1
|
Wydra VR, Plank N, Zwirner S, Selig R, Rasch A, Masberg B, Lämmerhofer M, Zender L, Koch P, Albrecht W, Laufer S. A "Ligand First" Approach toward Selective, Covalent JNK2/3 Inhibitors. J Med Chem 2025. [PMID: 40404564 DOI: 10.1021/acs.jmedchem.5c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
All JNK isoforms play a specific role in various diseases. The role of the JNK2 isoform has so far received little attention compared to its JNK1 and JNK3 counterparts with JNK3 being a potential target for neurodegenerative diseases and an inhibitor with JNK1 bias being currently investigated in clinical trials. Using an iterative, structure-guided optimization approach starting from a reported reversible binding aminopyrazole-derived scaffold, novel highly potent JNK2/3 selective inhibitors were generated ("ligand-first approach"). These reversible inhibitors were further transformed to covalent inhibitors by attaching an electrophilic warhead moiety, able to address a conserved cysteine side chain present in JNKs. Reversible and covalent inhibitors presented in this study show high JNK2/3 isoform selectivity and activity in cells. The covalently acting lead compound 56d shows good kinetic data with a kinact/KI (JNK2) = 38,200 M-1 s-1 as well as cellular isoform selectivity and a clean kinome profile.
Collapse
Affiliation(s)
- Valentin R Wydra
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Nicole Plank
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefan Zwirner
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital of Tübingen, Otfried-Müller-Straße 14, 72076 Tübingen, Germany
| | - Roland Selig
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
- HepaRegenix GmbH, Eisenbahnstraße 63, 72072 Tübingen, Germany
| | - Alexander Rasch
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Benedikt Masberg
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital of Tübingen, Otfried-Müller-Straße 14, 72076 Tübingen, Germany
- HepaRegenix GmbH, Eisenbahnstraße 63, 72072 Tübingen, Germany
- IFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| | - Pierre Koch
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
- IFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), Auf der Morgenstelle 8, 72076 Tübingen, DE, Germany
| |
Collapse
|
2
|
Han L, Yu Y, Deng P, Wang S, Hu J, Wang S, Zheng J, Jiang J, Dang Y, Long R, Gan Z. Design, synthesis, and biological evaluation of Ponatinib-based N-Phenylpyrimidine-2-amine derivatives as novel fibroblast growth factor receptor 4 (FGFR4) selective inhibitors. Eur J Med Chem 2025; 284:117206. [PMID: 39733483 DOI: 10.1016/j.ejmech.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has been proven to be a promising target for FGFR-driven HCC therapy. Great efforts have been devoted to the discovery of FGFR4 inhibitors. In this article, a new class of Ponatinib-based N-phenylpyridine-2-amine derivatives was designed and synthesized as covalent and irreversible FGFR4 selective inhibitors through a rational drug design strategy. The representative compound 10f displayed significant FGFR4 inhibition and reasonable selectivity. Meanwhile, compound 10f strongly suppressed the proliferation of FGFR4 dependent HCC cells both in vitro and in vivo by inhibiting the FGFR4 signaling pathway. Moreover, the irreversible binding to Cys552 in FGFR4 of compound 10f was also characterized by LC-MS/MS. These results provide evidence of 10f as a potential lead compound targeting FGFR4 for anti-HCC agent development.
Collapse
Affiliation(s)
- Lei Han
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ping Deng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuai Wang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuang Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiecheng Zheng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junhao Jiang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongjun Dang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Rui Long
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
3
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
4
|
Chen Y, Liu H, Han R, Lin J, Yang J, Guo M, Yang Z, Song L. Analyzing how SiMiao Wan regulates ferroptosis to prevent RA-ILD using metabolomics and cyberpharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155912. [PMID: 39068761 DOI: 10.1016/j.phymed.2024.155912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Interstitial lung disease (ILD) is a common complication of rheumatoid arthritis (RA) that plays a significant role in the morbidity and mortality of individuals with this condition. In clinical settings, Si Miao Wan (SMW), a traditional Chinese medicine, is often utilized for the management of RA, as it is believed to possess properties that aid in reducing inflammation, eliminating excess moisture, and alleviating joint pain. PURPOSE The primary objective of this investigation was to elucidate the potential mechanism of RA-ILD prevention from the perspective of ferroptosis mediated by SMW. METHODS UPLC-Q-TOF/MS and network pharmacology were employed to forecast the potential targets of SMW for the early prevention of RA-ILD. Following this, HE staining, metabolomics, and RT-PCR were utilized to investigate the mechanism by which SMW prevents RA-ILD at an early stage. RESULTS Following six weeks of continuous administration of SMW extract at a dosage of 2.16 g/kg/day, it was observed that SMW exhibited early preventive effects against RA-ILD. Metabolomics analysis revealed seven potential biomarkers linked to the pharmacological efficacy of SMW in the early prevention of RA-ILD. Additionally, network pharmacology analysis suggested that SMW may exert its therapeutic effects on RA-ILD by modulating signaling pathways associated with lipid metabolism, atherosclerosis, TNF, and IL-17. Ultimately, through the integration of metabolomics and network pharmacology analysis, along with subsequent verification, it was determined that the early prevention of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) by Shenmai injection (SMW) is associated with the ferroptosis pathway. CONCLUSION This research offers preliminary insights into the potential mechanism by which traditional Chinese medicine Shen Mai Wan (SMW) may mitigate the early onset of Rheumatoid Arthritis-Interstitial Lung Disease (RA-ILD) via the process of ferroptosis. Furthermore, it establishes a theoretical framework for the development of innovative SMW-based pharmaceuticals for the management of RA-ILD. The signal proteins implicated in this process are anticipated to emerge as crucial targets for the prevention of RA-ILD.
