1
|
Drehwald MS, Jamali A, Vargas-Hernández RA. MOLPIPx: An end-to-end differentiable package for permutationally invariant polynomials in Python and Rust. J Chem Phys 2025; 162:084115. [PMID: 40019201 DOI: 10.1063/5.0250837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
In this work, we present MOLPIPx, a versatile library designed to seamlessly integrate permutationally invariant polynomials with modern machine learning frameworks, enabling the efficient development of linear models, neural networks, and Gaussian process models. These methodologies are widely employed for parameterizing potential energy surfaces across diverse molecular systems. MOLPIPx leverages two powerful automatic differentiation engines-JAX and EnzymeAD-Rust-to facilitate the efficient computation of energy gradients and higher-order derivatives, which are essential for tasks such as force field development and dynamic simulations. MOLPIPx is available at https://github.com/ChemAI-Lab/molpipx.
Collapse
Affiliation(s)
- Manuel S Drehwald
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Asma Jamali
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Computational Science and Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Rodrigo A Vargas-Hernández
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Computational Science and Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Gupta S, Bull-Vulpe EF, Agnew H, Iyer S, Zhu X, Zhou R, Knight C, Paesani F. MBX V1.2: Accelerating Data-Driven Many-Body Molecular Dynamics Simulations. J Chem Theory Comput 2025; 21:1838-1849. [PMID: 39951328 DOI: 10.1021/acs.jctc.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The MBX software provides an advanced platform for molecular dynamics simulations, leveraging state-of-the-art MB-pol and MB-nrg data-driven many-body potential energy functions. Developed over the past decade, these potential energy functions integrate physics-based and machine-learned many-body terms trained on electronic structure data calculated at the "gold standard" coupled-cluster level of theory. Recent advancements in MBX have focused on optimizing its performance, resulting in the release of MBX v1.2. While the inherently many-body nature of MB-pol and MB-nrg ensures high accuracy, it poses computational challenges. MBX v1.2 addresses these challenges with significant performance improvements, including enhanced parallelism that fully harnesses the power of modern multicore CPUs. These advancements enable simulations on nanosecond time scales for condensed-phase systems, significantly expanding the scope of high-accuracy, predictive simulations of complex molecular systems powered by data-driven many-body potential energy functions.
Collapse
Affiliation(s)
- Shreya Gupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Shishir Iyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christopher Knight
- University of Chicago, Chicago, Illinois 60637, United States
- Computational Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Palos E, Bull-Vulpe EF, Zhu X, Agnew H, Gupta S, Saha S, Paesani F. Current Status of the MB-pol Data-Driven Many-Body Potential for Predictive Simulations of Water Across Different Phases. J Chem Theory Comput 2024; 20:9269-9289. [PMID: 39401055 DOI: 10.1021/acs.jctc.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Developing a molecular-level understanding of the properties of water is central to numerous scientific and technological applications. However, accurately modeling water through computer simulations has been a significant challenge due to the complex nature of the hydrogen-bonding network that water molecules form under different thermodynamic conditions. This complexity has led to over five decades of research and many modeling attempts. The introduction of the MB-pol data-driven many-body potential energy function marked a significant advancement toward a universal molecular model capable of predicting the structural, thermodynamic, dynamical, and spectroscopic properties of water across all phases. By integrating physics-based and data-driven (i.e., machine-learned) components, which correctly capture the delicate balance among different many-body interactions, MB-pol achieves chemical and spectroscopic accuracy, enabling realistic molecular simulations of water, from gas-phase clusters to liquid water and ice. In this review, we present a comprehensive overview of the data-driven many-body formalism adopted by MB-pol, highlight the main results and predictions made from computer simulations with MB-pol to date, and discuss the prospects for future extensions to data-driven many-body potentials of generic and reactive molecular systems.
Collapse
Affiliation(s)
- Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Shreya Gupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Suman Saha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioǧlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Romero J, Limão-Vieira P, Maihom T, Hermansson K, Probst M. A polarizable valence electron density based force field for high-energy interactions between atoms and molecules. J Chem Phys 2024; 160:235101. [PMID: 38904408 DOI: 10.1063/5.0210949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
High-accuracy molecular force field models suited for hot gases and plasmas are not as abundant as those geared toward ambient pressure and temperature conditions. Here, we present an improved version of our previous electron-density based force field model that can now account for polarization effects by adjusting the atomic valence electron contributions to match ab initio calculated Mulliken partial charges. Using a slightly modified version of the Hohenberg-Kohn theorem, we also include an improved theoretical formulation of our model when applied to systems with degenerate ground states. We present two variants of our polarizable model, fitted from ab initio reference data calculated at CCSD(T)/cc-pVTZ and CCSD(T)/CEP-31G levels of theory, that both accurately model water dimer interaction energies. Further improvements include the additional interaction components with fictitious non-spherically symmetric, yet atom-centered, electron densities and fitting the exchange and correlation coefficients against analytical expressions. The latter removes all unphysical oscillations that are observed in the previous non-polarizable variant of our force field.
Collapse
Affiliation(s)
- José Romero
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Thana Maihom
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kersti Hermansson
- Department of Chemistry-Ångström, Uppsala University, Box 538, SE-75121 Uppsala, Sweden
| | - Michael Probst
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
5
|
Limmer DT, Götz AW, Bertram TH, Nathanson GM. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Annu Rev Phys Chem 2024; 75:111-135. [PMID: 38360527 DOI: 10.1146/annurev-physchem-083122-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.
