1
|
Tang Z, Zhu H, Pan Z, Gao J, Zhang J. A many-body energy decomposition analysis (MB-EDA) scheme based on a target state optimization self-consistent field (TSO-SCF) method. Phys Chem Chem Phys 2024; 26:17549-17560. [PMID: 38884195 DOI: 10.1039/d4cp01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In this paper, we combine an energy decomposition analysis (EDA) scheme with many-body expansion (MBE) to develop a MB-EDA method to study the cooperative and anti-cooperative effects in molecular cluster systems. Based on the target state optimization self-consistent field (TSO-SCF) method, the intermolecular interaction energy can be decomposed into five chemically meaningful terms, i.e., electrostatic, exchange, polarization, charge transfer and dispersion interaction energies. MB-EDA can decompose each of these terms in MBE. This MB-EDA has been applied to 3 different cluster systems: water clusters, ionic liquid clusters, and acetonitrile-methane clusters. This reveals that electrostatic, exchange, and dispersion interactions are highly pairwise additive in all systems. In water and ionic liquid clusters, the many-body effects are significant in both polarization and charge transfer interactions, but are cooperative and anti-cooperative, respectively. For acetonitrile-methane clusters, which do not involve hydrogen bonds or charge-charge Coulombic interactions, the many-body effects are quite small. The chemical origins of different many-body effects are deeply analyzed. The MB-EDA method has been implemented in Qbics (https://qbics.info) and can be a useful tool for understanding the many-body behavior in molecular aggregates at the quantum chemical level of theory.
Collapse
Affiliation(s)
- Zhen Tang
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, People's Republic of China.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, People's Republic of China.
| | - Hong Zhu
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, People's Republic of China.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, People's Republic of China.
| | - Zhijun Pan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, People's Republic of China.
| | - Jiali Gao
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, People's Republic of China.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, People's Republic of China.
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, People's Republic of China.
| |
Collapse
|
2
|
Salzmann H, Rasmussen AP, Eaves JD, Weber JM. Competition between Water-Water Hydrogen Bonds and Water-π Bonds in Pyrene-Water Cluster Anions. J Phys Chem A 2024; 128:2772-2781. [PMID: 38564313 DOI: 10.1021/acs.jpca.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present infrared spectra and density functional theory calculations of hydrated pyrene anion clusters with up to four water molecules. The experimental spectra were acquired by using infrared Ar messenger photodissociation spectroscopy. Water molecules form clusters on the surface of the pyrene, forming hydrogen bonds with the π-system. The structures of the water clusters and their interaction with the π-system are encoded in OH stretching vibrational modes. We find that the interactions between water molecules are stronger than the interactions between water molecules and the π-system. While all clusters show multiple conformers, three- and four-membered rings are the lowest energy structures in the larger hydrates.
Collapse
Affiliation(s)
- Heinrich Salzmann
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Anne P Rasmussen
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
| | - Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - J Mathias Weber
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
3
|
LeMessurier N, Salzmann H, Leversee R, Weber JM, Eaves JD. Water-Hydrocarbon Interactions in Anionic Pyrene Monohydrate. J Phys Chem B 2024; 128:3200-3210. [PMID: 38526297 DOI: 10.1021/acs.jpcb.3c07777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Interactions between water and polycyclic aromatic hydrocarbons are essential in many aspects of chemistry, from interstellar and atmospheric processes to interfacial hydrophobicity and wetting phenomena. Despite their growing importance, the intermolecular potentials of the water-hydrocarbon interactions are underdeveloped compared to the water-water potentials, and there are similarly few experimental probes that are sensitive to the details of the water-hydrocarbon potential. We present a combined experimental and computational study of anionic pyrene monohydrate, one of the simplest water/hydrocarbon clusters. The action spectrum in the OH region of the mass-selected cluster ion provides a rigorous benchmark for intermolecular potentials and computational methodologies. We identify missing intermolecular interactions and shortcomings in conventional dynamics calculations by comparing experimental data to density functional theory and classical molecular dynamics calculations. Kinetic trapping is prevalent, even for one water molecule and one pyrene molecule, leading to slow equilibration in conventional molecular dynamics calculations, even on nanosecond time scales and at low temperatures (50 K). At constant energy, temperature fluctuations for the pair of molecules are substantial. Immersing the system in a bath of soft spheres and employing parallel tempering alleviates kinetic trapping and dampens temperature fluctuations, bringing the system closer to the thermodynamic limit. With such augmented sampling, a simple, flexible water model reproduces the line width and the asymmetric broadening of the symmetric OH stretching mode, which we assign to spectral diffusion. In the OH stretching region, dynamics calculations predict a more intense antisymmetric peak than experiments observe but do not predict the bimodal split symmetric peak that the experiments show. Our work suggests that electronic polarization, missing in the empirical force field, is responsible for the first discrepancy and that quantum nuclear effects, captured neither in density functional theory nor in classical dynamics, may be responsible for the second.
