1
|
Tsimpili H, Zoidis G. A New Era of Muscarinic Acetylcholine Receptor Modulators in Neurological Diseases, Cancer and Drug Abuse. Pharmaceuticals (Basel) 2025; 18:369. [PMID: 40143145 PMCID: PMC11945405 DOI: 10.3390/ph18030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
The cholinergic pathways in the central nervous system (CNS) play a pivotal role in different cognitive functions of the brain, such as memory and learning. This review takes a dive into the pharmacological side of this important part of CNS function, taking into consideration muscarinic receptors and cholinesterase enzymes. Targeting a specific subtype of five primary muscarinic receptor subtypes (M1-M5) through agonism or antagonism may benefit patients; thus, there is a great pharmaceutical research interest. Inhibition of AChE and BChE, orthosteric or allosteric, or partial agonism of M1 mAChR are correlated with Alzheimer's disease (AD) symptoms improvement. Agonism or antagonism on different muscarinic receptor subunits may lessen schizophrenia symptoms (especially positive allosteric modulation of M4 mAChR). Selective antagonism of M4 mAChR is a promising treatment for Parkinson's disease and dystonia, and the adverse effects are limited compared to inhibition of all five mAChR. Additionally, selective M5 antagonism plays a role in drug independence behavior. M3 mAChR overexpression is associated with malignancies, and M3R antagonists seem to have a therapeutic potential in cancer, while M1R and M2R inhibition leads to reduction of neoangiogenesis. Depending on the type of cancer, agonism of mAChR may promote cancer cell proliferation (as M3R agonism does) or protection against further tumor development (M1R agonism). Thus, there is an intense need to discover new potent compounds with specific action on muscarinic receptor subtypes. Chemical structures, chemical modification of function groups aiming at action enhancement, reduction of adverse effects, and optimization of Drug Metabolism and Pharmacokinetics (DMPK) will be further discussed, as well as protein-ligand docking.
Collapse
Affiliation(s)
- Helena Tsimpili
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|
2
|
Burger WAC, Mobbs JI, Rana B, Wang J, Joshi K, Gentry PR, Yeasmin M, Venugopal H, Bender AM, Lindsley CW, Miao Y, Christopoulos A, Valant C, Thal DM. Cryo-EM reveals a new allosteric binding site at the M 5 mAChR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636602. [PMID: 39975287 PMCID: PMC11838558 DOI: 10.1101/2025.02.05.636602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The M5 muscarinic acetylcholine receptor (M5 mAChR) represents a promising therapeutic target for neurological disorders. However, the high conservation of its orthosteric binding site has posed significant challenges for drug development. While selective positive allosteric modulators (PAMs) offer a potential solution, a structural understanding of the M5 mAChR and its allosteric binding sites has remained limited. Here, we present a 2.8 Å cryo-electron microscopy structure of the M5 mAChR complexed with heterotrimeric Gq protein and the agonist iperoxo, completing the active-state structural characterization of the mAChR family. To identify the binding site of M5-selective PAMs, we implemented an integrated approach combining mutagenesis, pharmacological assays, structural biology, and molecular dynamics simulations. Our mutagenesis studies revealed that selective M5 PAMs bind outside previously characterized M5 mAChR allosteric sites. Subsequently, we obtained a 2.1 Å structure of M5 mAChR co-bound with acetylcholine and the selective PAM VU6007678, revealing a novel allosteric pocket at the extrahelical interface between transmembrane domains 3 and 4 that was confirmed through mutagenesis and simulations. These findings demonstrate the diverse mechanisms of allosteric regulation in mAChRs and highlight the value of integrating pharmacological and structural approaches to identify novel allosteric binding sites.
