1
|
Li Z, Peng J, Zhu Y, Xu C, Peng L, Gelin MF, Gu FL, Lan Z. On-the-fly simulations of transient absorption pump-probe spectra: Combining mapping dynamics with doorway-window protocol. J Chem Phys 2025; 162:204107. [PMID: 40421791 DOI: 10.1063/5.0252891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
We have constructed an ab initio protocol for the simulation of transient-absorption (TA) pump-probe (PP) signals of realistic polyatomic systems. The protocol is based on interfacing the doorway-window representation of spectroscopic signals with the on-the-fly mapping Hamiltonian dynamics approach at the symmetrical quasi-classical/Meyer-Miller level. The methodology is applied to the simulation of TA PP signals of two molecular systems, azobenzene and cis-hepta-3,5,7-trieniminium cation. For both molecules, the TA PP spectra were demonstrated to give a direct fingerprint of the excited state wavepacket dynamics and internal conversion, which permits the monitoring of the isomerization pathways en route to the final photoproducts.
Collapse
Affiliation(s)
- Zhaofa Li
- School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Liang Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
2
|
Li Z, Peng J, Zhu Y, Xu C, Gelin MF, Gu FL, Lan Z. Transient-Absorption Pump-Probe Spectra as Information-Rich Observables: Case Study of Fulvene. Molecules 2025; 30:1439. [PMID: 40286056 PMCID: PMC11990432 DOI: 10.3390/molecules30071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion in fulvene by simulating evolutions of electronic populations, bond lengths and angles, and time-resolved transient absorption (TA) pump-probe (PP) spectra. TA PP spectra are evaluated on the fly by combining the symmetrical quasiclassical/Meyer-Miller-Stock-Thoss (SQC/MMST) dynamics and the doorway-window representation of spectroscopic signals. We show that the simulated time-resolved TA PP spectra reveal not only the population dynamics but also the key nuclear motions as well as mode-mode couplings. We also demonstrate that TA PP signals are not only experimental observables: They can also be considered as information-rich purely theoretical observables, which deliver more information on the CI-driven dynamics than conventional electronic populations. This information can be extracted by the appropriate theoretical analyses of time-resolved TA PP signals.
Collapse
Affiliation(s)
- Zhaofa Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China;
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| |
Collapse
|
3
|
Weight BM, Mandal A, Hu D, Huo P. Ab initio spin-mapping non-adiabatic dynamics simulations of photochemistry. J Chem Phys 2025; 162:084105. [PMID: 39998166 DOI: 10.1063/5.0248950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the recently developed spin-mapping formalism. Two quantum dynamics approaches based on this mapping formalism, (i) the fully linearized Spin-LSC and (ii) the partially linearized Spin-PLDM, are explored using the quasi-diabatic propagation scheme. We have performed dynamics simulations in four ab initio molecular models for which benchmark ab initio multiple spawning (AIMS) data have been published. We find that the spin-LSC and the previously reported symmetric quasi-classical (SQC) approaches provide nearly equivalent population dynamics. While we expected the more involved spin-PLDM method to provide superior accuracy compared to the other mapping-based approaches, SQC and spin-LSC, we found that it performed with equivalent accuracy compared to the AIMS benchmark results. We further explore the underpinnings of the spin-PLDM correlation function by decomposing its N2 density matrix-focused initial conditions, where N is the number of states in the quantum subsystem. Finally, we found an approximate form of the spin-PLDM correlation function, which simplifies the simulation and reduces the computational costs from N2 to N.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
4
|
Jang SJ, Min BK, Rhee YM. Fermi's Golden Rule Rate Expression for Transitions Due to Nonadiabatic Derivative Couplings in the Adiabatic Basis. J Chem Theory Comput 2025; 21:1850-1864. [PMID: 39945653 DOI: 10.1021/acs.jctc.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Starting from a general molecular Hamiltonian expressed in the basis of adiabatic electronic and nuclear position states, where a compact and complete expression for the nonadiabatic derivative coupling (NDC) Hamiltonian term is obtained, we provide a general analysis of the Fermi's golden rule (FGR) rate expression for nonadiabatic transitions between adiabatic states. We then consider a quasi-adiabatic approximation that uses crude adiabatic states and NDC couplings, both evaluated at the minimum potential energy configuration of the initial adiabatic state, for the definition of the zeroth and first-order terms of the Hamiltonian. Although the application of this approximation is rather limited, it allows deriving a general FGR rate expression without further approximation while accounting for non-Condon contribution to the FGR rate arising from momentum operators of NDC terms and its coupling with vibronic displacements. For a generic and widely used model where all nuclear degrees of freedom and environmental effects are represented as linearly coupled harmonic oscillators, we derive a closed-form FGR rate expression that requires only Fourier transform. The resulting rate expression includes quadratic contributions of NDC terms and their couplings to Franck-Condon modes, which require evaluation of two additional bath spectral densities in addition to the conventional one that appears in a typical FGR rate theory based on the Condon approximation. Model calculations for the case where nuclear vibrations consist of both a sharp high-frequency mode and an Ohmic bath spectral density illustrate new features and implications of the rate expression. We then apply our theoretical expression to the nonradiative decay from the first excited singlet state of azulene, which illustrates the utility and implications of our theoretical results.
