1
|
Wang Z, He H, Liao X, Yuan L, Sun S, Xu C, Yang X, Zang Q, Peng X, Chen J, Guo X. Discovery of Dual PD-L1/HDAC3 Inhibitors for Tumor Immunotherapy. J Med Chem 2025; 68:8046-8064. [PMID: 40230281 DOI: 10.1021/acs.jmedchem.4c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Targeting programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has been considered as one of the most promising strategies for tumor immunotherapy. However, single-target PD-1/PD-L1 inhibitors frequently exhibit limited efficacy, highlighting the urgent need for new therapies. Herein, a series of dual PD-L1/HDAC3 inhibitors were developed through a pharmacophore fusion strategy for the first time. Among them, compound PH3 was identified as the most promising dual PD-L1/HDAC3 inhibitor, with potent PD-1/PD-L1 inhibitory activity (IC50 = 89.4 nM) and selective HDAC3 inhibitory activity (IC50 = 107 nM). Moreover, PH3 exhibited superior in vitro antitumor activities and in vitro immune activation effects. Additionally, PH3 showed potent and dose-dependent antitumor efficacy in the B16-F10 melanoma mouse model without obvious toxicity. Furthermore, PH3 increased the infiltration of CD3+CD8+ and CD3+CD4+ cells in the tumor microenvironment. Collectively, PH3 represented a novel dual PD-L1/HDAC3 inhibitor deserving further investigation as a tumor immunotherapy agent.
Collapse
Affiliation(s)
- Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - HaiQi He
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuding Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Chenglong Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xixiang Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Qinru Zang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Key Laboratory for Tissue Engineering of Jiangxi Province, School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| |
Collapse
|
2
|
Yang Y, Hasimujiang B, Cao Z, Yuan Q, Hu X, Ruan Z. Nickel-Catalyzed Electroreductive Heck Reaction: A Divergent Synthesis of C7- or C2-Arylindolines. Org Lett 2025; 27:3838-3843. [PMID: 40202433 DOI: 10.1021/acs.orglett.5c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Herein, we present a novel electrochemically driven nickel-catalyzed Heck reaction of readily available N-arylacrylindoles for the construction of both 7-arylindolines and 2-arylindolines. The reaction proceeds in an undivided electrochemical cell and employs a sacrificial zinc anode as the reductant. This catalytic protocol features a consecutive electroreductive process under exceedingly mild reaction conditions, with moderate yields. Detailed mechanistic studies indicate that the reaction involves a domino sequence of intramolecular electroreductive Heck arylation and selective C-C or C-O bond cleavage, which could be accomplished by aryl migration or carbethoxy removal.
Collapse
Affiliation(s)
- Yongjie Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Balati Hasimujiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zaimu Cao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Qingbin Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
3
|
Sasmal P, Prabitha P, Prashantha Kumar BR, Swetha BR, Babasahib SK, Raghavendra NM. Beyond peptides: Unveiling the design strategies, structure activity correlations and protein-ligand interactions of small molecule inhibitors against PD-1/PD-L1. Bioorg Chem 2025; 154:108036. [PMID: 39693923 DOI: 10.1016/j.bioorg.2024.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The landscape of cancer treatment has been transformed by the emergence of immunotherapy, especially through the use of antibodies that target the PD-1/PD-L1 pathway. Recently, there has been a notable increase in interest surrounding immune checkpoint inhibitors for cancer therapy. While antibody-based approaches have drawbacks like high costs and prolonged activity, the approval of monoclonal antibodies such as pembrolizumab and nivolumab has paved the way for a range of alternative therapies, including peptides, peptidomimetics, and small-molecule inhibitors. These smaller molecules, which target the PD-1/PD-L1 interaction, are seen as potential substitutes or supplements to monoclonal antibodies. Our focus in this article is primarily on exploring small molecules designed for PD-1/PD-L1 checkpoint pathway modulation in cancer immunotherapy, along with highlighting current advances in their structural and preclinical/clinical development. The pursuit of therapeutics based on small-molecule inhibitors of the PD-1/PD-L1 axis offers a promising yet intricate avenue for advancing cancer treatment.