Collapse
Affiliation(s)
- Natalie LeMessurier
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Heinrich Salzmann
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - River Leversee
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - J Mathias Weber
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
4
|
Herzfeld J. Art, fact and artifact: reflections on the cross-talk between theory and experiment. Phys Chem Chem Phys 2024; 26:9848-9855. [PMID: 38502180 DOI: 10.1039/d4cp00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the increasing sophistication of each, theory and experiment have become highly specialized endeavors conducted by separate research groups. A result has been a weakening of the coupling between them and occasional hostility. Examples are given and suggestions are offered for strengthening the traditional synergy between theory and experiment.
Collapse
|
5
|
Rueda Espinosa KJ, Kananenka AA, Rusakov AA. Novel Computational Chemistry Infrastructure for Simulating Astatide in Water: From Basis Sets to Force Fields Using Particle Swarm Optimization. J Chem Theory Comput 2023; 19:7998-8012. [PMID: 38014419 DOI: 10.1021/acs.jctc.3c00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Using the example of astatine, the heaviest naturally occurring halogen whose isotope At-211 has promising medical applications, we propose a new infrastructure for large-scale computational models of heavy elements with strong relativistic effects. In particular, we focus on developing an accurate force field for At- in water based on reliable relativistic density functional theory (DFT) calculations. To ensure the reliability of such calculations, we design novel basis sets for relativistic DFT, via the particle swarm optimization algorithm to optimize the coefficients of the new basis sets and the polarization-consistent basis set idea's extension to heavy elements to eliminate the basis set error from DFT calculations. The resulting basis sets enable the well-grounded evaluation of relativistic DFT against "gold-standard" CCSD(T) results. Accounting for strong relativistic effects, including spin-orbit interaction, via our redesigned infrastructure, we elucidate a noticeable dissimilarity between At- and I- in halide-water force field parameters, radial distribution functions, diffusion coefficients, and hydration energies. This work establishes the framework for the systematic development of polarization-consistent basis sets for relativistic DFT and accurate force fields for molecular dynamics simulations to be used in large-scale models of complex molecular systems with elements from the bottom of the periodic table, including actinides and even superheavy elements.
Collapse
Affiliation(s)
- Kennet J Rueda Espinosa
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|
6
|
Broderick DR, Herbert JM. Scalable generalized screening for high-order terms in the many-body expansion: Algorithm, open-source implementation, and demonstration. J Chem Phys 2023; 159:174801. [PMID: 37921253 DOI: 10.1063/5.0174293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The many-body expansion lies at the heart of numerous fragment-based methods that are intended to sidestep the nonlinear scaling of ab initio quantum chemistry, making electronic structure calculations feasible in large systems. In principle, inclusion of higher-order n-body terms ought to improve the accuracy in a controllable way, but unfavorable combinatorics often defeats this in practice and applications with n ≥ 4 are rare. Here, we outline an algorithm to overcome this combinatorial bottleneck, based on a bottom-up approach to energy-based screening. This is implemented within a new open-source software application ("Fragme∩t"), which is integrated with a lightweight semi-empirical method that is used to cull subsystems, attenuating the combinatorial growth of higher-order terms in the graph that is used to manage the calculations. This facilitates applications of unprecedented size, and we report four-body calculations in (H2O)64 clusters that afford relative energies within 0.1 kcal/mol/monomer of the supersystem result using less than 10% of the unique subsystems. We also report n-body calculations in (H2O)20 clusters up to n = 8, at which point the expansion terminates naturally due to screening. These are the largest n-body calculations reported to date using ab initio electronic structure theory, and they confirm that high-order n-body terms are mostly artifacts of basis-set superposition error.