Collapse
Affiliation(s)
- David T Limmer
- Department of Chemistry, University of California, Berkeley, California, USA;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Kavli Energy NanoScience Institute, Berkeley, California, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA;
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| |
Collapse
|
6
|
Lambros E, Fetherolf JH, Hammes-Schiffer S, Li X. A Many-Body Perspective of Nuclear Quantum Effects in Aqueous Clusters. J Phys Chem Lett 2024; 15:4070-4075. [PMID: 38587257 DOI: 10.1021/acs.jpclett.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nuclear quantum effects play an important role in the structure and thermodynamics of aqueous systems. By performing a many-body expansion with nuclear-electronic orbital (NEO) theory, we show that proton quantization can give rise to significant energetic contributions for many-body interactions spanning several molecules in single-point energy calculations of water clusters. Although zero-point motion produces a large increase in energy at the one-body level, nuclear quantum effects serve to stabilize higher-order molecular interactions. These results are significant because they demonstrate that nuclear quantum effects play a nontrivial role in many-body interactions of aqueous systems. Our approach also provides a pathway for incorporating nuclear quantum effects into water potential energy surfaces. The NEO approach is advantageous for many-body expansion analyses because it includes nuclear quantum effects directly in the energies.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan H Fetherolf
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Zhai Y, Rashmi R, Palos E, Paesani F. Many-body interactions and deep neural network potentials for water. J Chem Phys 2024; 160:144501. [PMID: 38587225 DOI: 10.1063/5.0203682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
We present a detailed assessment of deep neural network potentials developed within the Deep Potential Molecular Dynamics (DeePMD) framework and trained on the MB-pol data-driven many-body potential energy function. Specific focus is directed at the ability of DeePMD-based potentials to correctly reproduce the accuracy of MB-pol across various water systems. Analyses of bulk and interfacial properties as well as many-body interactions characteristic of water elucidate inherent limitations in the transferability and predictive accuracy of DeePMD-based potentials. These limitations can be traced back to an incomplete implementation of the "nearsightedness of electronic matter" principle, which may be common throughout machine learning potentials that do not include a proper representation of self-consistently determined long-range electric fields. These findings provide further support for the "short-blanket dilemma" faced by DeePMD-based potentials, highlighting the challenges in achieving a balance between computational efficiency and a rigorous, physics-based representation of the properties of water. Finally, we believe that our study contributes to the ongoing discourse on the development and application of machine learning models in simulating water systems, offering insights that could guide future improvements in the field.
Collapse
Affiliation(s)
- Yaoguang Zhai
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Richa Rashmi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Savoj R, Agnew H, Zhou R, Paesani F. Molecular Insights into the Influence of Ions on the Water Structure. I. Alkali Metal Ions in Solution. J Phys Chem B 2024; 128:1953-1962. [PMID: 38373140 DOI: 10.1021/acs.jpcb.3c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
In this study, we explore the impact of alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) on the hydration structure of water using molecular dynamics simulations carried out with MB-nrg potential energy functions (PEFs). Our analyses include radial distribution functions, coordination numbers, dipole moments, and infrared spectra of water molecules, calculated as a function of solvation shells. The results collectively indicate a highly local influence of all of the alkali metal ions on the hydrogen-bond network established by the surrounding water molecules, with the smallest and most densely charged Li+ ion exerting the most pronounced effect. Remarkably, the MB-nrg PEFs demonstrate excellent agreement with available experimental data for the position and size of the first solvation shells, underscoring their potential as predictive models for realistic simulations of ionic aqueous solutions across various thermodynamic conditions and environments.
Collapse
Affiliation(s)
- Roya Savoj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Ho CH, Paesani F. Elucidating the Competitive Adsorption of H 2O and CO 2 in CALF-20: New Insights for Enhanced Carbon Capture Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48287-48295. [PMID: 37796189 DOI: 10.1021/acsami.3c11092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In light of the pressing need for efficient carbon capture solutions, our study investigates the simultaneous adsorption of water (H2O) and carbon dioxide (CO2) as a function of relative humidity in CALF-20, a highly scalable and stable metal-organic framework (MOF). Advanced computer simulations reveal that due to their similar interactions with the framework, H2O and CO2 molecules compete for the same binding sites, occupying similar void regions within the CALF-20 pores. This competition results in distinct thermodynamic and dynamical behaviors of H2O and CO2 molecules, depending on whether one or both guest species are present. Notably, the presence of CO2 molecules forces the H2O molecules to form more connected hydrogen-bond networks within smaller regions, slowing water reorientation dynamics and decreasing water entropy. Conversely, the presence of water speeds up the reorientation of CO2 molecules, decreases the CO2 entropy, and increases the propensity for CO2 to be adsorbed within the framework due to stronger water-mediated interactions. Due to the competition for the same void spaces, both H2O and CO2 molecules exhibit slower diffusion when molecules of the other guest species are present. These findings offer valuable strategies and insights into enhancing the differential affinity of H2O and CO2 for MOFs specifically designed for carbon capture applications.
Collapse
Affiliation(s)
- Ching-Hwa Ho
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Riera M, Knight C, Bull-Vulpe EF, Zhu X, Agnew H, Smith DGA, Simmonett AC, Paesani F. MBX: A many-body energy and force calculator for data-driven many-body simulations. J Chem Phys 2023; 159:054802. [PMID: 37526156 PMCID: PMC10550339 DOI: 10.1063/5.0156036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the "many-body energy" (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software. MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-organic frameworks.
