separated LC-ωPBE functional, the excellent performance extends to fluorescence energies and ST gaps of MR- and donor-acceptor TADF emitters and even molecules with an inverted ST gap (INVEST), rendering this approach a jack of all trades for organic electronics.
Collapse
Affiliation(s)
- Lukas Kunze
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
- beeOLED GmbH, Niedersedlitzer Str. 75c, 01257 Dresden, Germany
| |
Collapse
|
7
|
Fromager E. Ensemble Density Functional Theory of Ground and Excited Energy Levels. J Phys Chem A 2025; 129:1143-1155. [PMID: 39829255 DOI: 10.1021/acs.jpca.4c06744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A Kohn-Sham (KS) density-functional energy expression is derived for any (ground or excited) state within a given many-electron ensemble along with the stationarity condition it fulfills with respect to the ensemble density, thus giving access to both physical energy levels and individual-state densities, in principle exactly. We also provide working equations for the evaluation of the latter from the true static ensemble density-density linear response function. Unlike in Gould's recent ensemble potential functional approach to excited states [arXiv:2404.12593], we use the ensemble density as sole basic variable. While a state-specific KS potential naturally emerges from the present formalism, at the exact ensemble Hartree-exchange-only (Hx) level of approximation, the standard implementation of orbital-optimized density functional theory for excited states is recovered when recycling the regular ground-state Hx-correlation functional in this context.
Collapse
Affiliation(s)
- Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
- Institute for Advanced Study, University of Strasbourg, 5, allée du Général Rouvillois, 67083 Strasbourg, France
| |
Collapse
|
8
|
Birgisson BO, Dohn AO, Jónsson H, Levi G. Decoherence and vibrational energy relaxation of the electronically excited PtPOP complex in solution. J Chem Phys 2025; 162:044306. [PMID: 39873277 DOI: 10.1063/5.0241573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions. The decoherence time of the Pt-Pt vibration dominating the photoinduced dynamics is found to be ∼1.6 ps in both solvents. This is in excellent agreement with experimental measurements in water, where intersystem crossing is slow (>10 ps). Pathways for the flow of excess energy are identified by monitoring the power of the solvent on vibrational modes. The latter are obtained as generalized normal modes from the velocity covariances, and the power is computed using QM/MM embedding forces. Excess vibrational energy is found to be predominantly released through short-range repulsive and attractive interactions between the ligand atoms and surrounding solvent molecules, whereas solute-solvent interactions involving the Pt atoms are less important. Since photoexcitation deposits most of the excess energy into Pt-Pt vibrations, energy dissipation to the solvent is inefficient. This study reveals the mechanism behind the exceptionally long vibrational coherence of the photoexcited PtPOP complex in solution and underscores the importance of short-range interactions for accurate simulations of vibrational energy relaxation of solvated molecules.
Collapse
Affiliation(s)
- Benedikt O Birgisson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Asmus Ougaard Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
- Deptartment of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
9
|
Lemke Y, Kussmann J, Ochsenfeld C. Highly Accurate and Robust Constraint-Based Orbital-Optimized Core Excitations. J Phys Chem A 2024; 128:9804-9818. [PMID: 39495940 PMCID: PMC11571214 DOI: 10.1021/acs.jpca.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
We adapt our recently developed constraint-based orbital-optimized excited-state method (COOX) for the computation of core excitations. COOX is a constrained density functional theory (cDFT) approach based on excitation amplitudes from linear-response time-dependent DFT (LR-TDDFT), and has been shown to provide accurate excitation energies and excited-state properties for valence excitations within a spin-restricted formalism. To extend COOX to core-excited states, we introduce a spin-unrestricted variant which allows us to obtain orbital-optimized core excitations with a single constraint. Using a triplet purification scheme in combination with the constrained unrestricted Hartree-Fock formalism, scalar-relativistic zero-order regular approximation corrections, and a semiempirical treatment of spin-orbit coupling, COOX is shown to produce highly accurate results for K- and L-edge excitations of second- and third-period atoms with subelectronvolt errors despite being based on LR-TDDFT, for which core excitations pose a well-known challenge. L- and M-edge excitations of heavier atoms up to uranium are also computationally feasible and numerically stable, but may require more advanced treatment of relativistic effects. Furthermore, COOX is shown to perform on par with or better than the popular ΔSCF approach while exhibiting more robust convergence, highlighting it as a promising tool for inexpensive and accurate simulations of X-ray absorption spectra.
Collapse
Affiliation(s)
- Yannick Lemke
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
- Max-Planck-Institute
for Solid State Research, Heisenbergstr. 1, Stuttgart D-70569, Germany
| |
Collapse
|
10
|
Kussmann J, Lemke Y, Weinbrenner A, Ochsenfeld C. A Constraint-Based Orbital-Optimized Excited State Method (COOX). J Chem Theory Comput 2024; 20:8461-8473. [PMID: 39345090 PMCID: PMC11465468 DOI: 10.1021/acs.jctc.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
In this work, we present a novel method to directly calculate targeted electronic excited states within a self-consistent field calculation based on constrained density functional theory (cDFT). The constraint is constructed from the static occupied-occupied and virtual-virtual parts of the excited state difference density from (simplified) linear-response time-dependent density functional theory calculations (LR-TDDFT). Our new method shows a stable convergence behavior, provides an accurate excited state density adhering to the Aufbau principle, and can be solved within a restricted SCF for singlet excitations to avoid spin contamination. This also allows the straightforward application of post-SCF electron-correlation methods like MP2 or direct RPA methods. We present the details of our constraint-based orbital-optimized excited state method (COOX) and compare it to similar schemes. The accuracy of excitation energies will be analyzed for a benchmark of systems, while the quality of the resulting excited state densities is investigated by evaluating excited state nuclear forces and excited state structure optimizations. We also investigate the performance of the proposed COOX method for long-range charge transfer excitations and conical intersections with the ground-state.
Collapse
Affiliation(s)
- Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität in Munich (LMU), München D-81377, Germany
| | - Yannick Lemke
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität in Munich (LMU), München D-81377, Germany
| | - Anthea Weinbrenner
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität in Munich (LMU), München D-81377, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität in Munich (LMU), München D-81377, Germany
- Max-Planck-Institute
for Solid State Research, Stuttgart D-70659, Germany
| |
Collapse
|
11
|
Tripathy V, Flood AH, Raghavachari K. Accelerated Computer-Aided Screening of Optical Materials: Investigating the Potential of Δ-SCF Methods to Predict Emission Maxima of Large Dye Molecules. J Phys Chem A 2024; 128:8333-8345. [PMID: 39303152 DOI: 10.1021/acs.jpca.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Accurate simulation of electronic excited states of large chromophores is often difficult due to the computationally expensive nature of existing methods. Common approximations such as fragmentation methods that are routinely applied to ground-state calculations of large molecules are not easily applicable to excited states due to the delocalized nature of electronic excitations in most practical chromophores. Thus, special techniques specific to excited states are needed. Δ-SCF methods are one such approximation that treats excited states in a manner analogous to that for ground-state calculations, accelerating the simulation of excited states. In this work, we employed the popular initial maximum overlap method (IMOM) to avoid the variational collapse of the electronic excited state orbitals to the ground state. We demonstrate that it is possible to obtain emission energies from the first singlet (S1) excited state of many thousands of dye molecules without any external intervention. Spin correction was found to be necessary to obtain accurate excitation and emission energies. Using thousands of dye-like chromophores and various solvents (12,318 combinations), we show that the spin-corrected initial maximum overlap method accurately predicts emission maxima with a mean absolute error of only 0.27 eV. We further improved the predictive accuracy using linear fit-based corrections from individual dye classes to achieve an impressive performance of 0.17 eV. Additionally, we demonstrate that IMOM spin density can be used to identify the dye class of chromophores, enabling improved prediction accuracy for complex dye molecules, such as dyads (chromophores containing moieties from two different dye classes). Finally, the convergence behavior of IMOM excited state SCF calculations is analyzed briefly to identify the chemical space, where IMOM is more likely to fail.
