1
|
Shen Y, Gleghorn JP. Class III Phosphatidylinositol-3 Kinase/Vacuolar Protein Sorting 34 in Cardiovascular Health and Disease. J Cardiovasc Transl Res 2025; 18:392-407. [PMID: 39821606 PMCID: PMC12043424 DOI: 10.1007/s12265-024-10581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Phosphatidylinositol-3 kinases (PI3Ks) play a critical role in maintaining cardiovascular health and the development of cardiovascular diseases (CVDs). Specifically, vacuolar Protein Sorting 34 (VPS34) or PIK3C3, the only member of Class III PI3K, plays an important role in CVD progression. The main function of VPS34 is inducing the production of phosphatidylinositol 3-phosphate, which, together with other essential structural and regulatory proteins in forming VPS34 complexes, further regulates the mammalian target of rapamycin activation, autophagy, and endocytosis. VPS34 is found to have crucial functions in the cardiovascular system, including dictating the proliferation and survival of vascular smooth muscle cells and cardiomyocytes and the formation of thrombosis. This review aims to summarize our current knowledge and recent advances in understanding the function and regulation of VPS34 in cardiovascular health and disease. We also discuss the current development of VPS34 inhibitors and their potential to treat CVDs.
Collapse
Affiliation(s)
- Yuanjun Shen
- Departments of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- School of Pharmacy and Pharmceutical Sciences, Binghamton University, Johnson City, NY, USA.
| | - Jason P Gleghorn
- Departments of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Feng X, Wu B, Xu H, Chen C, Ye J. Virtual Screening and Biological Evaluation of Natural Products as Novel VPS34 Inhibitors that Modulate Autophagy. ChemMedChem 2025; 20:e202400580. [PMID: 39578246 DOI: 10.1002/cmdc.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
VPS34 is a sole member of class III phosphoinositide 3-kinase involved in endosomal trafficking and autophagosome formation, making it an interesting target for cancer treatment. Here, we investigated 5,774 natural products using structure-based virtual screening against human VPS34. 10 natural products identified by virtual screening were purchased and tested in VPS34 ADP-Glo assay, yielding several potential VPS34 inhibitors. Amongst, Salvianolic acid A (4) and Ellagic acid (8) inhibited VPS34 with IC50 values of 2.46 and 3.12 μM, respectively, more potent than the positivity control 3-MA. Moreover, in vitro assays demonstrated that both of the compounds suppressed vesicle trafficking in cell-based assay. Significantly, Salvianolic acid (4) effectively prevented autophagy in Hela cells induced either by starvation or Rapamycin, an mTOR inhibitor. In addition, in silico analysis was done to elucidate the binding mechanisms of the ligand in complex with VPS34. Overall, this study highlights the efficacy of structure-based virtual screening and presents several natural products as VPS34 inhibitors that modulate autophagy.
Collapse
Affiliation(s)
- Xiaowen Feng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, P.R. China
| | - Baoming Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, P.R. China
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, P.R. China
| | - Chu Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, P.R. China
| | - Jiqing Ye
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, P.R. China
| |
Collapse
|
3
|
Carroll CL, Johnson MG, Ding Y, Kang Z, Vijayan RSK, Bardenhagen JP, Fang C, Lapointe D, Li M, Liu CY, Lv X, Ma X, Pang J, Shepard HE, Suarez C, Yau AJ, Williams CC, Wu Q, Heald RA, Robinson HMR, Smith GCM, Cross JB, Do MKG, Jiang Y, Lively S, Yap TA, Giuliani V, Heffernan T, Jones P, Di Francesco ME. Discovery of ART0380, a Potent and Selective ATR Kinase Inhibitor Undergoing Phase 2 Clinical Studies for the Treatment of Advanced or Metastatic Solid Cancers. J Med Chem 2024; 67:21890-21904. [PMID: 39630604 DOI: 10.1021/acs.jmedchem.4c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
One of the hallmarks of cancer is high levels of DNA replication stress and defects in the DNA damage response (DDR) pathways, which are critical for maintaining genomic integrity. Ataxia telangiectasia and Rad3-related protein (ATR) is a key regulator of the DDR machinery and an attractive therapeutic target, with multiple ATR inhibitors holding significant promise in ongoing clinical studies. Herein, we describe the discovery and characterization of ART0380 (6), a potent and selective ATR inhibitor with a compelling in vitro and in vivo pharmacological profile currently undergoing Phase 2 clinical studies in patients with advanced or metastatic solid tumors as monotherapy and in combination with DNA-damaging agents (NCT04657068 and NCT05798611). ART0380 (6) has a favorable human PK profile suitable for both intermittent and continuous once-daily (QD) dosing, characterized by a dose-proportional increase in exposure and low variability.