Collapse
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York, New York 11367, United States
- Ph.D. Programs in Chemistry and Physics, Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Byeong Ki Min
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
5
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
6
|
Xie Y, Yang Y, Zhu X, Chen A, Gu B. Nondirect-Product Local Diabatic Representation with Smolyak Sparse Grids. J Chem Theory Comput 2024; 20:9512-9521. [PMID: 39413423 DOI: 10.1021/acs.jctc.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Modeling nonadiabatic conical intersection dynamics is critical for understanding a wide range of photophysical, photochemical, and biological phenomena. Here we develop a nonadiabatic conical intersection wave packet dynamic method in the local diabatic representation using Smolyak sparse grids. Employing sparse grids avoids the direct-product grids in configuration space and alleviates the exponential scaling of computation costs with the molecular size. Numerical demonstrations are first performed for a two-dimensional vibronic model of pyrazine, where the results using sparse grids are in excellent agreement with those using direct-product grids, with sparse grids being much faster. Moreover, we demonstrate that for a four-dimensional pyrazine model, where direct-product grids are computationally infeasible, sparse grids can provide almost exact results. The sparse grid local diabatic representation method is further applied to a realistic model system of phenol photodissociation with much more complex potential energy surfaces; the results using sparse grids still agree very well with the direct-product grids. Finally, by combining with electronic structure calculations, we apply our method to the Shin-Metiu model without quasi-diabatization. The sparse grid and direct-product grid results are in good agreement, with the sparse grid computational cost being half of the full grid.
Collapse
Affiliation(s)
- Yujuan Xie
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yukun Yang
- School of Physics, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xiaotong Zhu
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Ahai Chen
- Center for Transformative Science, ShanghaiTech University, Shanghai 200031, China
| | - Bing Gu
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
7
|
Zhu X, Gu B. Making Peace with Random Phases: Ab Initio Conical Intersection Quantum Dynamics in Random Gauges. J Phys Chem Lett 2024; 15:8487-8493. [PMID: 39133253 DOI: 10.1021/acs.jpclett.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ab initio modeling of conical intersection wave packet dynamics is crucial for various photochemical, photophysical, and biological processes. However, adiabatic electronic states obtained from electronic structure computations involve random phases, or more generally, random gauge fixings, which cannot be directly used in the modeling of nonadiabatic wave packet simulations. Here we develop a random-gauge local diabatic representation that allows an exact modeling of conical intersection dynamics directly using the adiabatic electronic states with phases randomly assigned during the electronic structure computations. Its utility is demonstrated by an exact ab initio modeling of the two-dimensional Shin-Metiu model with and without an external magnetic field. Our results provide a simple approach to integrating the electronic structure computations into nonadiabatic quantum dynamics, thus paving the way for ab initio modeling of conical intersection dynamics.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
8
|
Gu B. A Discrete-Variable Local Diabatic Representation of Conical Intersection Dynamics. J Chem Theory Comput 2023; 19:6557-6563. [PMID: 37737832 DOI: 10.1021/acs.jctc.3c00560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Conical intersections (CIs) are ubiquitous in polyatomic molecules and are responsible for a wide range of phenomena in photochemistry and photophysics. Modeling the conical intersection dynamics with adiabatic electronic states is hindered by the divergence of the first- and second-order derivative couplings at CIs due to electronic degeneracy. We introduce and implement a novel diabatic representation for exact correlated electron-nuclear wave packet dynamics through conical intersections. It directly employs the adiabatic electronic states but avoids the singular first- and second-order derivative couplings and is robust to different gauge choices of the electronic wave function phases. The reference nuclear geometries defining the adiabatic electronic states are determined by a discrete-variable representation of the nuclear coordinates. The nonadiabatic effects are accounted for by the electronic overlap matrix instead of derivative couplings as in the adiabatic representation. Illustrated by a two-mode conical intersection model, this representation captures all nonadiabatic effects, including electronic transitions, electronic coherence, and geometric phases. Thus, this representation provides a singularity-free framework for modeling ab initio conical intersection wave packet dynamics.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry & Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
9
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
10
|