Collapse
Affiliation(s)
- Vikrant Tripathy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Bogo N, Stein CJ. Benchmarking DFT-based excited-state methods for intermolecular charge-transfer excitations. Phys Chem Chem Phys 2024; 26:21575-21588. [PMID: 39082837 DOI: 10.1039/d4cp01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Intermolecular charge-transfer is a highly important process in biology and energy-conversion applications where generated charges need to be transported over several moieties. However, its theoretical description is challenging since the high accuracy required to describe these excited states must be accessible for calculations on large molecular systems. In this benchmark study, we identify reliable low-scaling computational methods for this task. Our reference results were obtained from highly accurate wavefunction calculations that restrict the size of the benchmark systems. However, the density-functional theory based methods that we identify as accurate can be applied to much larger systems. Since targeting charge-transfer states requires the unambiguous classification of an excited state, we first analyze several charge-transfer descriptors for their reliability concerning intermolecular charge-transfer and single out the charge-transfer distance calculated based on the variation of electron density upon excitation (DCT) as an optimal choice for our purposes. In general, best results are obtained for orbital-optimized methods and among those, the maximum overlap method proved to be the most numerically stable variant when using the initial MOs as reference orbitals. Favorable error cancellation with optimally-tuned range-separated hybrid functionals and a rather small basis set can provide an economical yet reasonable wavefunction when using time-dependent density functional theory, which provides relevant information about the excited-state character to be used in the orbital-optimized methods. The qualitative agreement makes these fast calculations attractive for high-throughput screening applications.
Collapse
Affiliation(s)
- Nicola Bogo
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| | - Christopher J Stein
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| |
Collapse
|
13
|
Froitzheim T, Kunze L, Grimme S, Herbert JM, Mewes JM. Benchmarking Charge-Transfer Excited States in TADF Emitters: ΔDFT Outperforms TD-DFT for Emission Energies. J Phys Chem A 2024; 128:6324-6335. [PMID: 39028862 DOI: 10.1021/acs.jpca.4c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Charge-transfer (CT) excited states are crucial to organic light-emitting diodes (OLEDs), particularly to those based on thermally activated delayed fluorescence (TADF). However, accurately modeling CT states remains challenging, even with modern implementations of (time-dependent) density functional theory [(TD-)DFT], especially in a dielectric environment. To identify shortcomings and improve the methodology, we previously established the STGABS27 benchmark set with highly accurate experimental references for the adiabatic energy gap between the lowest singlet and triplet excited states (ΔEST). Here, we diversify this set to the STGABS27-EMS benchmark by including experimental emission energies (Eem) and use this new set to (re)-evaluate various DFT-based approaches. Surprisingly, these tests demonstrate that a state-specific (un)restricted open-shell Kohn-Sham (U/ROKS) DFT coupled with a polarizable continuum model for perturbative state-specific nonequilibrium solvation (ptSS-PCM) provides exceptional accuracy for predicting Eem over a wide range of density functionals. In contrast, the main workhorse of the field, Tamm-Dancoff-approximated TD-DFT (TDA-DFT) paired with the same ptSS-PCM, is distinctly less accurate and strongly functional-dependent. More importantly, while TDA-DFT requires the choice of two very different density functionals for good performance on either ΔEST or Eem, the time-independent U/ROKS/PCM approaches deliver excellent accuracy for both quantities with a wide variety of functionals.
Collapse
Affiliation(s)
- Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Lukas Kunze
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
- beeOLED GmbH, Niedersedlitzer Str. 75 C, 01257 Dresden, Germany
| |
Collapse
|
14
|
Kunze L, Froitzheim T, Hansen A, Grimme S, Mewes JM. ΔDFT Predicts Inverted Singlet-Triplet Gaps with Chemical Accuracy at a Fraction of the Cost of Wave Function-Based Approaches. J Phys Chem Lett 2024:8065-8077. [PMID: 39083761 DOI: 10.1021/acs.jpclett.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Efficient OLEDs need to quickly convert singlet and triplet excitons into photons. Molecules with an inverted singlet-triplet energy gap (INVEST) are promising candidates for this task. However, typical INVEST molecules have drawbacks like too low oscillator strengths and excitation energies. High-throughput screening could identify suitable INVEST molecules, but existing methods are problematic: The workhorse method TD-DFT cannot reproduce gap inversion, while wave function-based methods are too slow. This study proposes a state-specific method based on unrestricted Kohn-Sham DFT with common hybrid functionals. Tuned on the new INVEST15 benchmark set, this method achieves an error of less than 1 kcal/mol, which is traced back to error cancellation between spin contamination and dynamic correlation. Applied to the larger and structurally diverse NAH159 set in a black-box fashion, the method maintains a small error (1.2 kcal/mol) and accurately predicts gap signs in 83% of cases, confirming its robustness and suitability for screening workflows.
Collapse
Affiliation(s)
- Lukas Kunze
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
- beeOLED GmbH, Niedersedlitzer Str. 75c, 01257 Dresden, Germany
| |
Collapse
|
15
|
Tomaník L, Pugini M, Mudryk K, Thürmer S, Stemer D, Credidio B, Trinter F, Winter B, Slavíček P. Liquid-jet photoemission spectroscopy as a structural tool: site-specific acid-base chemistry of vitamin C. Phys Chem Chem Phys 2024; 26:19673-19684. [PMID: 38963770 PMCID: PMC11267885 DOI: 10.1039/d4cp01521e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Liquid-jet photoemission spectroscopy (LJ-PES) directly probes the electronic structure of solutes and solvents. It also emerges as a novel tool to explore chemical structure in aqueous solutions, yet the scope of the approach has to be examined. Here, we present a pH-dependent liquid-jet photoelectron spectroscopic investigation of ascorbic acid (vitamin C). We combine core-level photoelectron spectroscopy and ab initio calculations, allowing us to site-specifically explore the acid-base chemistry of the biomolecule. For the first time, we demonstrate the capability of the method to simultaneously assign two deprotonation sites within the molecule. We show that a large change in chemical shift appears even for atoms distant several bonds from the chemically modified group. Furthermore, we present a highly efficient and accurate computational protocol based on a single structure using the maximum-overlap method for modeling core-level photoelectron spectra in aqueous environments. This work poses a broader question: to what extent can LJ-PES complement established structural techniques such as nuclear magnetic resonance? Answering this question is highly relevant in view of the large number of incorrect molecular structures published.