Collapse
Affiliation(s)
- Christopher L Carroll
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Michael G Johnson
- ChemPartner Corporation, South San Francisco, California 94080, United States
| | | | - Zhijun Kang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - R S K Vijayan
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jennifer P Bardenhagen
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Cheng Fang
- ChemPartner Corporation, Shanghai 201203, China
| | - David Lapointe
- ChemPartner Corporation, South San Francisco, California 94080, United States
| | - Meng Li
- ChemPartner Corporation, Shanghai 201203, China
| | - Chiu-Yi Liu
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xiaobing Lv
- ChemPartner Corporation, Shanghai 201203, China
| | - XiaoYan Ma
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jihai Pang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hannah E Shepard
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Catalina Suarez
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Anne Ju Yau
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Christopher C Williams
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Qi Wu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert A Heald
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge CB223FH, U.K
| | - Helen M R Robinson
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge CB223FH, U.K
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge CB223FH, U.K
| | - Jason B Cross
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Mary K Geck Do
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Sarah Lively
- ChemPartner Corporation, South San Francisco, California 94080, United States
| | - Timothy A Yap
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Virginia Giuliani
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Timothy Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Philip Jones
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
4
|
Guo Q, Jiang Y, Zhu R, Yang W, Hu P. Electrochemical Azo-free Mitsunobu-type Reaction. Angew Chem Int Ed Engl 2024; 63:e202402878. [PMID: 38466140 DOI: 10.1002/anie.202402878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
The classic chemical Mitsunobu reaction suffers from the need of excess alcohol activation reagents and the generation of significant by-products. Efforts to overcome these limitations have resulted in numerous creative solutions, but the substrate scope of these catalytic processes remains limited. Here we report an electrochemical Mitsunobu-type reaction, which features azo-free alcohol activation and broad substrate scope. This user-friendly technology allows a vast collection of heterocycles as the nucleophile, which can couple with a series of chiral cyclic and acyclic alcohols in moderate to high yields and excellent ee's. This practical reaction is scalable, chemoselective, uses simple Electrasyn setup with inexpensive electrodes and requires no precaution to exclude air and moisture. The synthetic utility is further demonstrated on the structural modification of diverse bioactive natural products and pharmaceutical derivatives and its straightforward application in a multiple-step synthesis of a drug candidate.
Collapse
Affiliation(s)
- Quanping Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yangye Jiang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Rongjin Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Wenhui Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Pengfei Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences Westlake Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
5
|
Abdullah KM, Sharma G, Qais FA, Khan I, Takkar S, Kaushal JB, Kanchan RK, Sarwar T, Chakravarti B, Siddiqui JA. Hydroxychloroquine interaction with phosphoinositide 3-kinase modulates prostate cancer growth in bone microenvironment: In vitro and molecular dynamics based approach. Int J Biol Macromol 2024; 266:130912. [PMID: 38513896 DOI: 10.1016/j.ijbiomac.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Saudi Arabia
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE-68198, USA.