Collapse
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Christopher Knight
- Argonne National Laboratory, Computational Science Division, Lemont, Illinois 60439, USA
| | - Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
11
|
Bore SL, Paesani F. Realistic phase diagram of water from "first principles" data-driven quantum simulations. Nat Commun 2023; 14:3349. [PMID: 37291095 PMCID: PMC10250386 DOI: 10.1038/s41467-023-38855-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Since the experimental characterization of the low-pressure region of water's phase diagram in the early 1900s, scientists have been on a quest to understand the thermodynamic stability of ice polymorphs on the molecular level. In this study, we demonstrate that combining the MB-pol data-driven many-body potential for water, which was rigorously derived from "first principles" and exhibits chemical accuracy, with advanced enhanced-sampling algorithms, which correctly describe the quantum nature of molecular motion and thermodynamic equilibria, enables computer simulations of water's phase diagram with an unprecedented level of realism. Besides providing fundamental insights into how enthalpic, entropic, and nuclear quantum effects shape the free-energy landscape of water, we demonstrate that recent progress in "first principles" data-driven simulations, which rigorously encode many-body molecular interactions, has opened the door to realistic computational studies of complex molecular systems, bridging the gap between experiments and simulations.
Collapse
Affiliation(s)
- Sigbjørn Løland Bore
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, 92093, USA.
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Mohammadian E, Hadavimoghaddam F, Kheirollahi M, Jafari M, Chenlu X, Liu B. Probing Solubility and pH of CO2 in aqueous solutions: Implications for CO2 injection into oceans. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Heindel JP, Herman KM, Xantheas SS. Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development. Annu Rev Phys Chem 2023; 74:337-360. [PMID: 37093659 DOI: 10.1146/annurev-physchem-062422-023532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Interaction analysis techniques, including the many-body expansion (MBE), symmetry-adapted perturbation theory, and energy decomposition analysis, allow for an intuitive understanding of complex molecular interactions. We review these methods by first providing a historical context for the study of many-body interactions and discussing how nonadditivities emerge from Hamiltonians containing strictly pairwise-additive interactions. We then elaborate on the synergy between these interaction analysis techniques and the development of advanced force fields aimed at accurately reproducing the Born-Oppenheimer potential energy surface. In particular, we focus on ab initio-based force fields that aim to explicitly reproduce many-body terms and are fitted to high-level electronic structure results. These force fields generally incorporate many-body effects through (a) parameterization of distributed multipoles, (b) explicit fitting of the MBE, (c) inclusion of many-atom features in a neural network, and (d) coarse-graining of many-body terms into an effective two-body term. We also discuss the emerging use of the MBE to improve the accuracy and speed of ab initio molecular dynamics.
Collapse
Affiliation(s)
- Joseph P Heindel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Kristina M Herman
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington, USA; ,
| |
Collapse
|
14
|
Zhai Y, Caruso A, Bore SL, Luo Z, Paesani F. A "short blanket" dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions? J Chem Phys 2023; 158:084111. [PMID: 36859071 DOI: 10.1063/5.0142843] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Deep neural network (DNN) potentials have recently gained popularity in computer simulations of a wide range of molecular systems, from liquids to materials. In this study, we explore the possibility of combining the computational efficiency of the DeePMD framework and the demonstrated accuracy of the MB-pol data-driven, many-body potential to train a DNN potential for large-scale simulations of water across its phase diagram. We find that the DNN potential is able to reliably reproduce the MB-pol results for liquid water, but provides a less accurate description of the vapor-liquid equilibrium properties. This shortcoming is traced back to the inability of the DNN potential to correctly represent many-body interactions. An attempt to explicitly include information about many-body effects results in a new DNN potential that exhibits the opposite performance, being able to correctly reproduce the MB-pol vapor-liquid equilibrium properties, but losing accuracy in the description of the liquid properties. These results suggest that DeePMD-based DNN potentials are not able to correctly "learn" and, consequently, represent many-body interactions, which implies that DNN potentials may have limited ability to predict the properties for state points that are not explicitly included in the training process. The computational efficiency of the DeePMD framework can still be exploited to train DNN potentials on data-driven many-body potentials, which can thus enable large-scale, "chemically accurate" simulations of various molecular systems, with the caveat that the target state points must have been adequately sampled by the reference data-driven many-body potential in order to guarantee a faithful representation of the associated properties.
Collapse
Affiliation(s)
- Yaoguang Zhai
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Sigbjørn Løland Bore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Zhishang Luo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Janicki TD, Van Vleet MJ, Schmidt JR. Development and Implementation of Atomically Anisotropic First-Principles Force Fields: A Benzene Case Study. J Phys Chem A 2023; 127:1736-1749. [PMID: 36780209 DOI: 10.1021/acs.jpca.2c07244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
π-interactions are an important motif in chemical and biochemical systems. However, due to their anisotropic electron densities and complex balance of intermolecular interactions, aromatic molecules represent an ongoing challenge for accurate and transferable force field development. Historically, ab initio force fields for aromatics have not exhibited good accuracy with respect to bulk properties or have only been used to study gas-phase dimers. Using benzene as a proof of concept, herein we show how our own ab initio MASTIFF force field incorporates an atomically anisotropic description of intermolecular interactions to yield an accurate and robust model for aromatic interactions irrespective of phase. Compared to existing models, the MASTIFF benzene force field not only is accurate for liquid phase properties but also offers transferability to the gas and solid phases. Additionally, we introduce a computationally efficient OpenMM plugin which enables customizable anisotropic intermolecular functional forms and which can be generically used in any MD simulation where a model for nonspherical atomic features is required. Overall, our results demonstrate the importance of atomic-level anisotropy in enabling next-generation ab initio force field development.