Collapse
Affiliation(s)
- Lukáš Tomaník
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic.
| | - Michele Pugini
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Karen Mudryk
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan
| | - Dominik Stemer
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Bruno Credidio
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Florian Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Bernd Winter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
16
|
Zhang JR, Wang SY, Hua W. Core Hole Effect to Valence Excitations: Tracking and Visualizing the Same Excitation in XPS Shake-Up Satellites and UV Absorption Spectra. J Chem Theory Comput 2024; 20:6125-6133. [PMID: 38994655 DOI: 10.1021/acs.jctc.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Introducing a core hole significantly alters the electronic structure of a molecule, and various X-ray spectroscopy techniques are available for probing the valence electronic structure in the presence of a core hole. In this study, we visually demonstrate the influence of a core hole on valence excitations by computing the ultraviolet absorption spectra and the shake-up satellites in X-ray photoelectron spectra for pyrrole, furan, and thiophene, as complemented by the natural transition orbital (NTO) analysis over transitions with and without a core hole. Employing equivalent core hole time-dependent density functional theory (ECH-TDDFT) and TDDFT methods, we achieved balanced accuracy in both spectra for reliable comparative analysis. We tracked the same involved valence transition in both spectra, offering a vivid illustration of the core hole effect via the change in corresponding particle NTOs introduced by a 1s core hole on a Cα, Cβ, or O atom. Our analysis deepens the understanding of the core hole effect on valence transitions, a phenomenon ubiquitously observed in general X-ray spectroscopic analyses.
Collapse
Affiliation(s)
- Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
17
|
Saade S, Burton HGA. Excited State-Specific CASSCF Theory for the Torsion of Ethylene. J Chem Theory Comput 2024; 20:5105-5114. [PMID: 38847452 PMCID: PMC11209946 DOI: 10.1021/acs.jctc.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
State-specific complete active space self-consistent field (SS-CASSCF) theory has emerged as a promising route to accurately predict electronically excited energy surfaces away from molecular equilibria. However, its accuracy and practicality for chemical systems of photochemical interest have yet to be fully determined. We investigate the performance of the SS-CASSCF theory for the low-lying ground and excited states in the double bond rotation of ethylene. We show that state-specific approximations with a minimal (2e,2o) active space provide comparable accuracy to state-averaged calculations with much larger active spaces, while optimizing the orbitals for each excited state significantly improves the spatial diffusivity of the wave function. However, the incorrect ordering of state-specific solutions causes excited state solutions to coalesce and disappear, creating unphysical discontinuities in the potential energy surface. Our findings highlight the theoretical challenges that must be overcome to realize practical applications of state-specific electronic structure theory for computational photochemistry.
Collapse
Affiliation(s)
- Sandra Saade
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Chemistry, Physical and Theoretical Chemical Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Hugh G. A. Burton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
18
|
Damour Y, Scemama A, Jacquemin D, Kossoski F, Loos PF. State-Specific Coupled-Cluster Methods for Excited States. J Chem Theory Comput 2024; 20:4129-4145. [PMID: 38749498 PMCID: PMC11137840 DOI: 10.1021/acs.jctc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
We reexamine ΔCCSD, a state-specific coupled-cluster (CC) with single and double excitations (CCSD) approach that targets excited states through the utilization of non-Aufbau determinants. This methodology is particularly efficient when dealing with doubly excited states, a domain in which the standard equation-of-motion CCSD (EOM-CCSD) formalism falls short. Our goal here to evaluate the effectiveness of ΔCCSD when applied to other types of excited states, comparing its consistency and accuracy with EOM-CCSD. To this end, we report a benchmark on excitation energies computed with the ΔCCSD and EOM-CCSD methods for a set of molecular excited-state energies that encompasses not only doubly excited states but also doublet-doublet transitions and (singlet and triplet) singly excited states of closed-shell systems. In the latter case, we rely on a minimalist version of multireference CC known as the two-determinant CCSD method to compute the excited states. Our data set, consisting of 276 excited states stemming from the quest database [Véril et al., WIREs Comput. Mol. Sci. 2021, 11, e1517], provides a significant base to draw general conclusions concerning the accuracy of ΔCCSD. Except for the doubly excited states, we found that ΔCCSD underperforms EOM-CCSD. For doublet-doublet transitions, the difference between the mean absolute errors (MAEs) of the two methodologies (of 0.10 and 0.07 eV) is less pronounced than that obtained for singly excited states of closed-shell systems (MAEs of 0.15 and 0.08 eV). This discrepancy is largely attributed to a greater number of excited states in the latter set exhibiting multiconfigurational characters, which are more challenging for ΔCCSD. We also found typically small improvements by employing state-specific optimized orbitals.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Anthony Scemama
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Denis Jacquemin
- Nantes
Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut
Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Pierre-François Loos
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
19
|
Selenius E, Sigurdarson AE, Schmerwitz YLA, Levi G. Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States. J Chem Theory Comput 2024; 20:3809-3822. [PMID: 38695313 DOI: 10.1021/acs.jctc.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The performance of time-independent, orbital-optimized calculations of excited states is assessed with respect to charge transfer excitations in organic molecules in comparison to the linear-response time-dependent density functional theory (TD-DFT) approach. A direct optimization method to converge on saddle points of the electronic energy surface is used to carry out calculations with the local density approximation (LDA) and the generalized gradient approximation (GGA) functionals PBE and BLYP for a set of 27 excitations in 15 molecules. The time-independent approach is fully variational and provides a relaxed excited state electron density from which the extent of charge transfer is quantified. The TD-DFT calculations are generally found to provide larger charge transfer distances compared to the orbital-optimized calculations, even when including orbital relaxation effects with the Z-vector method. While the error on the excitation energy relative to theoretical best estimates is found to increase with the extent of charge transfer up to ca. -2 eV for TD-DFT, no correlation is observed for the orbital-optimized approach. The orbital-optimized calculations with the LDA and the GGA functionals provide a mean absolute error of ∼0.7 eV, outperforming TD-DFT with both local and global hybrid functionals for excitations with a long-range charge transfer character. Orbital-optimized calculations with the global hybrid functional B3LYP and the range-separated hybrid functional CAM-B3LYP on a selection of states with short- and long-range charge transfer indicate that inclusion of exact exchange has a small effect on the charge transfer distance, while it significantly improves the excitation energy, with the best-performing functional CAM-B3LYP providing an absolute error typically around 0.15 eV.