Collapse
Affiliation(s)
- Dustin R Broderick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
7
|
Focke K, Jacob CR. Coupled-Cluster Density-Based Many-Body Expansion. J Phys Chem A 2023; 127:9139-9148. [PMID: 37871170 PMCID: PMC10626589 DOI: 10.1021/acs.jpca.3c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
While CCSD(T) is often considered the "gold standard" of computational chemistry, the scaling of its computational cost as N7 limits its applicability for large and complex molecular systems. In this work, we apply the density-based many-body expansion [ Int. J. Quantum Chem. 2020, 120, e26228] in combination with CCSD(T). The accuracy of this approach is assessed for neutral, protonated, and deprotonated water hexamers, as well as (H2O)16 and (H2O)17 clusters. For the neutral water clusters, we find that already with a density-based two-body expansion, we are able to approximate the supermolecular CCSD(T) energies within chemical accuracy (4 kJ/mol). This surpasses the accuracy that is achieved with a conventional, energy-based three-body expansion. We show that this accuracy can be maintained even when approximating the electron densities using Hartree-Fock instead of using coupled-cluster densities. The density-based many-body expansion thus offers a simple, resource-efficient, and highly parallelizable approach that makes CCSD(T)-quality calculations feasible where they would otherwise be prohibitively expensive.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Choi J, Poudel K, Nam KS, Piri A, Rivera-Piza A, Ku SK, Hwang J, Kim JO, Byeon JH. Aero-manufacture of nanobulges for an in-place anticoronaviral on air filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130458. [PMID: 36444810 DOI: 10.1016/j.jhazmat.2022.130458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.
Collapse
Affiliation(s)
- Jisoo Choi
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea; Wellman Center for Photomedicine, Department of Dermatology, Meassachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Kang Sik Nam
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Amin Piri
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Adriana Rivera-Piza
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38511, Republic of Korea.
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
9
|
Palos E, Lambros E, Dasgupta S, Paesani F. Density Functional Theory of Water with the Machine-Learned DM21 Functional. J Chem Phys 2022; 156:161103. [DOI: 10.1063/5.0090862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional has been shown to overcome the limitations of traditional DFAs as it is free of delocalization error. To determine if DM21 can enable a molecular-level description of the physical properties of aqueous systems within Kohn-Sham DFT, we assess the accuracy of the DM21 functional for neutral, protonated, and deprotonated water clusters. We find that the ability of DM21 to accurately predict the energetics of aqueous clusters varies significantly with cluster size. Additionally, we introduce the many-body MB-DM21 potential derived from DM21 data within the many-body expansion of the energy and use it in simulations of liquid water as a function of temperature at ambient pressure. We find that size-dependent functional-driven errors identified in the analysis of the energetics of small clusters calculated with the DM21 functional result in the MB-DM21 potential systematically overestimating the hydrogen-bond strength and, consequently, predicting a more ice-like local structure of water at room temperature.
Collapse
Affiliation(s)
- Etienne Palos
- Chemistry and Biochemistry, University of California San Diego, United States of America
| | | | | | | |
Collapse
|
10
|
Li X, Panetier JA. Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO 2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects. Top Catal 2022; 65:325-340. [PMID: 37645456 PMCID: PMC10465121 DOI: 10.1007/s11244-021-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Tungsten bipyridyl tetracarbonyl complexes were shown to reduce CO2 to CO in acetonitrile [Chem. Sci., 2014, 5, 1894-1900]. Here, we employ density functional theory (DFT) calculations to investigate the electronic structure and reactivity of a series of tungsten electrocatalysts, [W(bpy-R)(CO)4] (where R = H, CH3, tBu, OCH3, CF3, and CN), for the CO2 reduction reaction (CO2RR). Our proposed mechanism suggests that initial reduction of the starting material by two electrons is required to access the active catalyst upon CO dissociation, which is slightly endergonic, consistent with the slow product release observed experimentally. The doubly reduced species, which has a closed-shell singlet ground state, can bind CO2 via an η2-CO2 binding mode to yield the metallocarboxylate intermediate. Based on the energy span model, CO2 addition is the TOF-determining transition state (TDTS) in the presence of water as the proton source. Different substituents at the 4,4'-positions of the bipyridine ligand in [W(bpy-R)(CO)4] (R = H, CH3, tBu, OCH3, CF3, and CN) were considered to comprehend the substituent effects for CO2RR. DFT results show that electron-withdrawing substituents, such as CN and CF3, do not yield efficient CO2 reduction catalysts due to the necessity of forming high energy intermediates for the protonation steps, resulting in low TOFs and high overpotentials. Among electron-donating groups, the parent compound and tert-butyl substituted complex are the most active catalysts for CO2RR due to higher TOFs at low overpotentials. Overall, based on the energy span model and theoretical Tafel plots, our computational approach provides quantitative information for designing CO2 reduction electrocatalysts.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Julien A. Panetier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
11
|
Bull-Vulpe EF, Riera M, Götz AW, Paesani F. MB-Fit: Software infrastructure for data-driven many-body potential energy functions. J Chem Phys 2021; 155:124801. [PMID: 34598567 DOI: 10.1063/5.0063198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechanical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit, a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase diagrams.