Collapse
Affiliation(s)
- Tesia D Janicki
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mary J Van Vleet
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Ln SW, Atlanta, Georgia 30314, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Li XL, Li CM, Zhu JY, Zhou Z, Hao Q, Wang CS. A scheme for rapid evaluation of the intermolecular three-body polarization effect in water clusters. J Comput Chem 2023; 44:677-686. [PMID: 36408852 DOI: 10.1002/jcc.27032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
The ability to accurately and rapidly evaluate the intermolecular many-body polarization effect of the water system is very important for computer simulations of biomolecule in aqueous. In this paper, a scheme is proposed based on the polarizable dipole-dipole interaction model and used to rapidly estimate the intermolecular many-body polarization effect in water clusters. We use a bond-dipole-based polarization function to evaluate the polarization energy. We regard two OH bonds of a water molecule as two bond-dipoles and set the permanent OH bond-dipole moment of a water molecule to be 1.51 Debye. We estimate the induced OH bond-dipole moment via a simple formula in which only one correction factor is needed. This scheme is then applied to tens of water clusters to calculate the three- and four-body interaction energies. The three-body interaction energies of 93 water clusters produced by our scheme are compared with those produced by the counterpoise-corrected CCSD(T)/aug-cc-pVDZ, MP2/aug-cc-pVDZ, M06-2X/jul-cc-pVTZ methods, by the AMOEBApro13, iAMOEBA, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The four-body interaction energies of 47 water clusters yielded by our scheme are compared with those yielded by the counterpoise-corrected MP2/aug-cc-pVDZ and M06-2X/ jul-cc-pVTZ methods, by the AMOEBApro13, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The comparison results show that the scheme proposed in this paper can reproduce the counterpoise-corrected CCSD(T)/aug-cc-pVDZ three-body interaction energies and reproduce the counterpoise-corrected MP2/aug-cc-pVDZ four-body interaction energies both accurately and efficiently. We anticipate the scheme proposed here can be useful for computer simulations of liquid water and aqueous solutions.
Collapse
Affiliation(s)
- Xiao-Lei Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Chao-Ming Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Jia-Yi Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Zhan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Qiang Hao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Chang-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| |
Collapse
|
17
|
Houston PL, Qu C, Yu Q, Conte R, Nandi A, Li JK, Bowman JM. PESPIP: Software to fit complex molecular and many-body potential energy surfaces with permutationally invariant polynomials. J Chem Phys 2023; 158:044109. [PMID: 36725524 DOI: 10.1063/5.0134442] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We wish to describe a potential energy surface by using a basis of permutationally invariant polynomials whose coefficients will be determined by numerical regression so as to smoothly fit a dataset of electronic energies as well as, perhaps, gradients. The polynomials will be powers of transformed internuclear distances, usually either Morse variables, exp(-ri,j/λ), where λ is a constant range hyperparameter, or reciprocals of the distances, 1/ri,j. The question we address is how to create the most efficient basis, including (a) which polynomials to keep or discard, (b) how many polynomials will be needed, (c) how to make sure the polynomials correctly reproduce the zero interaction at a large distance, (d) how to ensure special symmetries, and (e) how to calculate gradients efficiently. This article discusses how these questions can be answered by using a set of programs to choose and manipulate the polynomials as well as to write efficient Fortran programs for the calculation of energies and gradients. A user-friendly interface for access to monomial symmetrization approach results is also described. The software for these programs is now publicly available.
Collapse
Affiliation(s)
- Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA and Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Chen Qu
- Independent Researcher, Toronto, Ontario M9B0E3, Canada
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Jeffrey K Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
18
|
Zhuang D, Riera M, Zhou R, Deary A, Paesani F. Hydration Structure of Na + and K + Ions in Solution Predicted by Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:9349-9360. [PMID: 36326071 DOI: 10.1021/acs.jpcb.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydration structure of Na+ and K+ ions in solution is systematically investigated using a hierarchy of molecular models that progressively include more accurate representations of many-body interactions. We found that a conventional empirical pairwise additive force field that is commonly used in biomolecular simulations is unable to reproduce the extended X-ray absorption fine structure (EXAFS) spectra for both ions. In contrast, progressive inclusion of many-body effects rigorously derived from the many-body expansion of the energy allows the MB-nrg potential energy functions (PEFs) to achieve nearly quantitative agreement with the experimental EXAFS spectra, thus enabling the development of a molecular-level picture of the hydration structure of both Na+ and K+ in solution. Since the MB-nrg PEFs have already been shown to accurately describe isomeric equilibria and vibrational spectra of small ion-water clusters in the gas phase, the present study demonstrates that the MB-nrg PEFs effectively represent the long-sought-after models able to correctly predict the properties of ionic aqueous systems from the gas to the liquid phase, which has so far remained elusive.