Shu Y, Varga Z, Kanchanakungwankul S, Zhang L, Truhlar DG. Diabatic States of Molecules. J Phys Chem A 2022; 126:992-1018. [PMID: 35138102 DOI: 10.1021/acs.jpca.1c10583] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative simulations of electronically nonadiabatic molecular processes require both accurate dynamics algorithms and accurate electronic structure information. Direct semiclassical nonadiabatic dynamics is expensive due to the high cost of electronic structure calculations, and hence it is limited to small systems, limited ensemble averaging, ultrafast processes, and/or electronic structure methods that are only semiquantitatively accurate. The cost of dynamics calculations can be made manageable if analytic fits are made to the electronic structure data, and such fits are most conveniently carried out in a diabatic representation because the surfaces are smooth and the couplings between states are smooth scalar functions. Diabatic representations, unlike the adiabatic ones produced by most electronic structure methods, are not unique, and finding suitable diabatic representations often involves time-consuming nonsystematic diabatization steps. The biggest drawback of using diabatic bases is that it can require large amounts of effort to perform a globally consistent diabatization, and one of our goals has been to develop methods to do this efficiently and automatically. In this Feature Article, we introduce the mathematical framework of diabatic representations, and we discuss diabatization methods, including adiabatic-to-diabatic transformations and recent progress toward the goal of automatization.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.,School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
11
|
Shu Y, Zhang L, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J Chem Theory Comput 2022; 18:1320-1328. [PMID: 35104136 DOI: 10.1021/acs.jctc.1c01080] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct dynamics by mixed quantum-classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive time steps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature-driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computation time and accuracy as compared to previous mixed quantum-classical nonadiabatic dynamics algorithms. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
12
|
Ananth N. Path Integrals for Nonadiabatic Dynamics: Multistate Ring Polymer Molecular Dynamics. Annu Rev Phys Chem 2022; 73:299-322. [PMID: 35081325 DOI: 10.1146/annurev-physchem-082620-021809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on a recent class of path-integral-based methods that simulate nonadiabatic dynamics in the condensed phase using only classical molecular dynamics trajectories in an extended phase space. Specifically, a semiclassical mapping protocol is used to derive an exact, continuous, Cartesian variable path-integral representation for the canonical partition function of a system in which multiple electronic states are coupled to nuclear degrees of freedom. Building on this exact statistical foundation, multistate ring polymer molecular dynamics methods are developed for the approximate calculation of real-time thermal correlation functions. The remarkable promise of these multistate ring polymer methods, their successful applications, and their limitations are discussed in detail.Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nandini Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
13
|
Weight BM, Mandal A, Huo P. Ab initio symmetric quasi-classical approach to investigate molecular Tully models. J Chem Phys 2021; 155:084106. [PMID: 34470343 DOI: 10.1063/5.0061934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods using both the square and triangle windowing schemes as well as the recently proposed electronic zero-point-energy correction scheme (the so-called γ correction). We use the quasi-diabatic propagation scheme to directly interface the diabatic SQC methods with adiabatic electronic structure calculations. Our results showcase the drastic improvement of the accuracy by using the trajectory-adjusted γ-corrections, which outperform the widely used trajectory surface hopping method with decoherence corrections. These calculations provide useful and non-trivial tests to systematically investigate the numerical performance of various diabatic quantum dynamics approaches, going beyond simple diabatic model systems that have been used as the major workhorse in the quantum dynamics field. At the same time, these available benchmark studies will also likely foster the development of new quantum dynamics approaches based on these techniques.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
14
|
Hu D, Xie Y, Peng J, Lan Z. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J Chem Theory Comput 2021; 17:3267-3279. [PMID: 34028268 DOI: 10.1021/acs.jctc.0c01249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems. The current on-the-fly implementation of the SQC/MM method is based on the adiabatic representation and the dressed momentum. To include the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2+) and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2+, both ZPE correction approaches give reasonable and consistent results. However, for azomethane, the γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. Further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when the excited state is well separated from the ground state in the Franck-Condon region. This work indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the nonadiabatic dynamics of realistic polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