Collapse
Affiliation(s)
- Yanhua Chen
- Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 301617, China
| | - Huimin Liu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New-City, Jinghai-District, Tianjin 301617, China
| | - Rui Han
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New-City, Jinghai-District, Tianjin 301617, China
| | - Jiayi Lin
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New-City, Jinghai-District, Tianjin 301617, China
| | - Jingyi Yang
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New-City, Jinghai-District, Tianjin 301617, China
| | - Maojuan Guo
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New-City, Jinghai-District, Tianjin 301617, China
| | - Zhen Yang
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New-City, Jinghai-District, Tianjin 301617, China
| | - Lili Song
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New-City, Jinghai-District, Tianjin 301617, China.
| |
Collapse
|
5
|
Feng G, Yang X, Shuai W, Wang G, Ouyang L. Update on JNK inhibitor patents: 2015 to present. Expert Opin Ther Pat 2024; 34:907-927. [PMID: 39223788 DOI: 10.1080/13543776.2024.2400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION c-Jun N-terminal kinase (JNK) regulates various biological processes through the phosphorylation cascade and is closely associated with numerous diseases, including inflammation, cardiovascular diseases, and neurological disorders. Therefore, JNKs have emerged as potential targets for disease treatment. AREAS COVERED This review compiles the patents and literatures concerning JNK inhibitors through retrieving relevant information from the SciFinder, Google Patents databases, and PubMed from 2015 to the present. It summarizes the structure-activity relationship (SAR) and biological activity profiles of JNK inhibitors, offering valuable perspectives on their potential therapeutic applications. EXPERT OPINION The JNK kinase serves as a novel target for the treatment of neurodegenerative disorders, pulmonary fibrosis, and other illnesses. A variety of small-molecule inhibitors targeting JNKs have demonstrated promising therapeutic potential in preclinical studies, which act upon JNK kinases via distinct mechanisms, encompassing traditional ATP competitive inhibition, covalent inhibition, and bidentate inhibition. Among them, several JNK inhibitors from PregLem SA, Celegene SA, and Xigen SA have accomplished the early stage of clinical trials, and their results will guide the development and indications of future JNK inhibitors.
Collapse
Affiliation(s)
| | | | | | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China second Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China second Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Li Z, Lu W, Beyett TS, Ficarro SB, Jiang J, Tse J, Kim AYJ, Marto JA, Che J, Jänne PA, Eck MJ, Zhang T, Gray NS. ZNL0325, a Pyrazolopyrimidine-Based Covalent Probe, Demonstrates an Alternative Binding Mode for Kinases. J Med Chem 2024; 67:2837-2848. [PMID: 38300264 DOI: 10.1021/acs.jmedchem.3c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The pyrazolopyrimidine (PP) heterocycle is a versatile and widely deployed core scaffold for the development of kinase inhibitors. Typically, a 4-amino-substituted pyrazolopyrimidine binds in the ATP-binding pocket in a conformation analogous to the 6-aminopurine of ATP. Here, we report the discovery of ZNL0325 which exhibits a flipped binding mode where the C3 position is oriented toward the ribose binding pocket. ZNL0325 and its analogues feature an acrylamide side chain at the C3 position which is capable of forming a covalent bond with multiple kinases that possess a cysteine at the αD-1 position including BTK, EGFR, BLK, and JAK3. These findings suggest that the ability to form a covalent bond can override the preferred noncovalent binding conformation of the heterocyclic core and provides an opportunity to create structurally distinct covalent kinase inhibitors.
Collapse
Affiliation(s)
- Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Wenchao Lu
- Lingang Laboratory, Shanghai 200031, China
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jie Jiang
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jason Tse
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Audrey Yong-Ju Kim
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Yan H, He L, Lv D, Yang J, Yuan Z. The Role of the Dysregulated JNK Signaling Pathway in the Pathogenesis of Human Diseases and Its Potential Therapeutic Strategies: A Comprehensive Review. Biomolecules 2024; 14:243. [PMID: 38397480 PMCID: PMC10887252 DOI: 10.3390/biom14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.