Collapse
Affiliation(s)
- Wessel A. C. Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Jesse I. Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Bhavika Rana
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
- These authors contributed equally: Wessel A. C. Burger, Jesse I Mobbs, Bhavika Rana, Jinan Wang
| | - Keya Joshi
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Patrick R. Gentry
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mahmuda Yeasmin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Aaron M. Bender
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Warren Center for Neuroscience Drug Discovery and Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M. Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Obeng S, McMahon LR, Ofori E. Patent review of novel compounds targeting opioid use disorder (2018-2024). Expert Opin Ther Pat 2025; 35:165-180. [PMID: 39816001 DOI: 10.1080/13543776.2024.2446230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Opioids have served as a cornerstone in pain management for decades. However, the emergence of increasingly potent synthetic analogs brings forth a range of side effects, including respiratory depression, tolerance, dependence, constipation, and, more importantly, the development of severe and debilitating opioid use disorder (OUD). Search for therapeutics to mitigate OUD has been challenging, and this has called for novel approaches that include the design of small molecules targeting neuronal circuits involved in addiction (opioid, dopamine, serotonin, norepinephrine, and glutamate receptors, etc.). AREAS COVERED In this review, we retrieve and discuss two dozen (24) relevant patents filed in the past six (6) years that focus on novel small-molecule therapeutics for OUD. The chemical entities disclosed were highlighted, and specific examples were provided where necessary. EXPERT OPINION Several chemical entities targeting both opioid and non-opioid targets are under consideration for treating OUD. Our search for patents covering such compounds revealed embodiments with diverse chemistry. Understanding the public impact of OUD and the rapidly evolving landscape of substance abuse underscores the urgent need for a thorough reevaluation of strategies to address these challenges. This includes the development of small molecules with unique mechanisms of action for OUD treatment.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Lance R McMahon
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Edward Ofori
- Department of Pharmaceutical and Biomedical Sciences, Rudolph H. Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| |
Collapse
|
4
|
Walker LC, Huckstep KL, Becker HC, Langmead CJ, Lawrence AJ. Targeting muscarinic receptors for the treatment of alcohol use disorders: Opportunities and hurdles for clinical development. Br J Pharmacol 2024; 181:4385-4398. [PMID: 37005377 DOI: 10.1111/bph.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Emerging evidence suggests muscarinic acetylcholine receptors represent novel targets to treat alcohol use disorder. In this review, we draw from literature across medicinal chemistry, molecular biology, addiction and learning/cognition fields to interrogate the proposition for muscarinic receptor ligands in treating various aspects of alcohol use disorder, including cognitive dysfunction, motivation to consume alcohol and relapse. In support of this proposition, we describe cholinergic dysfunction in the pathophysiology of alcohol use disorder at a network level, including alcohol-induced adaptations present in both human post-mortem brains and reverse-translated rodent models. Preclinical behavioural pharmacology implicates specific muscarinic receptors, in particular, M4 and M5 receptors, as potential therapeutic targets worthy of further interrogation. We detail how these receptors can be selectively targeted in vivo by the use of subtype-selective allosteric modulators, a strategy that overcomes the issue of targeting a highly conserved orthosteric site bound by acetylcholine. Finally, we highlight the intense pharma interest in allosteric modulators of muscarinic receptors for other indications that provide an opportunity for repurposing into the alcohol use disorder space and provide some currently unanswered questions as a roadmap for future investigation.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Kade L Huckstep
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Tobin AB. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat Rev Drug Discov 2024; 23:743-758. [PMID: 39143241 DOI: 10.1038/s41573-024-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Over the past 40 years, the muscarinic acetylcholine receptor family, particularly the M1-receptor and M4-receptor subtypes, have emerged as validated targets for the symptomatic treatment of neurological diseases such as schizophrenia and Alzheimer disease. However, despite considerable effort and investment, no drugs have yet gained clinical approval. This is largely attributable to cholinergic adverse effects that have halted the majority of programmes and resulted in a waning of interest in these G-protein-coupled receptor targets. Recently, this trend has been reversed. Driven by advances in structure-based drug design and an appreciation of the optimal pharmacological properties necessary to deliver clinical efficacy while minimizing adverse effects, a new generation of M1-receptor and M4-receptor orthosteric agonists and positive allosteric modulators are now entering the clinic. These agents offer the prospect of novel therapeutic solutions for 'hard to treat' neurological diseases, heralding a new era of muscarinic drug discovery.
Collapse
Affiliation(s)
- Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, The Advanced Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
Li J, Orsi DL, Engers JL, Long MF, Capstick RA, Maurer MA, Presley CC, Vinson PN, Rodriguez AL, Han A, Cho HP, Chang S, Jackson M, Bubser M, Blobaum AL, Boutaud O, Nader MA, Niswender CM, Conn PJ, Jones CK, Lindsley CW, Han C. Development of VU6036864: A Triazolopyridine-Based High-Quality Antagonist Tool Compound of the M 5 Muscarinic Acetylcholine Receptor. J Med Chem 2024; 67:14394-14413. [PMID: 39105778 PMCID: PMC11345818 DOI: 10.1021/acs.jmedchem.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
While the muscarinic acetylcholine receptor mAChR subtype 5 (M5) has been studied over decades, recent findings suggest that more in-depth research is required to elucidate a thorough understanding of its physiological function related to neurological and psychiatric disorders. Our efforts to identify potent, selective, and pharmaceutically favorable next-generation M5 antagonist tool compounds have led to the discovery of a novel triazolopyridine-based series. In particular, VU6036864 (45) showed exquisite potency (human M5 IC50 = 20 nM), good subtype selectivity (>500 fold selectivity against human M1-4), desirable brain exposure (Kp = 0.68, Kp,uu = 0.65), and high oral bioavailability (%F > 100%). VU6036864 (45) and its close analogues will support further studies of M5 as advanced antagonist tool compounds and play an important role in the emerging biology of M5.