15
|
Nottoli M, Cupellini L, Lipparini F, Granucci G, Mennucci B. Multiscale Models for Light-Driven Processes. Annu Rev Phys Chem 2021; 72:489-513. [PMID: 33561359 DOI: 10.1146/annurev-physchem-090419-104031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiscale models combining quantum mechanical and classical descriptions are a very popular strategy to simulate properties and processes of complex systems. Many alternative formulations have been developed, and they are now available in all of the most widely used quantum chemistry packages. Their application to the study of light-driven processes, however, is more recent, and some methodological and numerical problems have yet to be solved. This is especially the case for the polarizable formulation of these models, the recent advances in which we review here. Specifically, we identify and describe the most important specificities that the polarizable formulation introduces into both the simulation of excited-state dynamics and the modeling of excitation energy and electron transfer processes.
Collapse
Affiliation(s)
- Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| |
Collapse
|
16
|
Brown SE, Shakib FA. Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions. Phys Chem Chem Phys 2021; 23:2535-2556. [PMID: 33367437 DOI: 10.1039/d0cp05166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous natural processes at the heart of energy conversion reactions in photosynthesis and respiration, DNA repair, and diverse enzymatic reactions. Theoretical formulation and computational method developments have eyed modeling of thermal and photoinduced PCET for the last three decades. The accumulation of these studies, collected in dozens of reviews, accounts, and perspectives, has firmly established the influence of quantum effects, including non-adiabatic electronic transitions, vibrational relaxation, zero-point energy, and proton tunneling, on the rate and mechanism of PCET reactions. Here, we focus on some recently-developed methods, spanning the last eight years, that can quantitatively capture these effects in the PCET context and provide efficient means for their qualitative description in complex systems. The theoretical background of each method and their accuracy with respect to exact results are discussed and the results of relevant PCET simulations based on each method are presented.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
17
|
Yamijala SSRKC, Huo P. Direct Nonadiabatic Simulations of the Photoinduced Charge Transfer Dynamics. J Phys Chem A 2021; 125:628-635. [DOI: 10.1021/acs.jpca.0c10151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sharma S. R. K. C. Yamijala
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
18
|
Choi S, Vaníček J. Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection? J Chem Phys 2020; 153:211101. [DOI: 10.1063/5.0033410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory. J Chem Phys 2020; 153:194109. [DOI: 10.1063/5.0031168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches. J Chem Phys 2020; 153:194110. [DOI: 10.1063/5.0031173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Richings GW, Habershon S. Direct Grid-Based Nonadiabatic Dynamics on Machine-Learned Potential Energy Surfaces: Application to Spin-Forbidden Processes. J Phys Chem A 2020; 124:9299-9313. [DOI: 10.1021/acs.jpca.0c06125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Stolyarov EV, White AJ, Mozyrsky D. Mixed quantum-classical approach to model non-adiabatic electron-nuclear dynamics: Detailed balance and improved surface hopping method. J Chem Phys 2020; 153:074116. [PMID: 32828087 DOI: 10.1063/5.0014284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We develop a density matrix formalism to describe coupled electron-nuclear dynamics. To this end, we introduce an effective Hamiltonian formalism that describes electronic transitions and small (quantum) nuclear fluctuations along a classical trajectory of the nuclei. Using this Hamiltonian, we derive equations of motion for the electronic occupation numbers and for the nuclear coordinates and momenta. We show that, in the limit, when the number of nuclear degrees of freedom coupled to a given electronic transition is sufficiently high (i.e., the strong decoherence limit), the equations of motion for the electronic occupation numbers become Markovian. Furthermore, the transition rates in these (rate) equations are asymmetric with respect to the lower-to-higher energy transitions and vice versa. In thermal equilibrium, such asymmetry corresponds to the detailed balance condition. We also study the equations for the electronic occupations in the non-Markovian regime and develop a surface hopping algorithm based on our formalism. To treat the decoherence effects, we introduce additional "virtual" nuclear wave packets whose interference with the "real" (physical) wave packets leads to the reduction in coupling between the electronic states (i.e., decoherence) as well as to the phase shifts that improve the accuracy of the numerical approach. Remarkably, the same phase shifts lead to the detailed balance condition in the strong decoherence limit.