Collapse
Affiliation(s)
- Debbie Zhuang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Alexander Deary
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
19
|
Caruso A, Zhu X, Fulton JL, Paesani F. Accurate Modeling of Bromide and Iodide Hydration with Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:8266-8278. [PMID: 36214512 DOI: 10.1021/acs.jpcb.2c04698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ion-water interactions play a central role in determining the properties of aqueous systems in a wide range of environments. However, a quantitative understanding of how the hydration properties of ions evolve from small aqueous clusters to bulk solutions and interfaces remains elusive. Here, we introduce the second generation of data-driven many-body energy (MB-nrg) potential energy functions (PEFs) representing bromide-water and iodide-water interactions. The MB-nrg PEFs use permutationally invariant polynomials to reproduce two-body and three-body energies calculated at the coupled cluster level of theory, and implicitly represent all higher-body energies using classical many-body polarization. A systematic analysis of the hydration structure of small Br-(H2O)n and I-(H2O)n clusters demonstrates that the MB-nrg PEFs predict interaction energies in quantitative agreement with "gold standard" coupled cluster reference values. Importantly, when used in molecular dynamics simulations carried out in the isothermal-isobaric ensemble for single bromide and iodide ions in liquid water, the MB-nrg PEFs predict extended X-ray absorption fine structure (EXAFS) spectra that accurately reproduce the experimental spectra, which thus allows for characterizing the hydration structure of the two ions with a high level of confidence.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - John L Fulton
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
20
|
Hao H, Ruiz Pestana L, Qian J, Liu M, Xu Q, Head‐Gordon T. Chemical transformations and transport phenomena at interfaces. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongxia Hao
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Luis Ruiz Pestana
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Jin Qian
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Meili Liu
- Department of Civil and Architectural Engineering University of Miami Coral Gables Florida USA
| | - Qiang Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Teresa Head‐Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry University of California Berkeley California USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California USA
- Department of Bioengineering and Chemical and Biomolecular Engineering University of California Berkeley California USA
| |
Collapse
|
21
|
Bull-Vulpe EF, Riera M, Bore SL, Paesani F. Data-Driven Many-Body Potential Energy Functions for Generic Molecules: Linear Alkanes as a Proof-of-Concept Application. J Chem Theory Comput 2022. [PMID: 36113028 DOI: 10.1021/acs.jctc.2c00645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a generalization of the many-body energy (MB-nrg) theoretical/computational framework that enables the development of data-driven potential energy functions (PEFs) for generic covalently bonded molecules, with arbitrary quantum mechanical accuracy. The "nearsightedness of electronic matter" is exploited to define monomers as "natural building blocks" on the basis of their distinct chemical identity. The energy of generic molecules is then expressed as a sum of individual many-body energies of incrementally larger subsystems. The MB-nrg PEFs represent the low-order n-body energies, with n = 1-4, using permutationally invariant polynomials derived from electronic structure data carried out at an arbitrary quantum mechanical level of theory, while all higher-order n-body terms (n > 4) are represented by a classical many-body polarization term. As a proof-of-concept application of the general MB-nrg framework, we present MB-nrg PEFs for linear alkanes. The MB-nrg PEFs are shown to accurately reproduce reference energies, harmonic frequencies, and potential energy scans of alkanes, independently of their length. Since, by construction, the MB-nrg framework introduced here can be applied to generic covalently bonded molecules, we envision future computer simulations of complex molecular systems using data-driven MB-nrg PEFs, with arbitrary quantum mechanical accuracy.
Collapse
Affiliation(s)
- Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Sigbjørn L. Bore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Jiang J, Zhu B, Jiang X, Lu B, Zeng X. Photochemistry of phosphenic chloride (ClPO 2): isomerization with chlorine metaphosphite (ClOPO) and reduction by carbon monoxide. Phys Chem Chem Phys 2022; 24:20828-20836. [PMID: 36040114 DOI: 10.1039/d2cp02986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphenic chloride (ClPO2) is an elusive congener of nitryl chloride (ClNO2). By high-vacuum flash pyrolysis of 2-chloro-1,3,2-dioxaphospholane in the gas phase, ClPO2 has been efficiently generated and subsequently isolated in cryogenic N2, Ar, and CO matrices (10 K) for a first time study on its photochemistry. Upon 193 nm laser irradiation, ClPO2 isomerizes to the novel chlorine metaphosphite (ClOPO) by initial cleavage of the Cl-P bond (→ ˙Cl + ˙PO2) with subsequent Cl-O bond formation inside the N2 and Ar matrix cages. The reverse transformation becomes feasible under further irradiation at 266 nm. This photochemistry is consistent with the observed absorptions of ClPO2 and ClOPO at 207 and 250 nm, respectively. When the photolysis was performed in solid CO ice, no isomerization occurs due to CO-trapping of the initially generated ˙Cl atoms by forming caged radical pair ClCO˙⋯˙PO2. Concomitantly, photolytic reduction of ClPO2 to ClPO by CO has been observed, yielding a weakly bonded molecular complex consisting of ClPO and CO2 bonded through short intermolecular C⋯O contact (2.910 Å). The characterization of ClPO, ClPO2, ClOPO, and the molecular complexes of ClPO2-CO and ClPO-CO2 using matrix-isolation IR and UV-vis spectroscopy is supported by the theoretical calculations at the B3LYP/6-311 + G(3df) level, and the photochemistry of ClPO2 is also compared with the revisited photochemistry of ClNO2 in the N2-matrix.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Bifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Liu J, Lan J, He X. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. J Phys Chem A 2022; 126:3926-3936. [PMID: 35679610 DOI: 10.1021/acs.jpca.2c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and efficient simulation of liquids, such as water and salt solutions, using high-level wave function theories is still a formidable task for computational chemists owing to the high computational costs. In this study, we develop a deep machine learning potential based on fragment-based second-order Møller-Plesset perturbation theory (DP-MP2) for water through neural networks. We show that the DP-MP2 potential predicts the structural, dynamical, and thermodynamic properties of liquid water in better agreement with the experimental data than previous studies based on density functional theory (DFT). The nuclear quantum effects (NQEs) on the properties of liquid water are also examined, which are noticeable in affecting the structural and dynamical properties of liquid water under ambient conditions. This work provides a general framework for quantitative predictions of the properties of condensed-phase systems with the accuracy of high-level wave function theory while achieving significant computational savings compared to ab initio simulations.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinggang Lan
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
24
|
Robinson VN, Ghosh R, Egan CK, Riera M, Knight C, Paesani F, Hassanali A. The behavior of methane-water mixtures under elevated pressures from simulations using many-body potentials. J Chem Phys 2022; 156:194504. [PMID: 35597630 DOI: 10.1063/5.0089773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Non-polarizable empirical potentials have been proven to be incapable of capturing the mixing of methane-water mixtures at elevated pressures. Although density functional theory-based ab initio simulations may circumvent this discrepancy, they are limited in terms of the relevant time and length scales associated with mixing phenomena. Here, we show that the many-body MB-nrg potential, designed to reproduce methane-water interactions with coupled cluster accuracy, successfully captures this phenomenon up to 3 GPa and 500 K with varying methane concentrations. Two-phase simulations and long time scales that are required to fully capture the mixing, affordable due to the speed and accuracy of the MBX software, are assessed. Constructing the methane-water equation of state across the phase diagram shows that the stable mixtures are denser than the sum of their parts at a given pressure and temperature. We find that many-body polarization plays a central role, enhancing the induced dipole moments of methane by 0.20 D during mixing under pressure. Overall, the mixed system adopts a denser state, which involves a significant enthalpic driving force as elucidated by a systematic many-body energy decomposition analysis.