Collapse
Affiliation(s)
- Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
12
|
Lemke KH. Structure and solvation dynamics of the hydroxide ion in ice-like water clusters: a CCSD(T) and car-parrinello molecular dynamics study. Phys Chem Chem Phys 2021; 23:18990-18998. [PMID: 34612437 DOI: 10.1039/d1cp02524d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using MP2, CCSD(T) electronic structure theory and ab initio molecular dynamics simulations, we explore the structure, solvation dynamics and vibrational spectra of OH-(H2O)n clusters. Our study reports new cubic and fused cubic global minima structures of OH-(H2O)n for n = 8-26 with surface and interior solvation arrangements. In the case of OH-(H2O)26, we show that MP2 and CCSD(T) calculations predict global minima structures with the hydroxide ion occupying the interior region of a densely packed cubic cluster that is secured by ionic hydrogen bonds. More importantly, results from ab initio molecular dynamics simulations of OH-(H2O)26 demonstrate that the hydroxide ion remains in the cluster interior and hexa-coordinated, irrespective of the temperature, up to around 175 K, then incrementally transitions from a surface-exposed penta- (170-200 K), to a tetra- (225 K) to a tri-coordinated OH-(H2O)3 structure at 300 K. Building on our temperature-dependent vibrational power spectra, we are also able to disentangle structure and temperature effects on individual spectral contributions arising from water molecules located in the inner and outer shell of OH-(H2O)26. Some of these theoretical results provide valuable guidance for the interpretation of IRMPD spectra of small hydroxide-water clusters, but there are also several intriguing implications of these results, in particular, for the solvation of the OH- ion at the surface of water nanodroplets and aqueous interfaces.
Collapse
Affiliation(s)
- Kono H Lemke
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, SAR.
| |
Collapse
|
13
|
Abstract
Cooperative or nonadditive effects contribute to the pairwise noncovalent interaction of two molecules in a cluster or the condensed phase in ways that depend on the specific arrangements and interactions of the other surrounding molecules that constitute their environment. General expressions for an effective two-body interaction are presented, which are correct to increasing orders in the many-body expansion. The simplest result, correct through third order, requires only seven individual calculations, in contrast to a linear number of three-body contributions. Two applications are presented. First, an error analysis is performed on a model (H2O)8 cluster which completes the first solvation shell of a central water-water hydrogen bond. Energy decomposition analysis is performed to show that the largest effects of cooperativity on the central hydrogen bond arise from electrical polarization. Second, the nature of cooperative effects on proton transfer in an HCl + (H2O)4 cluster is characterized.
Collapse
Affiliation(s)
- Cameron Mackie
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Zech
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Wagle K, Santra B, Bhattarai P, Shahi C, Pederson MR, Jackson KA, Perdew JP. Self-interaction correction in water–ion clusters. J Chem Phys 2021; 154:094302. [DOI: 10.1063/5.0041620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kamal Wagle
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Biswajit Santra
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Puskar Bhattarai
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Chandra Shahi
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Mark R. Pederson
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Koblar A. Jackson
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
15
|
Dereka B, Yu Q, Lewis NHC, Carpenter WB, Bowman JM, Tokmakoff A. Crossover from hydrogen to chemical bonding. Science 2021; 371:160-164. [DOI: 10.1126/science.abe1951] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Bogdan Dereka
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Qi Yu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322, USA
| | - Nicholas H. C. Lewis
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - William B. Carpenter
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322, USA
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
|
17
|
Kananenka AA, Skinner JL. Unusually strong hydrogen bond cooperativity in particular (H 2O) 20 clusters. Phys Chem Chem Phys 2020; 22:18124-18131. [PMID: 32761035 DOI: 10.1039/d0cp02343d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drawing upon an intuitive charge-transfer-based picture of hydrogen bonding, we demonstrate that cooperativity effects acting in concert can lead to unusually strong hydrogen bonds in neutral water clusters. The structure, vibrational, and NMR properties of a (H2O)20 pentagonal dodecahedron cluster containing such a strong hydrogen bond were studied using second-order perturbation theory and density functional theory. The hydrogen bond length was found to be shorter than 2.50 Å. A large redshift of over 2000 cm-1 with respect to the isolated water molecule was predicted for the OH stretching frequency of the donor water molecule. A large downfield shift to 13.5 ppm of the isotropic part of the 1H magnetic shielding tensor together with an unusually large shielding anisotropy of 49.9 ppm was obtained. The hydrogen bond energy was calculated using symmetry-adapted perturbation theory and was found to be more than three times stronger than a typical hydrogen bond in liquid water.