Collapse
Affiliation(s)
- Elli Selenius
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| | | | | | - Gianluca Levi
- Science Institute of the University of Iceland, Reykjavík 107, Iceland
| |
Collapse
|
20
|
Tuckman H, Neuscamman E. Aufbau Suppressed Coupled Cluster Theory for Electronically Excited States. J Chem Theory Comput 2024; 20:2761-2773. [PMID: 38502102 DOI: 10.1021/acs.jctc.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We introduce an approach to improve single-reference coupled cluster theory in settings where the Aufbau determinant is absent from or plays only a small role in the true wave function. Using a de-excitation operator that can be efficiently hidden within a similarity transform, we create a coupled cluster wave function in which de-excitations work to suppress the Aufbau determinant and produce wave functions dominated by other determinants. Thanks to an invertible and fully exponential form, the approach is systematically improvable, size consistent, size extensive, and, interestingly, size intensive in a granular way that should make the adoption of some ground state techniques, such as local correlation, relatively straightforward. In this initial study, we apply the general formalism to create a state-specific method for orbital-relaxed, singly excited states. We find that this approach matches the accuracy of similar-cost equation-of-motion methods in valence excitations while offering improved accuracy for charge transfer states. We also find the approach to be more accurate than excited-state-specific perturbation theory in both types of states.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Mortensen JJ, Larsen AH, Kuisma M, Ivanov AV, Taghizadeh A, Peterson A, Haldar A, Dohn AO, Schäfer C, Jónsson EÖ, Hermes ED, Nilsson FA, Kastlunger G, Levi G, Jónsson H, Häkkinen H, Fojt J, Kangsabanik J, Sødequist J, Lehtomäki J, Heske J, Enkovaara J, Winther KT, Dulak M, Melander MM, Ovesen M, Louhivuori M, Walter M, Gjerding M, Lopez-Acevedo O, Erhart P, Warmbier R, Würdemann R, Kaappa S, Latini S, Boland TM, Bligaard T, Skovhus T, Susi T, Maxson T, Rossi T, Chen X, Schmerwitz YLA, Schiøtz J, Olsen T, Jacobsen KW, Thygesen KS. GPAW: An open Python package for electronic structure calculations. J Chem Phys 2024; 160:092503. [PMID: 38450733 DOI: 10.1063/5.0182685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
Collapse
Affiliation(s)
- Jens Jørgen Mortensen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ask Hjorth Larsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Kuisma
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Aleksei V Ivanov
- Riverlane Ltd., St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Alireza Taghizadeh
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Anubhab Haldar
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Asmus Ougaard Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark and Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland, Reykjavík 107, Iceland
| | - Christian Schäfer
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Eric D Hermes
- Quantum-Si, 29 Business Park Drive, Branford, Connecticut 06405, USA
| | | | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jakub Fojt
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jiban Kangsabanik
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joachim Sødequist
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jouko Lehtomäki
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Julian Heske
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jussi Enkovaara
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Kirsten Trøstrup Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marcin Dulak
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Martin Ovesen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martti Louhivuori
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Morten Gjerding
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga Lopez-Acevedo
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Robert Warmbier
- School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, 2001 Johannesburg, South Africa
| | - Rolf Würdemann
- Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Sami Kaappa
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Simone Latini
- Nanomade, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tara Maria Boland
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Bligaard
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Thorbjørn Skovhus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Tristan Maxson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Tuomas Rossi
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Xi Chen
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
22
|
Salvadori G, Mazzeo P, Accomasso D, Cupellini L, Mennucci B. Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. J Mol Biol 2024; 436:168358. [PMID: 37944793 DOI: 10.1016/j.jmb.2023.168358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this review, we discuss the successes and challenges of the atomistic modeling of photoreceptors. Throughout our presentation, we integrate explanations of the primary methodological approaches, ranging from quantum mechanical descriptions to classical enhanced sampling methods, all while providing illustrative examples of their practical application to specific systems. To enhance the effectiveness of our analysis, our primary focus has been directed towards the examination of applications across three distinct photoreceptors. These include an example of Blue Light-Using Flavin (BLUF) domains, a bacteriophytochrome, and the orange carotenoid protein (OCP) employed by cyanobacteria for photoprotection. Particular emphasis will be placed on the pivotal role played by the protein matrix in fine-tuning the initial photochemical event within the embedded chromophore. Furthermore, we will investigate how this localized perturbation initiates a cascade of events propagating from the binding pocket throughout the entire protein structure, thanks to the intricate network of interactions between the chromophore and the protein.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Patrizia Mazzeo
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Davide Accomasso
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
23
|
Arias-Martinez JE, Wu H, Head-Gordon M. Generalization of One-Center Nonorthogonal Configuration Interaction Singles to Open-Shell Singlet Reference States: Theory and Application to Valence-Core Pump-Probe States in Acetylacetone. J Chem Theory Comput 2024; 20:752-766. [PMID: 38164934 DOI: 10.1021/acs.jctc.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We formulate a one-center nonorthogonal configuration interaction singles (1C-NOCIS) theory for the computation of core excited states of an initial singlet state with two unpaired electrons. This model, which we refer to as 1C-NOCIS two-electron open-shell (2eOS), is appropriate for computing the K-edge near-edge X-ray absorption spectra (NEXAS) of the valence excited states of closed-shell molecules relevant to pump-probe time-resolved (TR) NEXAS experiments. With the inclusion of core-hole relaxation effects and explicit spin adaptation, 1C-NOCIS 2eOS requires mild shifts to match experiment, is free of artifacts due to spin contamination, and can capture the high-energy region of the spectrum beyond the transitions into the singly occupied molecular orbitals (SOMOs). Calculations on water and thymine illustrate the different key features of excited-state NEXAS, namely, the core-to-SOMO transitions as well as shifts and spin-splittings in the transitions analogous to those of the ground state. Simulations of the TR-NEXAS of acetylacetone after excitation to its π → π* singlet excited state at the carbon K-edge, an experiment carried out recently, showcase the ability of 1C-NOCIS 2eOS to efficiently simulate NEXAS based on nonadiabatic molecular dynamics simulations.
Collapse
Affiliation(s)
- Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hamlin Wu
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Dong X, Thompson LM. Time propagation of electronic wavefunctions using nonorthogonal determinant expansions. J Chem Phys 2024; 160:024106. [PMID: 38189613 DOI: 10.1063/5.0179601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The use of truncated configuration interaction in real-time time-dependent simulations of electron dynamics provides a balance of computational cost and accuracy, while avoiding some of the failures associated with real-time time-dependent density functional theory. However, low-order truncated configuration interaction also has limitations, such as overestimation of polarizability in configuration interaction singles, even when perturbative doubles are included. Increasing the size of the determinant expansion may not be computationally feasible, and so, in this work, we investigate the use of nonorthogonality in the determinant expansion to establish the extent to which higher-order substitutions can be recovered, providing an improved description of electron dynamics. Model systems are investigated to quantify the extent to which different methods accurately reproduce the (hyper)polarizability, including the high-harmonic generation spectrum of H2, water, and butadiene.
Collapse
Affiliation(s)
- Xinju Dong
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, USA
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, USA
| |
Collapse
|
25
|
Sigurdarson AE, Schmerwitz YLA, Tveiten DKV, Levi G, Jónsson H. Orbital-optimized density functional calculations of molecular Rydberg excited states with real space grid representation and self-interaction correction. J Chem Phys 2023; 159:214109. [PMID: 38047508 DOI: 10.1063/5.0179271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Density functional calculations of Rydberg excited states up to high energy are carried out for several molecules using an approach where the orbitals are variationally optimized by converging on saddle points on the electronic energy surface within a real space grid representation. Remarkably good agreement with experimental estimates of the excitation energy is obtained using the generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE) when Perdew-Zunger self-interaction correction is applied in combination with complex-valued orbitals. Even without the correction, the PBE functional gives quite good results despite the fact that corresponding Rydberg virtual orbitals have positive energy in the ground state calculation. Results obtained using the Tao, Perdew, Staroverov, and Scuseria (TPSS) and r2SCAN meta-GGA functionals are also presented, but they do not provide a systematic improvement over the results from the uncorrected PBE functional. The grid representation combined with the projector augmented-wave approach gives a simpler and better representation of diffuse Rydberg orbitals than a linear combination of atomic orbitals with commonly used basis sets, the latter leading to an overestimation of the excitation energy due to confinement of the excited states.