| |
Collapse
|
6
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
7
|
Chen L, Gao T, Zhou P, Xia W, Yao H, Xu S, Xu J. Recent advances of vacuolar protein-sorting 34 inhibitors targeting autophagy. Bioorg Chem 2024; 143:107039. [PMID: 38134519 DOI: 10.1016/j.bioorg.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Autophagy is a ubiquitous pathological/physiological antioxidant cellular reaction in eukaryotic cells. Vacuolar protein sorting 34 (Vps34 or PIK3C3), which plays a crucial role in autophagy, has received much attention. As the only Class III phosphatidylinositol-3 kinase in mammals, Vps34 participates in vesicular transport, nutrient signaling and autophagy. Dysfunctionality of Vps34 induces carcinogenesis, and abnormal autophagy mediated by dysfunction of Vps34 is closely related to the pathological progression of various human diseases, which makes Vps34 a novel target for tumor immunotherapy. In this review, we summarize the molecular mechanisms underlying macroautophagy, and further discuss the structure-activity relationship of Vps34 inhibitors that have been reported in the past decade as well as their potential roles in anticancer immunotherapy to better understand the antitumor mechanism underlying the effects of these inhibitors.
Collapse
Affiliation(s)
- Long Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tian Gao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pijun Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxuan Xia
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hong Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzhen 518052, PR China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzhen 518052, PR China.
| |
Collapse
|
8
|
Detarya M, Mahalapbutr P, Waenphimai O, Kidoikhammouan S, Janeklang S, Sawanyawisuth K, Vaeteewoottacharn K, Seubwai W, Saengboonmee C, Thothaisong T, Pabuprapap W, Suksamrarn A, Wongkham S. Induction of apoptotic cell death of cholangiocarcinoma cells by tiliacorinine from Tiliacora triandra: A mechanistic insight. Biochim Biophys Acta Gen Subj 2023; 1867:130486. [PMID: 37813201 DOI: 10.1016/j.bbagen.2023.130486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.
Collapse
Affiliation(s)
- Marutpong Detarya
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panupong Mahalapbutr
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Somkid Janeklang
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Forensic Medicine, Faculty of Medicine, and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Teerawut Thothaisong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sopit Wongkham
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
9
|
Taraborrelli L, Şenbabaoğlu Y, Wang L, Lim J, Blake K, Kljavin N, Gierke S, Scherl A, Ziai J, McNamara E, Owyong M, Rao S, Calviello AK, Oreper D, Jhunjhunwala S, Argiles G, Bendell J, Kim TW, Ciardiello F, Wongchenko MJ, de Sauvage FJ, de Sousa E Melo F, Yan Y, West NR, Murthy A. Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer. Nat Commun 2023; 14:5945. [PMID: 37741832 PMCID: PMC10517947 DOI: 10.1038/s41467-023-41618-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Microsatellite-stable colorectal cancer (MSS-CRC) is highly refractory to immunotherapy. Understanding tumor-intrinsic determinants of immunotherapy resistance is critical to improve MSS-CRC patient outcomes. Here, we demonstrate that high tumor expression of the core autophagy gene ATG16L1 is associated with poor clinical response to anti-PD-L1 therapy in KRAS-mutant tumors from IMblaze370 (NCT02788279), a large phase III clinical trial of atezolizumab (anti-PD-L1) in advanced metastatic MSS-CRC. Deletion of Atg16l1 in engineered murine colon cancer organoids inhibits tumor growth in primary (colon) and metastatic (liver and lung) niches in syngeneic female hosts, primarily due to increased sensitivity to IFN-γ-mediated immune pressure. ATG16L1 deficiency enhances programmed cell death of colon cancer organoids induced by IFN-γ and TNF, thus increasing their sensitivity to host immunity. In parallel, ATG16L1 deficiency reduces tumor stem-like populations in vivo independently of adaptive immune pressure. This work reveals autophagy as a clinically relevant mechanism of immune evasion and tumor fitness in MSS-CRC and provides a rationale for autophagy inhibition to boost immunotherapy responses in the clinic.