Collapse
Affiliation(s)
- Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.
| | - J L Skinner
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
18
|
Maiyelvaganan KR, Ravva MK, Prakash M, Subramanian V. Benchmark studies on protonated benzene (BZH+) and water (Wn, n = 1–6) clusters: a comparison of hybrid DFT with MP2/CBS and CCSD(T)/CBS methods. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02660-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Shi H, Gong LD, Liu C, Lu LN, Yang ZZ. ABEEM/MM OH - Models for OH -(H 2O) n Clusters and Aqueous OH -: Structures, Charge Distributions, and Binding Energies. J Phys Chem A 2020; 124:5963-5978. [PMID: 32520555 DOI: 10.1021/acs.jpca.0c03941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM), two fluctuating charge models of OH--water system were proposed. The difference between these two models is whether there is charge transfer between OH- and its first-shell water molecules. The structures, charge distributions, charge transfer, and binding energies of the OH-(H2O)n (n = 1-8, 10, 15, 23) clusters were studied by these two ABEEM/MM models, the OPLS/AA force field, the OPLS-SMOOTH/AA force field, and the QM methods. The results demonstrate that two ABEEM/MM models can search out all stable structures just as the QM methods, and the structures and charge distributions agree well with those from the QM calculations. The structures, the charge transfer, and the strength of hydrogen bonds in the first hydration shell are closely related to the coordination number of OH-. Molecular dynamics simulations on the aqueous OH- solution are performed at 298 and 278 K using ABEEM/MM-I model. The MD results show that the populations of three-, four-, and five-coordinated OH- are 29.6%, 67.1%, and 3.4% at 298 K, respectively, and those of two-, three-, four-, and five-coordinated OH- are 10.8%, 44.9%, 39.2%, and 4.9% at 278 K, respectively; the average hydrogen bond lengths and the hydrogen bond angle in the first shell increase with the temperature decreasing.
Collapse
Affiliation(s)
- Hua Shi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.,School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| |
Collapse
|
20
|
Manbeck GF, Polyansky DE, Fujita E. Comprehensive Mechanisms of Electrocatalytic CO2 Reduction by [Ir(bip)(ppy)(CH3CN)](PF6)2. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dmitry E. Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
21
|
Jana S, Constantin LA, Samal P. Accurate Water Properties from an Efficient ab Initio Method. J Chem Theory Comput 2020; 16:974-987. [DOI: 10.1021/acs.jctc.9b01018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Lucian A. Constantin
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
22
|
Brown SE. From ab initio data to high-dimensional potential energy surfaces: A critical overview and assessment of the development of permutationally invariant polynomial potential energy surfaces for single molecules. J Chem Phys 2019; 151:194111. [PMID: 31757150 DOI: 10.1063/1.5123999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The representation of high-dimensional potential energy surfaces by way of the many-body expansion and permutationally invariant polynomials has become a well-established tool for improving the resolution and extending the scope of molecular simulations. The high level of accuracy that can be attained by these potential energy functions (PEFs) is due in large part to their specificity: for each term in the many-body expansion, a species-specific training set must be generated at the desired level of theory and a number of fits attempted in order to obtain a robust and reliable PEF. In this work, we attempt to characterize the numerical aspects of the fitting problem, addressing questions which are of simultaneous practical and fundamental importance. These include concrete illustrations of the nonconvexity of the problem, the ill-conditionedness of the linear system to be solved and possible need for regularization, the sensitivity of the solutions to the characteristics of the training set, and limitations of the approach with respect to accuracy and the types of molecules that can be treated. In addition, we introduce a general approach to the generation of training set configurations based on the familiar harmonic approximation and evaluate the possible benefits to the use of quasirandom sequences for sampling configuration space in this context. Using sulfate as a case study, the findings are largely generalizable and expected to ultimately facilitate the efficient development of PIP-based many-body PEFs for general systems via automation.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