Collapse
Affiliation(s)
- Alec E Sigurdarson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Yorick L A Schmerwitz
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Dagrún K V Tveiten
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
26
|
Kossoski F, Loos PF. Seniority and Hierarchy Configuration Interaction for Radicals and Excited States. J Chem Theory Comput 2023. [PMID: 37965728 DOI: 10.1021/acs.jctc.3c00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Hierarchy configuration interaction (hCI) has recently been introduced as an alternative configuration interaction (CI) route combining excitation degree and seniority number and has been shown to efficiently recover both dynamic and static correlations for closed-shell molecular systems [ J. Phys. Chem. Lett. 2022, 13, 4342]. Here we generalize hCI for an arbitrary reference determinant, allowing calculations for radicals and excited states in a state-specific way. We gauge this route against excitation-based CI (eCI) and seniority-based CI (sCI) by evaluating how different ground-state properties of radicals converge to the full CI limit. We find that hCI outperforms or matches eCI, whereas sCI is far less accurate, in line with previous observations for closed-shell molecules. Employing second-order Epstein-Nesbet (EN2) perturbation theory as a correction significantly accelerates the convergence of hCI and eCI. We further explore various hCI and sCI models to calculate the excitation energies of closed- and open-shell systems. Our results underline that the choice of both the reference determinant and the set of orbitals drives the fine balance between correlation of ground and excited states. State-specific hCI2 and higher-order models perform similarly to their eCI counterparts, whereas lower orders of hCI deliver poor results unless supplemented by the EN2 correction, which substantially improves their accuracy. In turn, sCI1 produces decent excitation energies for radicals, encouraging the development of related seniority-based coupled-cluster methods.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| |
Collapse
|
27
|
Thompson LM, Kempfer-Robertson EM, Saha S, Parmar S, Kozlowski PM. Nonorthogonal Multireference Wave Function Description of Triplet-Triplet Energy Transfer Couplings. J Chem Theory Comput 2023; 19:7685-7694. [PMID: 37862602 DOI: 10.1021/acs.jctc.3c00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
In this study, the use of self-consistent field quasi-diabats is investigated for calculation of triplet energy transfer diabatic coupling elements. It is proposed that self-consistent field quasi-diabats are particularly useful for studying energy transfer (EnT) processes because orbital relaxation in response to changes in electron configuration is implicitly built into the model. The conceptual model that is developed allows for the simultaneous evaluation of direct and charge-transfer mechanisms to establish the importance of the different possible EnT mechanisms. The method's performance is evaluated using two model systems: the ethylene dimer and ethylene with the methaniminium cation. While states that mediate the charge-transfer mechanism were found to be higher in energy than the states involved in the direct mechanism, the coupling elements that control the kinetics were found to be significantly larger in the charge-transfer mechanism. Subsequently, we discuss the advantage of the approach in the context of practical difficulties with the use of established approaches.
Collapse
Affiliation(s)
- Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| | | | - Saptarshi Saha
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| | - Saurav Parmar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| |
Collapse
|
28
|
Giarrusso S, Loos PF. Exact Excited-State Functionals of the Asymmetric Hubbard Dimer. J Phys Chem Lett 2023; 14:8780-8786. [PMID: 37739406 PMCID: PMC10561271 DOI: 10.1021/acs.jpclett.3c02052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
The exact functionals associated with the (singlet) ground state and the two singlet excited states of the asymmetric Hubbard dimer at half-filling are calculated using both Levy's constrained search and Lieb's convex formulation. While the ground-state functional is, as is commonly known, a convex function with respect to the density, the functional associated with the doubly excited state is found to be concave. Also, because the density-potential mapping associated with the first excited state is noninvertible, its "functional" is a partial, multivalued function composed of one concave and one convex branch that correspond to two separate domains of the external potential. Remarkably, it is found that, although the one-to-one mapping between density and external potential may not apply (as in the case of the first excited state), each state-specific energy and corresponding universal functional are "functions" whose derivatives are each other's inverse, just as in the ground state formalism.
Collapse
Affiliation(s)
- Sara Giarrusso
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
29
|
Tuckman H, Neuscamman E. Excited-State-Specific Pseudoprojected Coupled-Cluster Theory. J Chem Theory Comput 2023; 19:6160-6171. [PMID: 37676752 DOI: 10.1021/acs.jctc.3c00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We present an excited-state-specific coupled-cluster approach in which both the molecular orbitals and cluster amplitudes are optimized for an individual excited state. The theory is formulated via a pseudoprojection of the traditional coupled-cluster wavefunction that allows correlation effects to be introduced atop an excited-state mean field starting point. The approach shares much in common with ground-state CCSD, including size extensivity and an N6 cost scaling. Preliminary numerical tests show that, when augmented with N5 cost perturbative corrections for key terms, the method can improve over excited-state-specific second-order perturbation theory in valence, charge transfer, and Rydberg states.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Aarabi M, Aranda D, Gholami S, Meena SK, Lerouge F, Bretonniere Y, Gürol I, Baldeck P, Parola S, Dumoulin F, Cerezo J, Garavelli M, Santoro F, Rivalta I. Quantum-Classical Protocol for Efficient Characterization of Absorption Lineshape and Fluorescence Quenching upon Aggregation: The Case of Zinc Phthalocyanine Dyes. J Chem Theory Comput 2023; 19:5938-5957. [PMID: 37641958 PMCID: PMC10500990 DOI: 10.1021/acs.jctc.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 08/31/2023]
Abstract
A quantum-classical protocol that incorporates Jahn-Teller vibronic coupling effects and cluster analysis of molecular dynamics simulations is reported, providing a tool for simulations of absorption spectra and ultrafast nonadiabatic dynamics in large molecular photosystems undergoing aggregation in solution. Employing zinc phthalocyanine dyes as target systems, we demonstrated that the proposed protocol provided fundamental information on vibronic, electronic couplings and thermal dynamical effects that mostly contribute to the absorption spectra lineshape and the fluorescence quenching processes upon dye aggregation. Decomposing the various effects arising upon dimer formation, the structure-property relations associated with their optical responses have been deciphered at atomistic resolution.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Daniel Aranda
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático
J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Samira Gholami
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Santosh Kumar Meena
- Department
of Chemical Engineering, Indian Institute
of Technology Ropar, Rupnagar, 140001 Punjab, India
| | - Frederic Lerouge
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Yann Bretonniere
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Ilke Gürol
- TÜBITAK
Marmara Research Center, Materials Technologies, Gebze, 41470 Kocaeli, Türkiye
| | - Patrice Baldeck
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Stephane Parola
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Fabienne Dumoulin
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Javier Cerezo
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
- Departamento
de Química and Institute for Advanced Research in Chemical
Sciences (IAdChem), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Fabrizio Santoro
- Consiglio
Nazionale delle Ricerche, Istituto di Chimica
dei Composti Organo Metallici (ICCOM-CNR), I-56124 Pisa, Italy
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Universitá degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| |
Collapse
|
31
|
Lee N, Thom AJW. Studies on the Transcorrelated Method. J Chem Theory Comput 2023; 19:5743-5759. [PMID: 37640393 PMCID: PMC10500994 DOI: 10.1021/acs.jctc.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 08/31/2023]
Abstract
We investigate the possibility of using a transcorrelated (TC) Hamiltonian to describe electron correlation. A method to obtain TC wavefunctions was developed based on the mathematical framework of the bi-variational principle. This involves the construction of an effective TC Hamiltonian matrix, which can be solved in a self-consistent manner. This was optimized using a method we call second-order-moment minimization and demonstrate that it is possible to obtain highly accurate energies for some closed-shell atoms and helium-like ions. The effects of certain correlator terms on the description of electron-electron and electron-nuclear cusps were also examined graphically, and some TC wavefunctions were compared against near-exact Hylleraas wavefunctions.