Collapse
Affiliation(s)
- Lucia Taraborrelli
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Yasin Şenbabaoğlu
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Lifen Wang
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Kerrigan Blake
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA
| | - Noelyn Kljavin
- Department of Molecular Oncology, Genentech Inc., South San Francisco, USA
| | - Sarah Gierke
- Center for Advanced Light Microscopy, Genentech Inc., South San Francisco, USA
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - Alexis Scherl
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - James Ziai
- Department of Pathology, Genentech Inc., South San Francisco, USA
| | - Erin McNamara
- Department of In Vivo Pharmacology, Genentech Inc., South San Francisco, USA
| | - Mark Owyong
- Department of In Vivo Pharmacology, Genentech Inc., South San Francisco, USA
| | - Shilpa Rao
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | | | - Daniel Oreper
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Suchit Jhunjhunwala
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA
| | - Guillem Argiles
- Vall d'Hebrón Institute of Oncology, Vall d'Hebrón University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Tae Won Kim
- Department of Oncology, Medical Center, University of Ulsan, Seoul, Korea
| | - Fortunato Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | | | | | | | - Yibing Yan
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Nathaniel R West
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA.
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech Inc., South San Francisco, USA.
- Gilead Sciences, Foster City, USA.
| |
Collapse
|
10
|
Cirillo D, Diceglie M, Nazaré M. Isoform-selective targeting of PI3K: time to consider new opportunities? Trends Pharmacol Sci 2023; 44:601-621. [PMID: 37438206 DOI: 10.1016/j.tips.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
Phosphoinositide-3-kinases (PI3Ks) are central to several cellular signaling pathways in human physiology and are potential pharmacological targets for many pathologies including cancer, thrombosis, and pulmonary diseases. Tremendous efforts to develop isoform-selective inhibitors have culminated in the approval of several drugs, validating PI3K as a tractable and therapeutically relevant target. Although successful therapeutic validation has focused on isoform-selective class I orthosteric inhibitors, recent clinical findings have indicated challenges regarding poor drug tolerance owing to sustained on-target inhibition. Hence, additional approaches are warranted to increase the clinical benefits of specific clinical treatment options, which may involve the employment of so far underexploited targeting modalities or the development of inhibitors for currently underexplored PI3K class II isoforms. We review recent key discoveries in the development of isoform-selective inhibitors, focusing particularly on PI3K class II isoforms, and highlight the emerging importance of developing a broader arsenal of pharmacological tools.
Collapse
Affiliation(s)
- Davide Cirillo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marta Diceglie
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany.
| |
Collapse
|
11
|
Wu Q, Zhou D, Shen Z, Chen B, Wang G, Wu L, Zhang L, Li X, Yuan L, Wu Y, Qu N, Zhou W. VPS34-IN1 induces apoptosis of ER + breast cancer cells via activating PERK/ATF4/CHOP pathway. Biochem Pharmacol 2023:115634. [PMID: 37290596 DOI: 10.1016/j.bcp.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
VPS34-IN1 is a specific selective inhibitor of Class III Phosphatidylinositol 3-kinase (PI3K) and has been shown to exhibit a significant antitumor effect in leukemia and liver cancer. In current study, we focused on the anticancer effect and potential mechanism of VPS34-IN1 in estrogen receptor positive (ER + ) breast cancer. Our results revealed that VPS34-IN1 inhibited the viability of ER + breast cancer cells in vitro and in vivo. Flow cytometry and western blot analyses showed that VPS34-IN1 treatment induced breast cancer cell apopotosis. Interestingly, VPS34-IN1 treatment activated protein kinase R (PKR)-like ER kinase (PERK) branch of endoplasmic reticulum (ER) stress. Furthermore, knockdown of PERK by siRNA or inhibition of PERK activity by chemical inhibitor GSK2656157 could attenuate VPS34-IN1-mediated apoptosis in ER + breast cancer cells. Collectively, VPS34-IN1 has an antitumor effect in breast cancer, and it may result from activating PERK/ATF4/CHOP pathway of ER stress to induce cell apoptosis. These findings broaden our understanding of the anti-breast cancer effects and mechanisms of VPS34-IN1 and provide new ideas and reference directions for the treatment of ER + breast cancer.