Collapse
Affiliation(s)
- E V Stolyarov
- Institute of Physics of the National Academy of Sciences of Ukraine, pr. Nauky 46, 03028 Kyiv, Ukraine
| | - A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Mozyrsky
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
23
|
Shu Y, Zhang L, Sun S, Truhlar DG. Time-Derivative Couplings for Self-Consistent Electronically Nonadiabatic Dynamics. J Chem Theory Comput 2020; 16:4098-4106. [PMID: 32456433 DOI: 10.1021/acs.jctc.0c00409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronically nonadiabatic dynamics methods based on a self-consistent potential, such as semiclassical Ehrenfest and coherent switching with decay of mixing, have a number of advantages but are computationally slower than approximations based on an unaveraged potential because they require evaluation of all components of the nonadiabatic coupling vector. Here we introduce a new approximation to the self-consistent potential that does not have this computational drawback. The new approximation uses time-derivative couplings evaluated by overlap integrals of electronic wave functions to approximate the nonadiabatic coupling terms in the equations of motion. We present a numerical test of the method for ethylene that shows there is little loss of accuracy in the ensemble-averaged results. This new approximation to the self-consistent potential makes direct dynamics calculations with self-consistent potentials more efficient for complex systems and makes them practically affordable for some cases where the cost was previously too high.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.,School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
24
|
Richings GW, Habershon S. A new diabatization scheme for direct quantum dynamics: Procrustes diabatization. J Chem Phys 2020; 152:154108. [DOI: 10.1063/5.0003254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
25
|
Runeson JE, Richardson JO. Generalized spin mapping for quantum-classical dynamics. J Chem Phys 2020; 152:084110. [DOI: 10.1063/1.5143412] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
26
|
Zheng J, Xie Y, Jiang S, Long Y, Ning X, Lan Z. Initial sampling in symmetrical quasiclassical dynamics based on Li-Miller mapping Hamiltonian. Phys Chem Chem Phys 2019; 21:26502-26514. [PMID: 31777888 DOI: 10.1039/c9cp03975a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A symmetrical quasiclassical (SQC) dynamics approach based on the Li-Miller (LM) mapping Hamiltonian (SQC-LM) was employed to describe nonadiabatic dynamics. In principle, the different initial sampling procedures may be applied in the SQC-LM dynamics, and the results may be dependent on different initial sampling. We provided various initial sampling approaches and checked their influence. We selected two groups of models including site-exciton models for exciton dynamics and linear vibronic coupling models for conical intersections to test the performance of SQC-LM dynamics with the different initial sampling methods. The results were examined with respect to those of the accurate multiconfigurational time-dependent Hartree (MCTDH) quantum dynamics. For both the models, the SQC-LM method more-or-less gives a reasonable description of the population dynamics, while the influence of the initial sampling approaches on the final results is noticeable. It seems that the suitable initial sampling methods should be determined by the system under study. This indicates that the combination of the SQC-LM method with a suitable sampling approach may be a potential method in the description of nonadiabatic dynamics.
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
27
|
Zhou W, Mandal A, Huo P. Quasi-Diabatic Scheme for Nonadiabatic On-the-Fly Simulations. J Phys Chem Lett 2019; 10:7062-7070. [PMID: 31665889 DOI: 10.1021/acs.jpclett.9b02747] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We use the quasi-diabatic (QD) propagation scheme to perform on-the-fly nonadiabatic simulations of the photodynamics of ethylene. The QD scheme enables a seamless interface between accurate diabatic-based quantum dynamics approaches and adiabatic electronic structure calculations, explicitly avoiding any efforts to construct global diabatic states or reformulate the diabatic dynamics approach to the adiabatic representation. Using the partial linearized path-integral approach and the symmetrical quasi-classical approach as the diabatic dynamics methods, the QD propagation scheme enables direct nonadiabatic simulation with complete active space self-consistent field on-the-fly electronic structure calculations. The population dynamics obtained from both approaches are in a close agreement with the quantum wavepacket-based method and outperform the widely used trajectory surface-hopping approach. Further analysis of the ethylene photodeactivation pathways demonstrates the correct predictions of competing processes of nonradiative relaxation mechanism through various conical intersections. This work provides the foundation of using accurate diabatic dynamics approaches and on-the-fly adiabatic electronic structure information to perform ab initio nonadiabatic simulation.