Collapse
Affiliation(s)
- Jinming Li
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Douglas L. Orsi
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Julie L. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Madeline F. Long
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Rory A. Capstick
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mallory A. Maurer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Christopher C. Presley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Paige N. Vinson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Allie Han
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Megan Jackson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Michael Bubser
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Michael A. Nader
- Center
for the Neurobiology of Addiction Treatment, Wake Forest School of
Medicine, Medical Center Boulevard Winston-Salem, Winston-Salem, North Carolina 27157, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Changho Han
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
8
|
Nunes EJ, Addy NA, Conn PJ, Foster DJ. Targeting the Actions of Muscarinic Receptors on Dopamine Systems: New Strategies for Treating Neuropsychiatric Disorders. Annu Rev Pharmacol Toxicol 2024; 64:277-289. [PMID: 37552895 PMCID: PMC10841102 DOI: 10.1146/annurev-pharmtox-051921-023858] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cholinergic regulation of dopamine (DA) signaling has significant implications for numerous disorders, including schizophrenia, substance use disorders, and mood-related disorders. The activity of midbrain DA neurons and DA release patterns in terminal regions are tightly regulated by cholinergic neurons found in both the striatum and the hindbrain. These cholinergic neurons can modulate DA circuitry by activating numerous receptors, including muscarinic acetylcholine receptor (mAChR) subtypes. This review specifically focuses on the complex role of M2, M4, and M5 mAChR subtypes in regulating DA neuron activity and DA release and the potential clinical implications of targeting these mAChR subtypes.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, and Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel J Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA;
| |
Collapse
|
9
|
Millard M, Kilian J, Ozenil M, Mogeritsch M, Schwingenschlögl-Maisetschläger V, Holzer W, Hacker M, Langer T, Pichler V. Design, synthesis and preclinical evaluation of muscarine receptor antagonists via a scaffold-hopping approach. Eur J Med Chem 2023; 262:115891. [PMID: 37897926 DOI: 10.1016/j.ejmech.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Our research group recently identified a rearrangement product of pirenzepine as starting point for a comprehensive rational drug design approach towards orthosteric muscarinic acetylcholine receptor ligands. Chemical reduction and bioscaffold hop lead to the development of sixteen promising compounds featuring either a benzimidazole or carbamate moiety, all exhibiting comparable pharmacophoric characteristics. The synthesized compounds were characterized by NMR, HR-MS, and RP-HPLC techniques. Subsequent evaluation encompassed binding affinity assessment on CHO-hM1-5 cells, mode of action determination, and analysis of physico-chemical parameters. The CNS MPO score indicated favorable drug-like attributes and potential CNS activity for the antagonistic ligands. The most promising compounds displayed Ki-values within a desirable low nanomolar range, and their structural features allow for potential carbon-11 radiolabeling. Our optimization efforts resulted in compounds with a remarkable 138-fold increase in binding affinity compared to the previously mentioned rearrangement product towards human M5, suggesting their prospective utility in positron emission tomography applications.