Collapse
Affiliation(s)
- Victor Naden Robinson
- The 'Abdus Salam' International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - Raja Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Colin K Egan
- The 'Abdus Salam' International Centre for Theoretical Physics, I-34151 Trieste, Italy
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Christopher Knight
- Computational Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Ali Hassanali
- The 'Abdus Salam' International Centre for Theoretical Physics, I-34151 Trieste, Italy
| |
Collapse
|
25
|
Algaba J, Acuña E, Míguez JM, Mendiboure B, Zerón IM, Blas FJ. Simulation of the carbon dioxide hydrate-water interfacial energy. J Colloid Interface Sci 2022; 623:354-367. [PMID: 35594594 DOI: 10.1016/j.jcis.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Carbon dioxide hydrates are ice-like nonstoichiometric inclusion solid compounds with importance to global climate change, and gas transportation and storage. The thermodynamic and kinetic mechanisms that control carbon dioxide nucleation critically depend on hydrate-water interfacial free energy. Only two independent indirect experiments are available in the literature. Interfacial energies show large uncertainties due to the conditions at which experiments are performed. Under these circumstances, we hypothesize that accurate molecular models for water and carbon dioxide combined with computer simulation tools can offer an alternative but complementary way to estimate interfacial energies at coexistence conditions from a molecular perspective. CALCULATIONS We have evaluated the interfacial free energy of carbon dioxide hydrates at coexistence conditions (three-phase equilibrium or dissociation line) implementing advanced computational methodologies, including the novel Mold Integration methodology. Our calculations are based on the definition of the interfacial free energy, standard statistical thermodynamic techniques, and the use of the most reliable and used molecular models for water (TIP4P/Ice) and carbon dioxide (TraPPE) available in the literature. FINDINGS We find that simulations provide an interfacial energy value, at coexistence conditions, consistent with the experiments from its thermodynamic definition. Our calculations are reliable since are based on the use of two molecular models that accurately predict: (1) The ice-water interfacial free energy; and (2) the dissociation line of carbon dioxide hydrates. Computer simulation predictions provide alternative but reliable estimates of the carbon dioxide interfacial energy. Our pioneering work demonstrates that is possible to predict interfacial energies of hydrates from a truly computational molecular perspective and opens a new door to the determination of free energies of hydrates.
Collapse
Affiliation(s)
- Jesús Algaba
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, United Kingdom
| | - Esteban Acuña
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain
| | - José Manuel Míguez
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain
| | - Bruno Mendiboure
- Laboratoire des Fluides Complexes et Leurs Reservoirs, UMR5150, Universite de Pau et des Pays de l'Adour, B. P. 1155, Pau Cedex 64014, France
| | - Iván M Zerón
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain
| | - Felipe J Blas
- Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain.
| |
Collapse
|
26
|
Palos E, Lambros E, Swee S, Hu J, Dasgupta S, Paesani F. Assessing the Interplay between Functional-Driven and Density-Driven Errors in DFT Models of Water. J Chem Theory Comput 2022; 18:3410-3426. [PMID: 35506889 DOI: 10.1021/acs.jctc.2c00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the interplay between functional-driven and density-driven errors in different density functional approximations within density functional theory (DFT) and the implications of these errors for simulations of water with DFT-based data-driven potentials. Specifically, we quantify density-driven errors in two widely used dispersion-corrected functionals derived within the generalized gradient approximation (GGA), namely BLYP-D3 and revPBE-D3, and two modern meta-GGA functionals, namely strongly constrained and appropriately normed (SCAN) and B97M-rV. The effects of functional-driven and density-driven errors on the interaction energies are first assessed for the water clusters of the BEGDB dataset. Further insights into the nature of functional-driven errors are gained from applying the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) to the interaction energies, which demonstrates that functional-driven errors are strongly correlated with the nature of the interactions. We discuss cases where density-corrected DFT (DC-DFT) models display higher accuracy than the original DFT models and cases where reducing the density-driven errors leads to larger deviations from the reference energies due to the presence of large functional-driven errors. Finally, molecular dynamics simulations are performed with data-driven many-body potentials derived from DFT and DC-DFT data to determine the effect that minimizing density-driven errors has on the description of liquid water. Besides rationalizing the performance of widely used DFT models of water, we believe that our findings unveil fundamental relations between the shortcomings of some common DFT approximations and the requirements for accurate descriptions of molecular interactions, which will aid the development of a consistent, DFT-based framework for the development of data-driven and machine-learned potentials for simulations of condensed-phase systems.
Collapse
Affiliation(s)
- Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Steven Swee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
27
|
Cruzeiro VWD, Galib M, Limmer DT, Götz AW. Uptake of N 2O 5 by aqueous aerosol unveiled using chemically accurate many-body potentials. Nat Commun 2022; 13:1266. [PMID: 35273144 PMCID: PMC8913772 DOI: 10.1038/s41467-022-28697-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The reactive uptake of N2O5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N2O5 in water. The free energy profile highlights that N2O5 is selectively adsorbed to the liquid-vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction-diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction-diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N2O5 in more complex solutions.