Collapse
Affiliation(s)
- Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan District, Chongqing 402160, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Liu Y, Yang Q, Chen S, Li Z, Fu L. Targeting VPS34 in autophagy: An update on pharmacological small-molecule compounds. Eur J Med Chem 2023; 256:115467. [PMID: 37178482 DOI: 10.1016/j.ejmech.2023.115467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
VPS34 is well-known to be the unique member of the class III phosphoinositide 3-kinase (PI3K) family, forming VPS34 complex 1 and complex 2, which are involved in several key physiological processes. Of note, VPS34 complex 1 is an important node of autophagosome generation, which controls T cell metabolism and maintains cellular homeostasis through the autophagic pathway. And, VPS34 complex 2 is involved in endocytosis as well as vesicular transport, and is closely related to neurotransmission, antigen presentation and brain development. Due to the two important biological functions of VPS34, its dysregulation can lead to the development of cardiovascular disease, cancer, neurological disorders, and many types of human diseases by altering normal human physiology. Thus, in this review, we not only summarize the molecular structure and function of VPS34, but demonstrate the relationships between VPS34 and human diseases. Moreover, we further discuss the current small molecule inhibitors targeting VPS34 based upon the structure and function of VPS34, which may provide an insight into the future targeted drug development.
Collapse
Affiliation(s)
- Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qilin Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
13
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Garcia-Barrantes PM. Selective VPS34 Inhibitors: High Efficiency Design by Profiting from Small Structural Differences. J Med Chem 2022; 65:11497-11499. [PMID: 35998347 DOI: 10.1021/acs.jmedchem.2c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
VPS34 has attracted attention in oncology as a target to modulate autophagy. However, the generation of selective VPS34 inhibitors with suitable PK properties has been a difficult task. The discovery of compound 5 provides lessons in hit prioritization and achieving kinase selectivity while maintaining a good in vivo pharmacokinetic profile.
Collapse
|
15
|
Lai M, De Carli A, Filipponi C, Iacono E, La Rocca V, Lottini G, Piazza CR, Quaranta P, Sidoti M, Pistello M, Freer G. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Res 2022; 206:105398. [PMID: 35985406 DOI: 10.1016/j.antiviral.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Collapse
Affiliation(s)
- Michele Lai
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Alessandro De Carli
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carolina Filipponi
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Elena Iacono
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Veronica La Rocca
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Giulia Lottini
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carmen Rita Piazza
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Paola Quaranta
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Maria Sidoti
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Mauro Pistello
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Giulia Freer
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
16
|
Di Donato M, Giovannelli P, Migliaccio A, Bilancio A. Inhibition of Vps34 and p110δ PI3K Impairs Migration, Invasion and Three-Dimensional Spheroid Growth in Breast Cancer Cells. Int J Mol Sci 2022; 23:9008. [PMID: 36012280 PMCID: PMC9409264 DOI: 10.3390/ijms23169008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease that represents the most common cancer around the world; it comprises 12% of new cases according to the World Health Organization. Despite new approaches in early diagnosis and current treatment, breast cancer is still the leading cause of death for cancer mortality. New targeted therapies against key signalling transduction molecules are required. Phosphoinositide 3-kinase (PI3K) regulates multiple biological functions such as proliferation, survival, migration, and growth. It is well established that PI3K isoform-selective inhibitors show fewer toxic side effects compared to broad spectrum inhibition of PI3K (pan-PI3K inhibitors). Therefore, we tested the PI3K p110δ-selective inhibitor, IC87114, and Vps34-selective inhibitor, Vps34-IN1, on the breast cancer cell lines MCF-7 and MDA-MB-231, representing hormone-responsive and triple-negative breast cancer cells, respectively. Our data show that both inhibitors decreased migration of MCF-7 and MDA-MB-231 cells, and Vps34 also significantly impacted MCF-7 cell proliferation. Three-dimensional (3D) in vitro culture models show that IC87114 and Vps34-IN1 treatment reduced the growth of MCF-7 and MDA-MB-231 cells in 3D tumour spheroid cultures. This study identifies IC87114 and Vps34-IN1 as potential therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Antonio Bilancio
- Department of Medicine Precision, “Luigi Vanvitelli”, Affiliation University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|