Collapse
Affiliation(s)
- Nicholas Lee
- Department
of Chemistry, Physical and Theoretical Chemistry
Laboratory, South Parks
Road, Oxford OX1 3QZ, U.K.
| | - Alex J. W. Thom
- Yusuf
Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
32
|
Jana S, Herbert JM. Fractional-Electron and Transition-Potential Methods for Core-to-Valence Excitation Energies Using Density Functional Theory. J Chem Theory Comput 2023; 19:4100-4113. [PMID: 37312236 DOI: 10.1021/acs.jctc.3c00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methods for computing X-ray absorption spectra based on a constrained core hole (possibly containing a fractional electron) are examined. These methods are based on Slater's transition concept and its generalizations, wherein core-to-valence excitation energies are determined using Kohn-Sham orbital energies. Methods examined here avoid promoting electrons beyond the lowest unoccupied molecular orbital, facilitating robust convergence. Variants of these ideas are systematically tested, revealing a best-case accuracy of 0.3-0.4 eV (with respect to experiment) for K-edge transition energies. Absolute errors are much larger for higher-lying near-edge transitions but can be reduced below 1 eV by introducing an empirical shift based on a charge-neutral transition-potential method, in conjunction with functionals such as SCAN, SCAN0, or B3LYP. This procedure affords an entire excitation spectrum from a single fractional-electron calculation, at the cost of ground-state density functional theory and without the need for state-by-state calculations. This shifted transition-potential approach may be especially useful for simulating transient spectroscopies or in complex systems where excited-state Kohn-Sham calculations are challenging.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Ridente E, Hait D, Haugen EA, Ross AD, Neumark DM, Head-Gordon M, Leone SR. Femtosecond symmetry breaking and coherent relaxation of methane cations via x-ray spectroscopy. Science 2023; 380:713-717. [PMID: 37141314 DOI: 10.1126/science.adg4421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Understanding the relaxation pathways of photoexcited molecules is essential to gain atomistic level insight into photochemistry. Herein, we performed a time-resolved study of ultrafast molecular symmetry breaking via geometric relaxation (Jahn-Teller distortion) on the methane cation. Attosecond transient absorption spectroscopy with soft X-rays at the carbon K-edge revealed that the distortion occurred within 10 ± 2 femtoseconds after few-femtosecond strong-field ionization of methane. The distortion activated coherent oscillations in the asymmetric scissoring vibrational mode of the symmetry broken cation, which were detected in the X-ray signal. These oscillations were damped within 58 ± 13 femtoseconds, as vibrational coherence was lost with the energy redistributing into lower-frequency vibrational modes. This study completely reconstructs the molecular relaxation dynamics of this prototypical example and opens new avenues for exploring complex systems.
Collapse
Affiliation(s)
- Enrico Ridente
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Diptarka Hait
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eric A Haugen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew D Ross
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Marie A, Burton HGA. Excited States, Symmetry Breaking, and Unphysical Solutions in State-Specific CASSCF Theory. J Phys Chem A 2023; 127:4538-4552. [PMID: 37141564 DOI: 10.1021/acs.jpca.3c00603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
State-specific electronic structure theory provides a route toward balanced excited-state wave functions by exploiting higher-energy stationary points of the electronic energy. Multiconfigurational wave function approximations can describe both closed- and open-shell excited states and avoid the issues associated with state-averaged approaches. We investigate the existence of higher-energy solutions in complete active space self-consistent field (CASSCF) theory and characterize their topological properties. We demonstrate that state-specific approximations can provide accurate higher-energy excited states in H2 (6-31G) with more compact active spaces than would be required in a state-averaged formalism. We then elucidate the unphysical stationary points, demonstrating that they arise from redundant orbitals when the active space is too large or symmetry breaking when the active space is too small. Furthermore, we investigate the singlet-triplet crossing in CH2 (6-31G) and the avoided crossing in LiF (6-31G), revealing the severity of root flipping and demonstrating that state-specific solutions can behave quasi-diabatically or adiabatically. These results elucidate the complexity of the CASSCF energy landscape, highlighting the advantages and challenges of practical state-specific calculations.
Collapse
Affiliation(s)
- Antoine Marie
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Hugh G A Burton
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| |
Collapse
|
35
|
Schnack-Petersen AK, Pápai M, Coriani S, Møller KB. A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034102. [PMID: 37250952 PMCID: PMC10224778 DOI: 10.1063/4.0000183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck-Condon point.
Collapse
Affiliation(s)
| | | | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Klaus Braagaard Møller
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
36
|
do Casal MT, Toldo JM, Barbatti M, Plasser F. Classification of doubly excited molecular electronic states. Chem Sci 2023; 14:4012-4026. [PMID: 37063798 PMCID: PMC10094316 DOI: 10.1039/d2sc06990c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Electronic states with partial or complete doubly excited character play a crucial role in many areas, such as singlet fission and non-linear optical spectroscopy. Although doubly excited states have been studied in polyenes and related systems for many years, the assignment as singly vs. doubly excited, even in the simplest case of butadiene, has sparked controversies. So far, no well-defined framework for classifying doubly excited states has been developed, and even more, there is not even a well-accepted definition of doubly excited character as such. Here, we present a solution: a physically motivated definition of doubly excited character based on operator expectation values and density matrices, which works independently of the underlying orbital representation, avoiding ambiguities that have plagued earlier studies. Furthermore, we propose a classification scheme to differentiate three cases: (i) two single excitations occurring within two independent pairs of orbitals leaving four open shells (DOS), (ii) the promotion of both electrons to the same orbital, producing a closed-shell determinant (DCS), and (iii) a mixture of singly and doubly excited configurations not aligning with either one of the previous cases (Dmix). We highlight their differences in underlying energy terms and explain their signatures in practical computations. The three cases are illustrated through various high-level computational methods using dimers for DOS, polyenes for Dmix, and cyclobutane and tetrazine for DCS. The conversion between DOS and DCS is investigated using a well-known photochemical reaction, the photodimerization of ethylene. This work provides a deeper understanding of doubly excited states and may guide more rigorous discussions toward improving their computational description while also giving insight into their fundamental photophysics.
