1
|
Yin Q, Fu W, Hu X, Xu Z, Li Z, Shao X. Application of TNB in dual photo-controlled release of phenamacril, imidacloprid, and imidacloprid synergist. Photochem Photobiol 2024; 100:1813-1826. [PMID: 38445797 DOI: 10.1111/php.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Pesticides can improve crops' yield and quality, but unreasonable applications of pesticides lead to waste of pesticides which are further accumulated in the environment and threaten human health. Developing the release of controlled drugs can improve the utilization rate of pesticides. Among these methods, light-controlled release is a new technology of controlled release, which can realize spatiotemporal delivery of drugs by light. Four compounds, named Imidacloprid-Thioacetal o-nitrobenzyl-Phenamacril (IMI-TNB-PHE), Imidacloprid-Thioacetal o-nitrobenzyl- Imidacloprid (IMI-TNB-IMI), Phenamacril-Thioacetal o-nitrobenzyl-Phenamacril (PHE-TNB-PHE), and Imidacloprid-Thioacetal o-nitrobenzyl-Imidacloprid Synergist (IMI-TNB-IMISYN), were designed and synthesized by connecting thioacetal o-nitrobenzyl (TNB) with pesticides TNB displaying simple and efficient optical properties in this work. Dual photo-controlled release of pesticides including two molecules of IMI or PHE, both IMI and PHE, as well as IMI and IMISYN were, respectively, studied in this paper. Insecticidal/fungicidal activities of the photosensitive pesticides showed 2-4 times increments if they were exposed to light. In addition, a synergistic effect was observed after the light-controlled release of IMI-TNB-IMISYN, which was consistent with the effect of IMISYN. The results demonstrated whether dual photo-controlled release of the same or different pesticide molecules could be achieved with a TNB linker with spatiotemporal precision. We envisioned that TNB will be an innovative photosensitive protective group for light-dependent application of agrochemicals in the future.
Collapse
Affiliation(s)
- Qi Yin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyue Hu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Singh PK, Mengji R, Kumar S, Singh AK, Jana A, Singh SP. BODIPY-Based Mitochondrial Targeted NIR-Responsive CO-Releasing Platform for the On-Demand Release of CO to Treat Cancer. ACS APPLIED BIO MATERIALS 2023; 6:3778-3789. [PMID: 37587788 DOI: 10.1021/acsabm.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
It is an established fact that cancer is one of the most serious public health issues after coronary artery disease. Thus, exploring more effective and efficient therapeutic protocols over the traditional chemotherapeutic strategy is imperative to improving cancer survivorship and patient quality of life. In this respect, recent reports on molecularly engineered meso-substituted BODIPY have shown remarkable effects as a photoresponsive CO-releasing platform for the on-demand release of CO to treat cancer. Herein, we designed and synthesized two meso-substituted BODIPY photoresponsive CO-releasing molecules (photoCORMs). These BODIPY derivatives were tethered to a phenoxymethylpyridine moiety and oligoethylene glycol to maintain a hydrophilic-hydrophobic balance and improved cell permeability. The cell imaging experiments demonstrated that oligoethylene glycol containing photoCORM-1 efficiently internalized and preferentially localized at the mitochondria. To understand the mechanistic aspect of preferential localization into the mitochondria, live cell imaging was also carried out. Photorelease of CO was directly monitored by the inline IR spectroscopic technique. Finally, in vitro cytotoxicity and apoptosis assays on MDA-MB-231 cell lines clearly showed that photoCORM-1 induced apoptosis-mediated cell killing on account of photoreleased CO, which otherwise showed insignificant toxicity even at a very high concentration of ∼50 μM.