Collapse
Affiliation(s)
- Vinícius Wilian D Cruzeiro
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mirza Galib
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Yue S, Riera M, Ghosh R, Panagiotopoulos AZ, Paesani F. Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases. J Chem Phys 2022; 156:104503. [DOI: 10.1063/5.0080061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shuwen Yue
- Princeton University, United States of America
| | - Marc Riera
- Chemistry and Biochemistry, University of California San Diego Department of Chemistry and Biochemistry, United States of America
| | - Raja Ghosh
- University of California San Diego, United States of America
| | | | | |
Collapse
|
29
|
Theoretical Description of Water from Single-Molecule to Condensed Phase: a Review of Recent Progress on Potential Energy Surfaces and Molecular Dynamics. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
30
|
Mitev P, Briels WJ, Hermansson K. Space-Resolved OH Vibrational Spectra of the Hydration Shell around CO 2. J Phys Chem B 2021; 125:13886-13895. [PMID: 34927438 PMCID: PMC8724796 DOI: 10.1021/acs.jpcb.1c06123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/01/2021] [Indexed: 11/30/2022]
Abstract
The CO2 molecule is weakly bound in water. Here we analyze the influence of a dissolved CO2 molecule on the structure and OH vibrational spectra of the surrounding water. From the analysis of ab initio molecular dynamics simulations (BLYP-D3) we present static (structure, coordination, H-bonding, tetrahedrality) and dynamical (OH vibrational spectra) properties of the water molecules as a function of distance from the solute. We find a weakly oscillatory variation ("ABBA") in the 'solution minus bulk water' spectrum. The origin of these features can largely be traced back to solvent-solute hard-core interactions which lead to variations in density and tetrahedrality when moving from the solute's vicinity out to the bulk region. The high-frequency peak in the solute-affected spectra is specifically analyzed and found to originate from both water OH groups that fulfill the geometric H-bond criteria, and from those that do not (dangling ones). Effectively, neither is hydrogen-bonded.
Collapse
Affiliation(s)
- Pavlin
D. Mitev
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 538, S-751 21, Uppsala, Sweden
- Uppsala
Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, SE-751 05, Sweden
| | - W. J. Briels
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- IBI-4, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Kersti Hermansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 538, S-751 21, Uppsala, Sweden
| |
Collapse
|
31
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
32
|
Dasgupta S, Lambros E, Perdew JP, Paesani F. Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism. Nat Commun 2021; 12:6359. [PMID: 34737311 PMCID: PMC8569147 DOI: 10.1038/s41467-021-26618-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
Density functional theory (DFT) has been extensively used to model the properties of water. Albeit maintaining a good balance between accuracy and efficiency, no density functional has so far achieved the degree of accuracy necessary to correctly predict the properties of water across the entire phase diagram. Here, we present density-corrected SCAN (DC-SCAN) calculations for water which, minimizing density-driven errors, elevate the accuracy of the SCAN functional to that of "gold standard" coupled-cluster theory. Building upon the accuracy of DC-SCAN within a many-body formalism, we introduce a data-driven many-body potential energy function, MB-SCAN(DC), that quantitatively reproduces coupled cluster reference values for interaction, binding, and individual many-body energies of water clusters. Importantly, molecular dynamics simulations carried out with MB-SCAN(DC) also reproduce the properties of liquid water, which thus demonstrates that MB-SCAN(DC) is effectively the first DFT-based model that correctly describes water from the gas to the liquid phase.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - John P Perdew
- Department of Physics, Temple University, Philadelphia, PA, 19122, USA
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
33
|
Bull-Vulpe EF, Riera M, Götz AW, Paesani F. MB-Fit: Software infrastructure for data-driven many-body potential energy functions. J Chem Phys 2021; 155:124801. [PMID: 34598567 DOI: 10.1063/5.0063198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechanical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit, a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase diagrams.
Collapse
Affiliation(s)
- Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
34
|
Moberg DR, Jasper AW, Davis MJ. Parsimonious Potential Energy Surface Expansions Using Dictionary Learning with Multipass Greedy Selection. J Phys Chem Lett 2021; 12:9169-9174. [PMID: 34525799 DOI: 10.1021/acs.jpclett.1c02721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potential energy surfaces fit with basis set expansions have been shown to provide accurate representations of electronic energies and have enabled a variety of high-accuracy dynamics, kinetics, and spectroscopy applications. The number of terms in these expansions scales poorly with system size, a drawback that challenges their use for systems with more than ∼10 atoms. A solution is presented here using dictionary learning. Subsets of the full set of conventional basis functions are optimized using a newly developed multipass greedy regression method inspired by forward and backward selection methods from the statistics, signal processing, and machine learning literatures. The optimized representations have accuracies comparable to the full set but are 1 or more orders of magnitude smaller, and notably, the number of terms in the optimized multipass greedy expansions scales approximately linearly with the number of atoms.