Collapse
Affiliation(s)
| | | | - Mario Barbatti
- Aix-Marseille University, CNRS Marseille France
- Institut Universitaire de France 75231 Paris France
| | - Felix Plasser
- Department of Chemistry, Loughborough University Loughborough LE11 3TU UK
| |
Collapse
|
37
|
Kossoski F, Loos PF. State-Specific Configuration Interaction for Excited States. J Chem Theory Comput 2023; 19:2258-2269. [PMID: 37024102 PMCID: PMC10134430 DOI: 10.1021/acs.jctc.3c00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We introduce and benchmark a systematically improvable route for excited-state calculations, labeled state-specific configuration interaction (ΔCI), which is a particular realization of multiconfigurational self-consistent field and multireference configuration interaction. Starting with a reference built from optimized configuration state functions, separate CI calculations are performed for each targeted state (hence, state-specific orbitals and determinants). Accounting for single and double excitations produces the ΔCISD model, which can be improved with second-order Epstein-Nesbet perturbation theory (ΔCISD+EN2) or a posteriori Davidson corrections (ΔCISD+Q). These models were gauged against a vast and diverse set of 294 reference excitation energies. We have found that ΔCI is significantly more accurate than standard ground-state-based CI, whereas close performances were found between ΔCISD and EOM-CC2 and between ΔCISD+EN2 and EOM-CCSD. For larger systems, ΔCISD+Q delivers more accurate results than EOM-CC2 and EOM-CCSD. The ΔCI route can handle challenging multireference problems, singly and doubly excited states, from closed- and open-shell species, with overall comparable accuracy and thus represents a promising alternative to more established methodologies. In its current form, however, it is reliable only for relatively low-lying excited states.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
38
|
Yalouz S, Robert V. Orthogonally Constrained Orbital Optimization: Assessing Changes of Optimal Orbitals for Orthogonal Multireference States. J Chem Theory Comput 2023; 19:1388-1392. [PMID: 36790330 DOI: 10.1021/acs.jctc.2c01144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The choice of molecular orbitals is decisive in configuration interaction calculations. In this letter, a democratic description of the ground and excited states follows an orthogonally constrained orbital optimization to produce state-specific orbitals. The approach faithfully recovers the excitation energy of a four-electron Hubbard trimer, whereas state-average calculations can miss the value by a factor 2.5. The method emphasizes the need for orbital optimization to reduce configuration interaction expansions and to reach spectroscopic accuracy.
Collapse
Affiliation(s)
- Saad Yalouz
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Vincent Robert
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
39
|
Jana S, Herbert JM. Slater transition methods for core-level electron binding energies. J Chem Phys 2023; 158:094111. [PMID: 36889976 DOI: 10.1063/5.0134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a "full core hole" (or "ΔSCF") approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater's transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3-0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn-Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
40
|
Otis L, Neuscamman E. A promising intersection of excited‐state‐specific methods from quantum chemistry and quantum Monte Carlo. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Leon Otis
- Department of Physics University of California Berkeley Berkeley California USA
| | - Eric Neuscamman
- Department of Chemistry University of California Berkeley Berkeley California USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
41
|
Mazzeo P, Hashem S, Lipparini F, Cupellini L, Mennucci B. Fast Method for Excited-State Dynamics in Complex Systems and Its Application to the Photoactivation of a Blue Light Using Flavin Photoreceptor. J Phys Chem Lett 2023; 14:1222-1229. [PMID: 36716231 PMCID: PMC9923743 DOI: 10.1021/acs.jpclett.2c03797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The excited-state dynamics of molecules embedded in complex (bio)matrices is still a challenging goal for quantum chemical models. Hybrid QM/MM models have proven to be an effective strategy, but an optimal combination of accuracy and computational cost still has to be found. Here, we present a method which combines the accuracy of a polarizable embedding QM/MM approach with the computational efficiency of an excited-state self-consistent field method. The newly implemented method is applied to the photoactivation of the blue-light-using flavin (BLUF) domain of the AppA protein. We show that the proton-coupled electron transfer (PCET) process suggested for other BLUF proteins is still valid also for AppA.
Collapse
|
42
|
Haugen EA, Hait D, Scutelnic V, Xue T, Head-Gordon M, Leone SR. Ultrafast X-ray Spectroscopy of Intersystem Crossing in Hexafluoroacetylacetone: Chromophore Photophysics and Spectral Changes in the Face of Electron-Withdrawing Groups. J Phys Chem A 2023; 127:634-644. [PMID: 36638240 DOI: 10.1021/acs.jpca.2c06044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intersystem crossings between singlet and triplet states represent a crucial relaxation pathway in photochemical processes. Herein, we probe the intersystem crossing in hexafluoro-acetylacetone with ultrafast X-ray transient absorption spectroscopy at the carbon K-edge. We observe the excited state dynamics following excitation with 266 nm UV light to the 1ππ* (S2) state with element and site-specificity using a broadband soft X-ray pulse produced by high harmonic generation. These results are compared to X-ray spectra computed from orbital optimized density functional theory methods. It is found that the electron-withdrawing fluorine atoms decongest the X-ray absorption spectrum by enhancing separation between features originating from different carbon atoms. This facilitates the elucidation of structural and electronic dynamics at the chromophore. The evolution of the core-to-valence resonances at the carbon K-edge reveals an ultrafast population transfer between the 1nπ* (S1) and 3ππ* (T1) states on a 1.6 ± 0.4 ps time scale, which is similar to the 1.5 ps time scale earlier observed for acetylacetone [ J. Am. Chem. Soc. 2017, 139, 16576-16583, DOI: 10.1021/jacs.7b07532]. It therefore appears that terminal fluorination has little influence on the intersystem crossing rate of the acetylacetone chromophore. In addition, the significant role of hydrogen-bond opened and twisted rotational isomers is elucidated in the excited state dynamics by comparison of the experimental transient X-ray spectra with theory.
Collapse
Affiliation(s)
- Eric A Haugen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Diptarka Hait
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Physics, University of California, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Feighan O, Manby FR, Bourne-Worster S. An efficient protocol for excited states of large biochromophores. J Chem Phys 2023; 158:024107. [PMID: 36641400 DOI: 10.1063/5.0132417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Efficient energy transport in photosynthetic antenna is a long-standing source of inspiration for artificial light harvesting materials. However, characterizing the excited states of the constituent chromophores poses a considerable challenge to mainstream quantum chemical and semiempirical excited state methods due to their size and complexity and the accuracy required to describe small but functionally important changes in their properties. In this paper, we explore an alternative approach to calculating the excited states of large biochromophores, exemplified by a specific method for calculating the Qy transition of bacteriochlorophyll a, which we name Chl-xTB. Using a diagonally dominant approximation to the Casida equation and a bespoke parameterization scheme, Chl-xTB can match time-dependent density functional theory's accuracy and semiempirical speed for calculating the potential energy surfaces and absorption spectra of chlorophylls. We demonstrate that Chl-xTB (and other prospective realizations of our protocol) can be integrated into multiscale models, including concurrent excitonic and point-charge embedding frameworks, enabling the analysis of biochromophore networks in a native environment. We exploit this capability to probe the low-frequency spectral densities of excitonic energies and interchromophore interactions in the light harvesting antenna protein LH2 (light harvesting complex 2). The impact of low-frequency protein motion on interchromophore coupling and exciton transport has routinely been ignored due to the prohibitive costs of including it in simulations. Our results provide a more rigorous basis for continued use of this approximation by demonstrating that exciton transition energies are unaffected by low-frequency vibrational coupling to exciton interaction energies.