Collapse
Affiliation(s)
- Praveen Kumar Singh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rakesh Mengji
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sanjeev Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ajay Kumar Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Avijit Jana
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Surya Prakash Singh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Singh AK, Nair AV, Shah SS, Ray S, Singh NDP. ESIPT-, AIE-, and AIE + ESIPT-Based Light-Activated Drug Delivery Systems and Bioactive Donors for Targeted Disease Treatment. J Med Chem 2023; 66:3732-3745. [PMID: 36913722 DOI: 10.1021/acs.jmedchem.2c01466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Targeted release of bioactive molecules for therapeutic purposes is a key area in the biomedical field that is growing quickly, where bioactive molecules are released passively or actively from drug delivery systems (DDSs) or bioactive donors. In the past decade, researchers have identified light as one of the prime stimuli that can implement the efficient spatiotemporally targeted delivery of drugs or gaseous molecules with minimal cytotoxicity and a real-time monitoring ability. This perspective emphasizes recent advances in the photophysical properties of ESIPT- (excited-state intramolecular proton transfer), AIE- (aggregation-induced emission), and AIE + ESIPT-attributed light-activated delivery systems or donors. The three major sections of this perspective describe the distinctive features of DDSs and donors concerning their design, synthesis, photophysical and photochemical properties, and in vitro and in vivo studies demonstrating their relevance as carrier molecules for releasing cancer drugs and gaseous molecules in the biological system.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Asha V Nair
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sk Sheriff Shah
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Souvik Ray
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
4
|
Ge J, Zuo M, Wang Q, Li Z. Near-infrared light triggered in situ release of CO for enhanced therapy of glioblastoma. J Nanobiotechnology 2023; 21:48. [PMID: 36759881 PMCID: PMC9912522 DOI: 10.1186/s12951-023-01802-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) features high biocompatibility and high spatiotemporal selectivity, showing a great potential in glioblastoma (GBM) treatment. However, its application was restricted by the poor therapeutic efficacy and side effect. RESULTS In this study, a therapeutic nanoplatform (UCNPs@Ce6/3HBQ@CM) with combination of PDT and CO therapy was constructed, in which a photoCORM and a photosensitizer were loaded onto the surface of upconversion nanoparticles (UCNPs) functioning as photon transducer. Benefitting from NIR excitation and multicolor emission of UCNPs, the penetration depth of excitation light is enhanced and meanwhile simultaneous generation of CO and ROS in tumor site can be achieved. The as-prepared nanocomposite possessed an elevated therapeutic efficiency with the assistance of CO through influencing mitochondrial respiration and depleting ATP, accompanying with the reduced inflammatory responses. By wrapping a homologous cell membrane, the nanocomposite can target GBM and accumulate in the tumor site, affording a powerful tool for precise and efficient treatment of GBM. CONCLUSION This therapeutic nanoplatform UCNPs@Ce6/3HBQ@CM, which combines PDT and CO therapy enables precise and efficient treatment of refractory glioblastoma.
Collapse
Affiliation(s)
- Juan Ge
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Miaomiao Zuo
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Qirong Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Zhen Li
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Min Q, Ji X. Strategies toward Metal-Free Carbon Monoxide Prodrugs: An Update. ChemMedChem 2023; 18:e202200500. [PMID: 36251749 DOI: 10.1002/cmdc.202200500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Carbon monoxide is an important gasotransmitter in mammals, with pleiotropic therapeutic potential against a wide range of human diseases. However, clinical translation of CO is severely hampered by the lack of a reliable CO delivery form. The development of metal-free CO prodrugs is the key to resolving such delivery issues. Over the past three years, some new exciting progress has been made in this field. In this review, we highlight these advances and discuss related issues.
Collapse
Affiliation(s)
- Qingqiang Min
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| |
Collapse
|
6
|
Ji X, Zhong Z. External stimuli-responsive gasotransmitter prodrugs: Chemistry and spatiotemporal release. J Control Release 2022; 351:81-101. [PMID: 36116579 DOI: 10.1016/j.jconrel.2022.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Gasotransmitters like nitric oxide, carbon monoxide, and hydrogen sulfide with unique pleiotropic pharmacological effects in mammals are an emerging therapeutic modality for different human diseases including cancer, infection, ischemia-reperfusion injuries, and inflammation; however, their clinical translation is hampered by the lack of a reliable delivery form, which delivers such gasotransmitters to the action site with precisely controlled dosage. The external stimuli-responsive prodrug strategy has shown tremendous potential in developing gasotransmitter prodrugs, which affords precise temporospatial control and better dose control compared with endogenous stimuli-sensitive prodrugs. The promising external stimuli employed for gasotransmitter activation range from photo, ultrasound, and bioorthogonal click chemistry to exogenous enzymes. Herein, we highlight the recent development of external stimuli-mediated decaging chemistry for the temporospatial delivery of gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide and sulfur dioxide, and discuss the pros and cons of different designs.