Collapse
Affiliation(s)
- Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Jonas Kilian
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Marius Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Mariella Mogeritsch
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Verena Schwingenschlögl-Maisetschläger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Nunes EJ, Kebede N, Haight JL, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Ventral Tegmental Area M5 Muscarinic Receptors Mediate Effort-Choice Responding and Nucleus Accumbens Dopamine in a Sex-Specific Manner . J Pharmacol Exp Ther 2023; 385:146-156. [PMID: 36828630 PMCID: PMC10108441 DOI: 10.1124/jpet.122.001438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Optimization of effort-related choices is impaired in depressive disorders. Acetylcholine (ACh) and dopamine (DA) are linked to depressive disorders, and modulation of ACh tone in the ventral tegmental area (VTA) affects mood-related behavioral responses in rats. However, it is unknown if VTA ACh mediates effort-choice behaviors. Using a task of effort-choice, rats can choose to lever press on a fixed-ratio 5 (FR5) schedule for a more-preferred food or consume freely available, less-preferred food. VTA administration of physostigmine (1 μg and 2 μg/side), a cholinesterase inhibitor, reduced FR5 responding for the more-preferred food while leaving consumption of the less-preferred food intact. VTA infusion of the M5 muscarinic receptor negative allosteric modulator VU6000181 (3 μM, 10 μM, 30 μM/side) did not affect lever pressing or chow consumption. However, VU6000181 (30 μM/side) coadministration with physostigmine (2 μg/side) attenuated physostigmine-induced decrease in lever pressing in female and male rats and significantly elevated lever pressing above vehicle baseline levels in male rats. In in vivo voltammetry experiments, VTA infusion of combined physostigmine and VU6000181 did not significantly alter evoked phasic DA release in the nucleus accumbens core (NAc) in female rats. In male rats, combined VTA infusion of physostigmine and VU6000181 increased phasic evoked DA release in the NAc compared with vehicle, physostigmine, or VU6000181 infusion alone. These data indicate a critical role and potential sex differences of VTA M5 receptors in mediating VTA cholinergic effects on effort choice behavior and regulation of DA release. SIGNIFICANCE STATEMENT: Effort-choice impairments are observed in depressive disorders, which are often treatment resistant to currently available thymoleptics. The role of ventral tegmental area (VTA) acetylcholine muscarinic M5 receptors, in a preclinical model of effort-choice behavior, is examined. Using the selective negative allosteric modulator of the M5 receptor VU6000181, we show the role of VTA M5 receptors on effort-choice and regulation of dopamine release in the nucleus accumbens core. This study supports M5 receptors as therapeutic targets for depression.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nardos Kebede
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Joshua L Haight
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Daniel J Foster
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Craig W Lindsley
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - P Jeffrey Conn
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nii A Addy
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| |
Collapse
|
11
|
Orsi DL, Felts AS, Rodriguez AL, Vinson PN, Cho HP, Chang S, Blobaum AL, Niswender CM, Conn PJ, Jones CK, Lindsley CW, Han C. Discovery of a potent M 5 antagonist with improved clearance profile. Part 2: Pyrrolidine amide-based antagonists. Bioorg Med Chem Lett 2022; 78:129021. [PMID: 36228968 PMCID: PMC10938303 DOI: 10.1016/j.bmcl.2022.129021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
This Letter describes our ongoing effort to improve the clearance of selective M5 antagonists. Herein, we report the replacement of the previously disclosed piperidine amide (4, disclosed in Part 1) with a pyrrolidine amide core. Several compounds within this series provided good potency, subtype selectivity, and low to moderate clearance profiles. Interestingly, the left-hand side SAR for this series diverged from our earlier efforts.
Collapse
Affiliation(s)
- Douglas L Orsi
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew S Felts
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paige N Vinson
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hyekyung P Cho
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sichen Chang
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Changho Han
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Capstick RA, Whomble D, Orsi DL, Felts AS, Rodriguez AL, Vinson PN, Chang S, Blobaum AL, Niswender CM, Conn PJ, Jones CK, Lindsley CW, Han C. Discovery of a potent M 5 antagonist with improved clearance profile. Part 1: Piperidine amide-based antagonists. Bioorg Med Chem Lett 2022; 76:128988. [PMID: 36113671 PMCID: PMC10939060 DOI: 10.1016/j.bmcl.2022.128988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
The lack of potent and selective tool compounds with pharmaceutically favorable properties limits the in vivo understanding of muscarinic acetylcholine receptor subtype 5 (M5) biology. Previously, we presented a highly potent and selective M5 antagonist VU6019650 with a suboptimal clearance profile as our second-generation tool compound. Herein, we disclose our ongoing efforts to generate next-generation M5 antagonists with improved clearance profiles. A mix and match approach between VU6019650 (lead) and VU0500325 (HTS hit) generated a piperidine amide-based novel M5 antagonist series. Several analogs within this series, including 29f, provided good on-target potency with improved clearance profiles, though room for improvement remains.
Collapse
Affiliation(s)
- Rory A Capstick
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Whomble
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Douglas L Orsi
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew S Felts
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paige N Vinson
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sichen Chang
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie K Jones
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Changho Han
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|