Collapse
Affiliation(s)
- Pujan Sasmal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar - 160 062, Punjab, India; Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy (ABMRCP), Bengaluru 560 107, Karnataka, India.
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Swetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Sajeev Kumar Babasahib
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Nulgumnalli Manjunathaiah Raghavendra
- Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India; Department of Pharmaceutical Chemistry, R R College of Pharmacy, Bengaluru 560 090, Karnataka, India.
| |
Collapse
|
4
|
Wang Z, Yuan L, Liao X, Guo X, Chen J. Reducing PD-L1 Expression by Degraders and Downregulators as a Novel Strategy to Target the PD-1/PD-L1 Pathway. J Med Chem 2024; 67:6027-6043. [PMID: 38598179 DOI: 10.1021/acs.jmedchem.3c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Targeting the programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has evolved into one of the most promising strategies for tumor immunotherapy. Thus far, multiple monoclonal antibody drugs have been approved for treating a variety of tumors, while the development of small-molecule PD-1/PD-L1 inhibitors has lagged far behind, with only a few small-molecule inhibitors entering clinical trials. In addition to antibody drugs and small-molecule inhibitors, reducing the expression levels of PD-L1 has attracted extensive research interest as another promising strategy to target the PD-1/PD-L1 pathway. Herein, we analyze the structures and mechanisms of molecules that reduce PD-L1 expression and classify them as degraders and downregulators according to whether they directly bind to PD-L1. Moreover, we discuss the potential prospects for developing PD-L1-targeting drugs based on these molecules. It is hoped that this perspective will provide profound insights into the discovery of potent antitumor immunity drugs.
Collapse
Affiliation(s)
- Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Xu Y, Du H, Guo W, Liu B, Yan W, Zhang C, Qin L, Huang J, Wang H, Wu S, Ren W, Zou Y, Wang J, Zhu Q, Xu Y, Gu H. Discovery of Highly Potent Small-Molecule PD-1/PD-L1 Inhibitors with a Novel Scaffold for Cancer Immunotherapy. J Med Chem 2024; 67:4083-4099. [PMID: 38348878 DOI: 10.1021/acs.jmedchem.3c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
Inhibition of the PD-1/PD-L1 interaction through small-molecule inhibitors is a promising therapeutic approach in cancer immunotherapy. Herein, we utilized BMS-202 as the lead compound to develop a series of novel PD-1/PD-L1 small-molecule inhibitors with a naphthyridin scaffold. Among these compounds, X14 displayed the most potent inhibitory activity for the PD-1/PD-L1 interaction (IC50 = 15.73 nM). Furthermore, X14 exhibited good binding affinity to both human PD-L1 (KD = 14.62 nM) and mouse PD-L1 (KD = 392 nM). In particular, X14 showed favorable pharmacokinetic properties (oral bioavailability, F = 58.0%). In the 4T1 (mouse breast cancer cells) syngeneic mouse model, intragastric administration of X14 at 10 mg/kg displayed significant antitumor efficacy (TGI = 66%). Mechanistic investigations revealed that X14 effectively enhanced T-cell infiltration within the tumor microenvironment. Our study demonstrates that compound X14 exhibits potential as a candidate compound for the development of orally effective small-molecule inhibitors targeting PD-1/PD-L1.
Collapse
Affiliation(s)
- Yongling Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huijie Du
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Weibo Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an 710061, China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenxin Yan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Chi Zhang
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an 710061, China
| | - Long Qin
- Xi'an Xintong Pharmaceutical Research Co., Ltd, Xi'an 710061, China
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hongxia Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Shiqi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Weijie Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Zou
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Wang
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing 211198, China
| | - Qihua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hongfeng Gu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|