Collapse
Affiliation(s)
- Huaying Yan
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - Lanfang He
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun Yang
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhu Yuan
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
8
|
Liao J, Yang J, Li X, Hu C, Zhu W, Zhou Y, Zou Y, Guo M, Chen Z, Li X, Dai J, Xu Y, Zheng Z, Chen P, Cho WJ, Liang G, Tang Q. Discovery of the Diphenyl 6-Oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide Analogue J27 for the Treatment of Acute Lung Injury and Sepsis by Targeting JNK2 and Inhibiting the JNK2-NF-κB/MAPK Pathway. J Med Chem 2023; 66:12304-12323. [PMID: 37643372 DOI: 10.1021/acs.jmedchem.3c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Acute lung injury (ALI) and sepsis are both serious and complex conditions associated with high mortality, yet there are no effective treatments. Herein, we designed and synthesized a series of diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogues exhibiting anti-inflammatory activity. The optimal compound J27 decreased the release of TNF-α and IL-6 in mouse and human cells J774A.1 and THP-1 (IL-6 IC50 = 0.22 μM) through the NF-κB/MAPK pathway. J27 demonstrated remarkable protection against ALI and sepsis in vivo and exhibited good safety in subacute toxicity experiments. Pharmacokinetic study indicated that J27 had good bioavailability (30.74%). To our surprise, J27 could target JNK2 with a totally new molecular skeleton compared with the only few JNK2 inhibitors reported. Moreover, there is no report that JNK2 inhibitors could apply for ALI and sepsis. Therefore, this work provides a new lead structure for the study of JNK2 inhibitors and a new target of JNK2 to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Yuye Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
9
|
Wang L, Guo M, Gao L, Liu K, Bai J, Liu Z. JNK2 Promotes Progression of Esophageal Squamous Cell Carcinoma via Inhibiting Axin2. Curr Pharm Des 2023; 29:2977-2987. [PMID: 37957865 DOI: 10.2174/0113816128261624231030110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION The dysregulation of the c-Jun NH2-terminal kinase (JNK) pathway has been increasingly reported in human malignancies. Aberrant expression of the JNK pathway has also been implicated in the progression of Esophageal Squamous Cell Carcinoma (ESCC). However, the specific role and regulatory mechanisms of JNK2 in ESCC have not been extensively investigated. METHODS In this study, we examined JNK2 expression in patient samples and performed experiments involving the knockdown and inhibition of the JNK2 in ESCC cell lines. RESULTS Higher JNK2 expression was observed in tumor tissues compared to adjacent tissues. JNK2 overexpression was associated with advanced disease stages and poor prognosis. Furthermore, knockdown or inhibition of JNK2 in ESCC cell lines resulted in a decrease in cell proliferation and migration. CONCLUSION Additionally, a significant decrease in the expression of β-catenin and vimentin, along with an increase in the expression of Axin2, was observed upon downregulation of JNK2. Our study provides insight into the role of JNK2 in ESCC and its potential regulatory mechanism, offering a potential therapeutic strategy for ESCC patients with aberrant JNK2 expression.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Medical Center of PLA General Hospital, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Meng Guo
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Fourth Medical Center of PLA General Hospital, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Li Gao
- Fourth Medical Center of PLA General Hospital, Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Kai Liu
- Fourth Medical Center of PLA General Hospital, Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Jiawei Bai
- Fourth Medical Center of PLA General Hospital, Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), Xi'an, China
- School of Medicine, Yan'an University, Yan'an, China
| | - Zhiguo Liu
- Fourth Medical Center of PLA General Hospital, Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
10
|
Wydra VR, Ditzinger RB, Seidler NJ, Hacker FW, Laufer SA. A patent review of MAPK inhibitors (2018 - present). Expert Opin Ther Pat 2023; 33:421-444. [PMID: 37501497 DOI: 10.1080/13543776.2023.2242584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION The mitogen-activated protein kinase (MAPK) family consist of p38 MAP kinases, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs). They are involved in a multitude of diseases, including inflammatory, autoimmune, neurodegenerative, and metabolic diseases as well as cancer. In recent years, further developments in the field of MAPK-inhibitors have been reported, including an isoform or downstream target selective inhibition of MAPKs as well as target protein degradation approaches. AREAS COVERED This review summarizes newly patented MAPK-inhibitors that were claimed between 2018 and early 2023. Presented are the patents as well as their corresponding publications, the storyline of development, and clinical trials involving these compounds. This article elaborates a total of 27 patents, which were identified using established search engines. EXPERT OPINION Although industrial research on MAPK-inhibitors has been ongoing for more than 20 years, novel clinical trials of MAPK-inhibitors as potential drug candidates are still being conducted in the period under review. Recently reported inhibitors show an excellent selectivity profile and are even achieving selectivity between closely related isoforms. This progression offers the possibility to eliminate unwanted side effects and may finally lead to the approval of the first MAPK-inhibitor.
Collapse
Affiliation(s)
- Valentin R Wydra
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Raphael B Ditzinger
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Nico J Seidler
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Frederik W Hacker
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided & Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (Tücad2), Tübingen, Germany
| |
Collapse
|