Collapse
Affiliation(s)
- Wanghuai Zhou
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science , Hubei University of Automotive Technology , Shiyan , Hubei 442002 , People's Republic of China
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Arkajit Mandal
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Pengfei Huo
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| |
Collapse
|
28
|
Provazza J, Coker DF. Multi-level description of the vibronic dynamics of open quantum systems. J Chem Phys 2019; 151:154114. [DOI: 10.1063/1.5120253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Justin Provazza
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
29
|
Mandal A, Huo P. Investigating New Reactivities Enabled by Polariton Photochemistry. J Phys Chem Lett 2019; 10:5519-5529. [PMID: 31475529 DOI: 10.1021/acs.jpclett.9b01599] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We perform quantum dynamics simulations to investigate new chemical reactivities enabled by cavity quantum electrodynamics. The quantum light-matter interactions between the molecule and the quantized radiation mode inside an optical cavity create a set of hybridized electronic-photonic states, so-called polaritons. The polaritonic states adapt the curvatures from both the ground and the excited electronic states, opening up new possibilities to control photochemical reactions by exploiting intrinsic quantum behaviors of light-matter interactions. With quantum dynamics simulations, we demonstrate that the selectivity of a model photoisomerization reaction can be controlled by tuning the photon frequency of the cavity mode or the light-matter coupling strength, providing new ways to manipulate chemical reactions via the light-matter interaction. We further investigate collective quantum effects enabled by coupling the quantized radiation mode to multiple molecules. Our results suggest that in the resonance case, a photon is recycled among molecules to enable multiple excited state reactions, thus effectively functioning as a catalyst. In the nonresonance case, molecules emit and absorb virtual photons to initiate excited state reactions through fundamental quantum electrodynamics processes. These results from quantum dynamics simulations reveal basic principles of polariton photochemistry as well as promising reactivities that take advantage of intrinsic quantum behaviors of photons.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Pengfei Huo
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| |
Collapse
|
30
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
31
|
Chowdhury SN, Huo P. State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics. J Chem Phys 2019; 150:244102. [DOI: 10.1063/1.5096276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sutirtha N. Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
32
|
Peng J, Xie Y, Hu D, Lan Z. Performance of trajectory surface hopping method in the treatment of ultrafast intersystem crossing dynamics. J Chem Phys 2019; 150:164126. [PMID: 31042919 DOI: 10.1063/1.5079426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We carried out extensive studies to examine the performance of the fewest-switches surface hopping method in the description of the ultrafast intersystem crossing dynamic of various singlet-triplet (S-T) models by comparison with the results of the exact full quantum dynamics. Different implementation details and some derivative approaches were examined. As expected, it is better to perform the trajectory surface hopping calculations in the spin-adiabatic representation or by the local diabatization approach, instead of in the spin-diabatic representation. The surface hopping method provides reasonable results for the short-time dynamics in the S-T model with weak spin-orbital coupling (diabatic coupling), although it does not perform well in the models with strong spin-orbital coupling (diabatic coupling). When the system accesses the S-T potential energy crossing with rather high kinetic energy, the trajectory surface hopping method tends to produce a good description of the nonadiabatic intersystem crossing dynamics. The impact of the decoherence correction on the performance of the trajectory surface hopping is system dependent. It improves the result accuracy in many cases, while its influence may also be minor for other cases.