Collapse
Affiliation(s)
- Xingyue Ji
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Lyu J, Wang C, Zhang X. Rational Construction of a Mitochondria-Targeted Reversible Fluorescent Probe with Intramolecular FRET for Ratiometric Monitoring Sulfur Dioxide and Formaldehyde. BIOSENSORS 2022; 12:bios12090715. [PMID: 36140101 PMCID: PMC9496144 DOI: 10.3390/bios12090715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022]
Abstract
Sulfur dioxide (SO2) and formaldehyde (FA) are important species that maintain redox homeostasis in life and are closely related to many physiological and pathological processes. Therefore, it is of great significance to realize the reversible monitoring of them at the intracellular level. Here, we synthesized a reversible ratiometric fluorescent probe through a reasonable design, which can sensitively monitor SO2 derivatives and FA, and the detection limit can reach 0.16 μM. The probe can specifically target mitochondria and successfully monitor the fluctuations of SO2 and FA in living cells. It also works well in the detection of SO2 and FA in zebrafish. This high-performance probe is expected to find broad in vitro and in vivo applications.
Collapse
Affiliation(s)
- Jinxiao Lyu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
- Correspondence:
| |
Collapse
|
8
|
Zhang T, Zhang G, Chen X, Chen Z, Tan AY, Lin A, Zhang C, Torres LK, Bajrami S, Zhang T, Zhang G, Xiang JZ, Hissong EM, Chen YT, Li Y, Du YCN. Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Cancer Lett 2022; 546:215831. [PMID: 35868533 DOI: 10.1016/j.canlet.2022.215831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Low-dose carbon monoxide (CO) is under investigation in clinical trials to treat non-cancerous diseases and has excellent safety profiles. Due to the early detection and cancer awareness, increasing cancer patients are diagnosed at early stages and potentially curative surgical resection can be done. However, many patients ultimately experience recurrence. Here, we evaluate the therapeutic effect of CO on cancer metastatic progression. We show that 250 ppm CO inhibits migration of multiple types of cancer cell lines including breast, pancreatic, colon, prostate, liver, and lung cancer and reduces the ability to adhere to fibronectin. We demonstrate that in mouse models, 250 ppm inhaled CO inhibits lung metastasis of breast cancer and liver metastasis of pancreatic cancer. Moreover, low-dose CO suppresses recurrence and increases survival after surgical removal of primary pancreatic cancer in mice. Mechanistically, low-dose CO blocks transcription of heme importers, leading to diminished intracellular heme levels and a heme-regulated enzyme, cytochrome P4501B1 (CYP1B1). Either supplementing heme or overexpressing CYP1B1 reverses the anti-migration effect of low-dose CO. Taken together, low-dose CO therapy inhibits cell migration, reduces adhesion to fibronectin, prevents disseminated cancer cells from expanding into gross metastases, and improves survival in pre-clinical mouse models of metastasis.
Collapse
Affiliation(s)
- Tiantian Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - George Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anthony Lin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Cheryl Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lisa K Torres
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Sandi Bajrami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Erika M Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Thomas JM, Vidhyapriya P, Sivan AK, Sakthivel N, Sivasankar C. Synthesis, spectroscopic, CO‐releasing ability, and anticancer activity studies of [Mn(CO)
3
(L–L)Br] complexes: Experimental and density functional theory studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| | - Pitchavel Vidhyapriya
- Department of Biotechnology Pondicherry University (A Central University) Puducherry India
| | - Akhil K. Sivan
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| | - Natarajan Sakthivel
- Department of Biotechnology Pondicherry University (A Central University) Puducherry India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry India
| |
Collapse
|