1
|
Reynders M, Willems S, Marschner JA, Wein T, Merk D, Thorn‐Seshold O. A High-Quality Photoswitchable Probe that Selectively and Potently Regulates the Transcription Factor RORγ. Angew Chem Int Ed Engl 2024; 63:e202410139. [PMID: 39248642 PMCID: PMC11586699 DOI: 10.1002/anie.202410139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Retinoic acid receptor-related orphan receptor γ (RORγ) is a nuclear hormone receptor with multiple biological functions in circadian clock regulation, inflammation, and immunity. Its cyclic temporal role in circadian rhythms, and cell-specific activity in the immune system, make it an intriguing target for spatially and temporally localised pharmacology. To create tools that can study RORγ biology with appropriate spatiotemporal resolution, we designed light-dependent inverse RORγ agonists by building azobenzene photoswitches into ligand consensus structures. Optimizations gave photoswitchable RORγ inhibitors combining a large degree of potency photocontrol, with remarkable on-target potency, and excellent selectivity over related off-target receptors. This still rare combination of performance features distinguishes them as high quality photopharmaceutical probes, which can now serve as high precision tools to study the spatial and dynamic intricacies of RORγ action in signaling and in inflammatory disorders.
Collapse
Affiliation(s)
- Martin Reynders
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Sabine Willems
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Julian A. Marschner
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Thomas Wein
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Daniel Merk
- Department of PharmacyLudwig Maximilian University of MunichButenandtstr. 781377MunichGermany
| | - Oliver Thorn‐Seshold
- Faculty of Chemistry and Food ChemistryTechnical University of DresdenBergstr. 6601069DresdenGermany
| |
Collapse
|
2
|
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024; 29:4523. [PMID: 39407453 PMCID: PMC11477607 DOI: 10.3390/molecules29194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Photoregulation of biomolecules has become crucial tools in chemical biology, because light enables access under mild conditions and with delicate spatiotemporal control. The control of enzyme activity in a reversible way is a challenge. To achieve it, a facile approach is to use photoswitchable inhibitors. This review highlights recent progress in photoswitchable inhibitors based on azobenzenes units. The progress suggests that the incorporation of an azobenzene unit to a known inhibitor is an effective method for preparing a photoswitchable inhibitor, and with these photoswitchable inhibitors, the activity of enzymes can be regulated by optical control, which is valuable in both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
4
|
Dumazer A, Gómez-Santacana X, Malhaire F, Jopling C, Maurel D, Lebon G, Llebaria A, Goudet C. Optical Control of Adenosine A 2A Receptor Using Istradefylline Photosensitivity. ACS Chem Neurosci 2024; 15:645-655. [PMID: 38275568 DOI: 10.1021/acschemneuro.3c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
In recent years, there has been growing interest in the potential therapeutic use of inhibitors of adenosine A2A receptors (A2AR) for the treatment of neurodegenerative diseases and cancer. Nevertheless, the widespread expression of A2AR throughout the body emphasizes the importance of temporally and spatially selective ligands. Photopharmacology is an emerging strategy that utilizes photosensitive ligands to attain high spatiotemporal precision and regulate the function of biomolecules using light. In this study, we combined photochemistry and cellular and in vivo photopharmacology to investigate the light sensitivity of the FDA-approved antagonist istradefylline and its potential use as an A2AR photopharmacological tool. Our findings reveal that istradefylline exhibits rapid trans-to-cis isomerization under near-UV light, and prolonged exposure results in the formation of photocycloaddition products. We demonstrate that exposure to UV light triggers a time-dependent decrease in the antagonistic activity of istradefylline in A2AR-expressing cells and enables real-time optical control of A2AR signaling in living cells and zebrafish. Together, these data demonstrate that istradefylline is a photoinactivatable A2AR antagonist and that this property can be utilized to perform photopharmacological experiments in living cells and animals.
Collapse
Affiliation(s)
- Anaëlle Dumazer
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Xavier Gómez-Santacana
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Fanny Malhaire
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Chris Jopling
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Damien Maurel
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Guillaume Lebon
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Cyril Goudet
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| |
Collapse
|
5
|
Ewert J, Heintze L, Jordà-Redondo M, von Glasenapp JS, Nonell S, Bucher G, Peifer C, Herges R. Photoswitchable Diazocine-Based Estrogen Receptor Agonists: Stabilization of the Active Form inside the Receptor. J Am Chem Soc 2022; 144:15059-15071. [PMID: 35952371 DOI: 10.1021/jacs.2c03649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photopharmacology is an emerging approach in drug design and pharmacological therapy. Light is used to switch a pharmacophore between a biologically inactive and an active isomer with high spatiotemporal resolution at the site of illness, thus potentially avoiding side effects in neighboring healthy tissue. The most frequently used strategy to design a photoswitchable drug is to replace a suitable functional group in a known bioactive molecule with azobenzene. Our strategy is different in that the photoswitch moiety is closer to the drug's scaffold. Docking studies reveal a very high structural similarity of natural 17β-estradiol and the E isomers of dihydroxy diazocines, but not their Z isomers, respectively. Seven dihydroxy diazocines were synthesized and subjected to a biological estrogen reporter gene assay. Four derivatives exhibit distinct estrogenic activity after irradiation with violet light, which can be shut off with green light. Most remarkably, the photogenerated, active E form of one of the active compounds isomerizes back to the inactive Z form with a half-life of merely several milliseconds in water, but nevertheless is active for more than 3 h in the presence of the estrogen receptor. The results suggest a significant local impact of the ligand-receptor complex toward back-isomerization. Thus, drugs that are active when bound but lose their activity immediately after leaving the receptor could be of great pharmacological value because they strongly increase target specificity. Moreover, the drugs are released into the environment in their inactive form. The latter argument is particularly important for drugs that act as endocrine disruptors.
Collapse
Affiliation(s)
- Julia Ewert
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Linda Heintze
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | | | - Jan-Simon von Glasenapp
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Götz Bucher
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U. K
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| |
Collapse
|
6
|
Kobauri P, Galenkamp NS, Schulte AM, de Vries J, Simeth NA, Maglia G, Thallmair S, Kolarski D, Szymanski W, Feringa BL. Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors. J Med Chem 2022; 65:4798-4817. [PMID: 35258959 PMCID: PMC8958501 DOI: 10.1021/acs.jmedchem.1c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Photopharmacology
uses light to regulate the biological activity
of drugs. This precise control is obtained through the incorporation
of molecular photoswitches into bioactive molecules. A major challenge
for photopharmacology is the rational design of photoswitchable drugs
that show light-induced activation. Computer-aided drug design is
an attractive approach toward more effective, targeted design. Herein,
we critically evaluated different structure-based approaches for photopharmacology
with Escherichia coli dihydrofolate reductase (eDHFR)
as a case study. Through the iterative examination of our hypotheses,
we progressively tuned the design of azobenzene-based, photoswitchable
eDHFR inhibitors in five design–make–switch–test–analyze
cycles. Targeting a hydrophobic subpocket of the enzyme and a specific
salt bridge only with the thermally metastable cis-isomer emerged as the most promising design strategy. We identified
three inhibitors that could be activated upon irradiation and reached
potencies in the low-nanomolar range. Above all, this systematic study
provided valuable insights for future endeavors toward rational photopharmacology.
Collapse
Affiliation(s)
- Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nicole S Galenkamp
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Albert M Schulte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jisk de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nadja A Simeth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Institute for Organic and Biomolecular Chemistry, University of Goettingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Giovanni Maglia
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Dušan Kolarski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,DWI-Leibniz Institut für interaktive Materialien e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|