23
|
Veccham SP, Lee J, Head-Gordon M. Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach. J Chem Phys 2019; 151:194101. [DOI: 10.1063/1.5125802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Srimukh Prasad Veccham
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720 USA, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
25
|
Kas M, Loreau J, Liévin J, Vaeck N. Reactivity of Hydrated Hydroxide Anion Clusters with H and Rb: An ab Initio Study. J Phys Chem A 2019; 123:8893-8906. [PMID: 31593464 DOI: 10.1021/acs.jpca.9b05971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a theoretical investigation of the hydrated hydroxide anion clusters, OH(H2O)n-, and of the collisional complexes, H-OH(H2O)n- and Rb-OH(H2O)n- (with n = 1-4). The MP2 and CCSD(T) methods are used to calculate interaction energies, optimized geometries, and vertical detachment energies. Parts of the potential energy surfaces are explored with a focus on the autodetachment region. We point out the importance of diffuse functions to correctly describe the latter. We use our results to discuss the different water loss and electronic detachment channels, which are the main reaction routes at room temperature and below. In particular, we have considered a direct and an indirect process for the electronic detachment, depending on whether water loss follows or precedes the detachment of the excess electron. We use our results to discuss the implications for astrochemistry and hybrid trap experiments in the context of cold chemistry.
Collapse
Affiliation(s)
- Milaim Kas
- Service de Chimie Quantique et Photophysique (CQP) , Université Libre de Bruxelles (ULB) , 1050 Brussels , Belgium
| | - Jérôme Loreau
- Service de Chimie Quantique et Photophysique (CQP) , Université Libre de Bruxelles (ULB) , 1050 Brussels , Belgium.,Institute of Condensed Matter and Nanosciences (IMCM/NAPS) , Université Catholique de Louvain , 1348 Louvain-la-Neuve , Belgium
| | - Jacques Liévin
- Service de Chimie Quantique et Photophysique (CQP) , Université Libre de Bruxelles (ULB) , 1050 Brussels , Belgium
| | - Nathalie Vaeck
- Service de Chimie Quantique et Photophysique (CQP) , Université Libre de Bruxelles (ULB) , 1050 Brussels , Belgium
| |
Collapse
|
26
|
Tupikina EY, Denisov GS, Tolstoy PM. Anticooperativity of FH···Cl
−
hydrogen bonds in [FH)
n
Cl]
−
clusters (
n
= 1…6). J Comput Chem 2019; 40:2858-2867. [DOI: 10.1002/jcc.26066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Elena Yu. Tupikina
- Institute of ChemistrySt. Petersburg State University, Universitetsky pr. 26, 198504 Russia
- Department of PhysicsSt. Petersburg State University Uljanovskaja 1 St. Petersburg 198504 Russia
| | - Gleb S. Denisov
- Department of PhysicsSt. Petersburg State University Uljanovskaja 1 St. Petersburg 198504 Russia
| | - Peter M. Tolstoy
- Institute of ChemistrySt. Petersburg State University, Universitetsky pr. 26, 198504 Russia
| |
Collapse
|
27
|
Xu J, Jiang H, Shen Y, Li XZ, Wang EG, Meng S. Transparent proton transport through a two-dimensional nanomesh material. Nat Commun 2019; 10:3971. [PMID: 31481679 PMCID: PMC6722077 DOI: 10.1038/s41467-019-11899-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/09/2019] [Indexed: 01/11/2023] Open
Abstract
Molecular sieving is of great importance to proton exchange in fuel cells, water desalination, and gas separation. Two-dimensional crystals emerge as superior materials showing desirable molecular permeability and selectivity. Here we demonstrate that a graphdiyne membrane, an experimentally fabricated member in the graphyne family, shows superior proton conductivity and perfect selectivity thanks to its intrinsic nanomesh structure. The trans-membrane hydrogen bonds across graphdiyne serve as ideal channels for proton transport in Grotthuss mechanism. The free energy barrier for proton transfer across graphdiyne is ~2.4 kJ mol-1, nearly identical to that in bulk water (2.1 kJ mol-1), enabling "transparent" proton transport at room temperature. This results in a proton conductivity of 0.6 S cm-1 for graphdiyne, four orders of magnitude greater than graphene. Considering its ultimate pore size of 0.55 nm, graphdiyne membrane blocks soluble fuel molecules and exhibits superior proton selectivity. These advantages endow graphdiyne a great potential as proton exchange material.