Collapse
Affiliation(s)
- Oliver Feighan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Frederick R Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Susannah Bourne-Worster
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
44
|
Convergence of Møller–Plesset perturbation theory for excited reference states. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
45
|
Kempfer-Robertson EM, Mahler AD, Haase MN, Roe P, Thompson LM. Nonorthogonal Active Space Decomposition of Wave Functions with Multiple Correlation Mechanisms. J Phys Chem Lett 2022; 13:12041-12048. [PMID: 36541869 DOI: 10.1021/acs.jpclett.2c03349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The nonorthogonal active space decomposition (NO-ASD) methodology is proposed for describing systems containing multiple correlation mechanisms. NO-ASD partitions the wave function by a correlation mechanism, such that the interactions between different correlation mechanisms are treated with an effective Hamiltonian approach, while interactions between correlated orbitals in the same correlation mechanism are treated explicitly. As a result, the determinant expansion scales polynomially with the number of correlation mechanisms rather than exponentially, which significantly reduces the factorial scaling associated with the size of the correlated orbital space. Despite the nonorthogonal framework of NO-ASD, the approach can take advantage of computational efficient matrix element evaluation when performing nonorthogonal coupling of orthogonal determinant expansions. In this work, we introduce and examine the NO-ASD approach in comparison to complete active space methods to establish how the NO-ASD approach reduces the problem dimensionality and the extent to which it affects the amount of correlation energy recovered. Calculations are performed on ozone, nickel-acetylene, and isomers of μ-oxo dicopper ammonia.
Collapse
Affiliation(s)
| | - Andrew D Mahler
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Meagan N Haase
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Piper Roe
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| |
Collapse
|
46
|
Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010136. [PMID: 36615331 PMCID: PMC9822432 DOI: 10.3390/molecules28010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Despite great advances in X-ray absorption spectroscopy for the investigation of small molecule electronic structure, the application to biosystems of experimental techniques developed within this research field remains a challenge. To partially circumvent the problem, users resort to theoretical methods to interpret or predict the X-ray absorption spectra of large molecules. To accomplish this task, only low-cost computational strategies can be exploited. For this reason, some of them are single Slater determinant wavefunction approaches coupled with multiscale embedding techniques designed to treat large systems of biological interest. Therefore, in this work, we propose to apply the recently developed IMOM/ELMO embedding method to the determination of core-ionized states. The IMOM/ELMO technique resulted from the combination of the single Slater determinant Δself-consistent-field-initial maximum overlap approach (ΔSCF-IMOM) with the QM/ELMO (quantum mechanics/extremely localized molecular orbital) embedding strategy, a method where only the chemically relevant region of the examined system is treated at fully quantum chemical level, while the rest is described through transferred and frozen extremely localized molecular orbitals (ELMOs). The IMOM/ELMO technique was initially validated by computing core-ionization energies for small molecules, and it was afterwards exploited to study larger biosystems. The obtained results are in line with those reported in previous studies that applied alternative ΔSCF approaches. This makes us envisage a possible future application of the proposed method to the interpretation of X-ray absorption spectra of large molecules.
Collapse
|
47
|
Wibowo M, Huynh BC, Cheng CY, Irons TJP, Teale AM. Understanding ground and excited-state molecular structure in strong magnetic fields using the maximum overlap method. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2152748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meilani Wibowo
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Bang C. Huynh
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Chi Y. Cheng
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Tom J. P. Irons
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
| | - Andrew M. Teale
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
48
|
Abou Taka A, Corzo HH, Pribram Jones A, Hratchian HP. Good Vibrations: Calculating Excited-State Frequencies Using Ground-State Self-Consistent Field Models. J Chem Theory Comput 2022; 18:7286-7297. [PMID: 36445860 DOI: 10.1021/acs.jctc.2c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The use of Δ-self-consistent field (SCF) approaches for studying excited electronic states has received a renewed interest in recent years. In this work, the use of this scheme for calculating excited-state vibrational frequencies is examined. Results from Δ-SCF calculations for a set of representative molecules are compared with those obtained using configuration interaction with single substitutions (CIS) and time-dependent density functional theory (TD-DFT) methods. The use of an approximate spin purification model is also considered for cases where the excited-state SCF solution is spin-contaminated. The results of this work demonstrate that an SCF-based description of an excited-state potential energy surface can be an accurate and cost-effective alternative to CIS and TD-DFT methods.
Collapse
Affiliation(s)
- Ali Abou Taka
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California95343, United States.,Combustion Research Facility, Sandia National Laboratories, Livermore, California94550, United States
| | - Hector H Corzo
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California95343, United States.,National Center for Computational Sciences, Oak Ridge Leadership Computing Facility, Oak Ridge National laboratory, Oak Ridge, Tennessee37831-6012, United States
| | - Aurora Pribram Jones
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California95343, United States
| | - Hrant P Hratchian
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California95343, United States
| |
Collapse
|
49
|
Kempfer-Robertson EM, Haase MN, Bersson JS, Avdic I, Thompson LM. Role of Exact Exchange in Difference Projected Double-Hybrid Density Functional Theory for Treatment of Local, Charge Transfer, and Rydberg Excitations. J Phys Chem A 2022; 126:8058-8069. [PMID: 36269072 DOI: 10.1021/acs.jpca.2c04338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Difference approaches to the study of excited states have undergone a renaissance in recent years, with the development of a plethora of algorithms for locating self-consistent field approximations to excited states. Density functional theory is likely to offer the best balance of cost and accuracy for difference approaches, and yet there has been little investigation of how the parametrization of density functional approximations affects performance. In this work, we aim to explore the role of the global Hartree-Fock exchange parameter in tuning accuracy of different excitation types within the framework of the recently introduced difference projected double-hybrid density functional theory approach and contrast the performance with conventional time-dependent double-hybrid density functional theory. Difference projected double-hybrid density functional theory was demonstrated to give vertical excitation energies with average error and standard deviation with respect to multireference perturbation theory comparable to more expensive linear-response coupled cluster approaches ( J. Chem. Phys.2020, 153, 074103). However, despite benchmarking of local excitations, there has been no investigation of the methods performance for charge transfer or Rydberg excitations. In this work we report a new benchmark of charge transfer, Rydberg, and local excited state vertical excitation energies and examine how the exact Hartree-Fock exchange affects the benchmark performance to provide a deeper understanding of how projection and nonlocal correlation balance differing sources of error in the ground and excited states.
Collapse
Affiliation(s)
| | - Meagan N Haase
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Jonathan S Bersson
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Irma Avdic
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky40205, United States
| |
Collapse
|
50
|
Carter-Fenk K, Cunha LA, Arias-Martinez JE, Head-Gordon M. Electron-Affinity Time-Dependent Density Functional Theory: Formalism and Applications to Core-Excited States. J Phys Chem Lett 2022; 13:9664-9672. [PMID: 36215404 DOI: 10.1021/acs.jpclett.2c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The lack of particle-hole attraction and orbital relaxation within time-dependent density functional theory (TDDFT) lead to extreme errors in the prediction of K-edge X-ray absorption spectra (XAS). We derive a linear-response formalism that uses optimized orbitals of the n - 1-electron system as the reference, building orbital relaxation and a proper hole into the initial density. Our approach is an exact generalization of the static-exchange approximation that ameliorates the particle-hole interaction error associated with the adiabatic approximation and reduces errors in TDDFT XAS by orders of magnitude. With a statistical performance of just 0.5 eV root-mean-square error and the same computational scaling as TDDFT under the core-valence separation approximation, we anticipate that this approach will be of great utility in XAS calculations of large systems.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|