Collapse
Affiliation(s)
- Daniel R Moberg
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael J Davis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
35
|
Lambros E, Dasgupta S, Palos E, Swee S, Hu J, Paesani F. General Many-Body Framework for Data-Driven Potentials with Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. J Chem Theory Comput 2021; 17:5635-5650. [PMID: 34370954 DOI: 10.1021/acs.jctc.1c00541] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a general framework for the development of data-driven many-body (MB) potential energy functions (MB-QM PEFs) that represent the interactions between small molecules at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of MB-QM PEFs for water is rigorously derived from density functionals belonging to different rungs across Jacob's ladder of approximations within density functional theory (MB-DFT) and from Møller-Plesset perturbation theory (MB-MP2). Through a systematic analysis of individual MB contributions to the interaction energies of water clusters, we demonstrate that all MB-QM PEFs preserve the same accuracy as the corresponding ab initio calculations, with the exception of those derived from density functionals within the generalized gradient approximation (GGA). The differences between the DFT and MB-DFT results are traced back to density-driven errors that prevent GGA functionals from accurately representing the underlying molecular interactions for different cluster sizes and hydrogen-bonding arrangements. We show that this shortcoming may be overcome, within the MB formalism, by using density-corrected functionals (DC-DFT) that provide a more consistent representation of each individual MB contribution. This is demonstrated through the development of a MB-DFT PEF derived from DC-PBE-D3 data, which more accurately reproduce the corresponding ab initio results.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Steven Swee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Moberg DR, Jasper AW. Permutationally Invariant Polynomial Expansions with Unrestricted Complexity. J Chem Theory Comput 2021; 17:5440-5455. [PMID: 34469127 DOI: 10.1021/acs.jctc.1c00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general strategy is presented for constructing and validating permutationally invariant polynomial (PIP) expansions for chemical systems of any stoichiometry. Demonstrations are made for three categories of gas-phase dynamics and kinetics: collisional energy-transfer trajectories for predicting pressure-dependent kinetics, three-body collisions for describing transient van der Waals adducts relevant to atmospheric chemistry, and nonthermal reactivity via quasiclassical trajectories. In total, 30 systems are considered with up to 15 atoms and 39 degrees of freedom. Permutational invariance is enforced in PIP expansions with as many as 13 million terms and 13 permutationally distinct atom types by taking advantage of petascale computational resources. The quality of the PIP expansions is demonstrated through the systematic convergence of in-sample and out-of-sample errors with respect to both the number of training data and the order of the expansion, and these errors are shown to predict errors in the dynamics for both reactive and nonreactive applications. The parallelized code distributed as part of this work enables the automation of PIP generation for complex systems with multiple channels and flexible user-defined symmetry constraints and for automatically removing unphysical unconnected terms from the basis set expansions, all of which are required for simulating complex reactive systems.
Collapse
Affiliation(s)
- Daniel R Moberg
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
37
|
Caruso A, Paesani F. Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk. J Chem Phys 2021; 155:064502. [PMID: 34391363 DOI: 10.1063/5.0059445] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a new data-driven potential energy function (PEF) describing chloride-water interactions, which is developed within the many-body-energy (MB-nrg) theoretical framework. Besides quantitatively reproducing low-order many-body energy contributions, the new MB-nrg PEF is able to correctly predict the interaction energies of small chloride-water clusters calculated at the coupled cluster level of theory. Importantly, classical and quantum molecular dynamics simulations of a single chloride ion in water demonstrate that the new MB-nrg PEF predicts x-ray spectra in close agreement with the experimental results. Comparisons with an popular empirical model and a polarizable PEF emphasize the importance of an accurate representation of short-range many-body effect while demonstrating that pairwise additive representations of chloride-water and water-water interactions are inadequate for correctly representing the hydration structure of chloride in both gas-phase clusters and solution. We believe that the analyses presented in this study provide additional evidence for the accuracy and predictive ability of the MB-nrg PEFs, which can then enable more realistic simulations of ionic aqueous systems in different environments.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
38
|
Lambros E, Hu J, Paesani F. Assessing the Accuracy of the SCAN Functional for Water through a Many-Body Analysis of the Adiabatic Connection Formula. J Chem Theory Comput 2021; 17:3739-3749. [DOI: 10.1021/acs.jctc.1c00141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
39
|
Cruzeiro VWD, Lambros E, Riera M, Roy R, Paesani F, Götz AW. Highly Accurate Many-Body Potentials for Simulations of N 2O 5 in Water: Benchmarks, Development, and Validation. J Chem Theory Comput 2021; 17:3931-3945. [PMID: 34029079 DOI: 10.1021/acs.jctc.1c00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dinitrogen pentoxide (N2O5) is an important intermediate in the atmospheric chemistry of nitrogen oxides. Although there has been much research, the processes that govern the physical interactions between N2O5 and water are still not fully understood at a molecular level. Gaining a quantitative insight from computer simulations requires going beyond the accuracy of classical force fields while accessing length scales and time scales that are out of reach for high-level quantum-chemical approaches. To this end, we present the development of MB-nrg many-body potential energy functions for nonreactive simulations of N2O5 in water. This MB-nrg model is based on electronic structure calculations at the coupled cluster level of theory and is compatible with the successful MB-pol model for water. It provides a physically correct description of long-range many-body interactions in combination with an explicit representation of up to three-body short-range interactions in terms of multidimensional permutationally invariant polynomials. In order to further investigate the importance of the underlying interactions in the model, a TTM-nrg model was also devised. TTM-nrg is a more simplistic representation that contains only two-body short-range interactions represented through Born-Mayer functions. In this work, an active learning approach was employed to efficiently build representative training sets of monomer, dimer, and trimer structures, and benchmarks are presented to determine the accuracy of our new models in comparison to a range of density functional theory methods. By assessing the binding curves, distortion energies of N2O5, and interaction energies in clusters of N2O5 and water, we evaluate the importance of two-body and three-body short-range potentials. The results demonstrate that our MB-nrg model has high accuracy with respect to the coupled cluster reference, outperforms current density functional theory models, and thus enables highly accurate simulations of N2O5 in aqueous environments.
Collapse
Affiliation(s)
- Vinícius Wilian D Cruzeiro
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ronak Roy
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Riera M, Hirales A, Ghosh R, Paesani F. Data-Driven Many-Body Models with Chemical Accuracy for CH4/H2O Mixtures. J Phys Chem B 2020; 124:11207-11221. [DOI: 10.1021/acs.jpcb.0c08728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Alan Hirales
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Raja Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
41
|
Lambros E, Paesani F. How good are polarizable and flexible models for water: Insights from a many-body perspective. J Chem Phys 2020; 153:060901. [DOI: 10.1063/5.0017590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
42
|
Riera M, Talbot JJ, Steele RP, Paesani F. Infrared signatures of isomer selectivity and symmetry breaking in the Cs+(H2O)3 complex using many-body potential energy functions. J Chem Phys 2020; 153:044306. [DOI: 10.1063/5.0013101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Justin J. Talbot
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ryan P. Steele
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|