Collapse
Affiliation(s)
- Jiyu Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Songshan Lake Materials Laboratory and School of Physics, Liaoning University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Hongyu Jiang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Songshan Lake Materials Laboratory and School of Physics, Liaoning University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Yutian Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Songshan Lake Materials Laboratory and School of Physics, Liaoning University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Xin-Zheng Li
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, People's Republic of China
| | - E G Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- Songshan Lake Materials Laboratory and School of Physics, Liaoning University, Dongguan, Guangdong, 523808, People's Republic of China.
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, People's Republic of China.
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Songshan Lake Materials Laboratory and School of Physics, Liaoning University, Dongguan, Guangdong, 523808, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, People's Republic of China.
| |
Collapse
|
28
|
Egan CK, Paesani F. Assessing Many-Body Effects of Water Self-Ions. II: H3O+(H2O)n Clusters. J Chem Theory Comput 2019; 15:4816-4833. [DOI: 10.1021/acs.jctc.9b00418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Colin K. Egan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Su X, McCardle KM, Chen L, Panetier JA, Jurss JW. Robust and Selective Cobalt Catalysts Bearing Redox-Active Bipyridyl-N-heterocyclic Carbene Frameworks for Electrochemical CO2 Reduction in Aqueous Solutions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00708] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaojun Su
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Kaitlin M. McCardle
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lizhu Chen
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Julien A. Panetier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jonah W. Jurss
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
30
|
Sung S, Li X, Wolf LM, Meeder JR, Bhuvanesh NS, Grice KA, Panetier JA, Nippe M. Synergistic Effects of Imidazolium-Functionalization on fac-Mn(CO)3 Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. J Am Chem Soc 2019; 141:6569-6582. [DOI: 10.1021/jacs.8b13657] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siyoung Sung
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Xiaohui Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lucienna M. Wolf
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, United States
| | - Jeremy R. Meeder
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Nattamai S. Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Kyle A. Grice
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, United States
| | - Julien A. Panetier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
31
|
Calvo F. Conformational diversity in deprotonated water clusters and anharmonic infrared spectra. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2018.1513653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- F. Calvo
- Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| |
Collapse
|
32
|
Bajaj P, Riera M, Lin JK, Mendoza Montijo YE, Gazca J, Paesani F. Halide Ion Microhydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters. J Phys Chem A 2019; 123:2843-2852. [DOI: 10.1021/acs.jpca.9b00816] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Sexton TM, Tschumper GS. 2-body:Many-body QM:QM study of structures, energetics, and vibrational frequencies for microhydrated halide ions. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1554827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thomas More Sexton
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| | - Gregory S. Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA
| |
Collapse
|
34
|
Sirkin YAP, Hassanali A, Scherlis DA. One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes. J Phys Chem Lett 2018; 9:5029-5033. [PMID: 30113846 DOI: 10.1021/acs.jpclett.8b02183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of nanoconfinement on the self-dissociation of water constitutes an open problem whose elucidation poses a serious challenge to experiments and simulations alike. In slit pores of width ≈1 nm, recent first-principles calculations have predicted that the dissociation constant of H2O increases by almost 2 orders of magnitude [ Muñoz-Santiburcio and Marx, Phys. Rev. Lett. 2017 , 119 , 056002 ]. In the present study, quantum mechanics-molecular mechanics simulations are employed to compute the dissociation free-energy profile of water in a (6,6) carbon nanotube. According to our results, the equilibrium constant Kw drops by 3 orders of magnitude with respect to the bulk phase value, at variance with the trend predicted for confinement in two dimensions. The higher barrier to dissociation can be ascribed to the undercoordination of the hydroxide and hydronium ions in the nanotube and underscores that chemical reactivity does not exhibit a monotonic behavior with respect to pore size but may vary substantially with the characteristic length scale and dimensionality of the confining media.
Collapse
Affiliation(s)
- Yamila A Perez Sirkin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Ciudad Universitaria , Buenos Aires C1428EHA , Argentina
| | - Ali Hassanali
- Condensed Matter and Statistical Physics , International Centre for Theoretical Physics , I-34151 Trieste , Italy
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Ciudad Universitaria , Buenos Aires C1428EHA , Argentina
| |
Collapse
|