Collapse
Affiliation(s)
- Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
33
|
Xie W, Sapunar M, Došlić N, Sala M, Domcke W. Assessing the performance of trajectory surface hopping methods: Ultrafast internal conversion in pyrazine. J Chem Phys 2019; 150:154119. [DOI: 10.1063/1.5084961] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Weiwei Xie
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Marin Sapunar
- Department of Physical Chemistry, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Nađa Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Matthieu Sala
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS, Université de Bourgogne, BP 47870, F-21078 Dijon, France and Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
34
|
Cotton SJ, Miller WH. A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states. J Chem Phys 2019; 150:104101. [PMID: 30876359 DOI: 10.1063/1.5087160] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the previous work of Cotton and Miller [J. Chem. Phys. 145, 144108 (2016)], an improved symmetrical quasi-classical (SQC) windowing model for the molecular dynamics treatment of electronically non-adiabatic processes was developed in order to extend the original SQC approach to the regime of weak-coupling between the electronic states. The improved SQC model-based on triangular-shaped window functions-handled the weak-coupling limit as intended and, as a bonus, was shown to be universally superior to the original square/histogram SQC windowing model over all coupling regimes, but only for treating systems of two electronic states, as no higher-dimensional generalization was evident. This paper, therefore, provides a generalized version for treating an arbitrary number of electronic states. By construction, the benefits of the two-state triangle model-seamless treatment of weak-coupling and improved accuracy in all coupling regimes-carry over to the generalized version. Far more significant, however, is that the new model provides vastly improved windowing statistics in higher dimensions, enabling the SQC simulation of electronically non-adiabatic processes involving many more relevant electronic states than was previously practical. Capabilities are demonstrated with respect to a 24 pigment trimer model of the Fenna-Matthews-Olson light-harvesting complex, as well as treating similar 48- and 96-electronic state model problems, illustrating the scaling properties of the new method.
Collapse
Affiliation(s)
- Stephen J Cotton
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - William H Miller
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Mandal A, Sandoval C. JS, Shakib FA, Huo P. Quasi-Diabatic Propagation Scheme for Direct Simulation of Proton-Coupled Electron Transfer Reaction. J Phys Chem A 2019; 123:2470-2482. [DOI: 10.1021/acs.jpca.9b00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Juan S. Sandoval C.
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Farnaz A. Shakib
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
36
|
Torres A, Prado LR, Bortolini G, Rego LGC. Charge Transfer Driven Structural Relaxation in a Push-Pull Azobenzene Dye-Semiconductor Complex. J Phys Chem Lett 2018; 9:5926-5933. [PMID: 30257563 DOI: 10.1021/acs.jpclett.8b02490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoexcited structural dynamics in azo-compounds may differ fundamentally whether the push-pull photochromic azo-compound is isolated or forms a heterogeneous charge transfer complex, due to a sudden oxidation of the chromophore. Herein, we use a quantum-classical self-consistent approach that incorporates nonadiabatic excited-state electronic quantum dynamics into molecular mechanics to study the photoexcited dynamics of the push-pull azo-compound para-Methyl Red in the gas phase and sensitizing the (101) anatase surface of TiO2. We find that the photoinduced S2/S0 trans-to- cis isomerization of para-Methyl Red in the gas phase occurs through a pedal-like torsion around the ϕCNNC dihedral angle, without evidence to support the inversion mechanism, likewise in the parent azobenzene molecule. However, the photoexcited structural relaxation of the charge transfer complex para-Methyl Red/TiO2 contrasts essentially with the isolated azo-compounds. Immediately after photoexcitation, the excited electron flows into the TiO2 conduction band, with an injection time constant of ≃5 fs, and no indication of isomerization is observed during the 1.5 ps simulations. Instead, a strong vibronic relaxation occurs that excites the NN stretching mode of the azo-group, which is ultimately ascribed to the NA relaxation, and delocalization, of the hole wavepacket.
Collapse
Affiliation(s)
- Alberto Torres
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Luciano R Prado
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Graziele Bortolini
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Luis G C Rego
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| |
Collapse
|
37
|
Sandoval C. JS, Mandal A, Huo P. Symmetric quasi-classical dynamics with quasi-diabatic propagation scheme. J Chem Phys 2018; 149:044115. [DOI: 10.1063/1.5036787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
38
|
Mandal A, Shakib FA, Huo P. Investigating photoinduced proton coupled electron transfer reaction using quasi diabatic dynamics propagation. J Chem Phys 2018; 148:244102. [DOI: 10.1063/1.5030634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Farnaz A. Shakib
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|