1
|
Pérez Carrillo V, Whittaker JJ, Wiedemann C, Harder JM, Lohr T, Jamithireddy AK, Dajka M, Goretzki B, Joseph B, Guskov A, Harmer NJ, Holzgrabe U, Hellmich UA. Structure and Dynamics of Macrophage Infectivity Potentiator Proteins from Pathogenic Bacteria and Protozoans Bound to Fluorinated Pipecolic Acid Inhibitors. J Med Chem 2025; 68:5926-5941. [PMID: 39976355 PMCID: PMC11912469 DOI: 10.1021/acs.jmedchem.5c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Macrophage infectivity potentiator (MIP) proteins, found in pro- and eukaryotic pathogens, influence microbial virulence, host cell infection, pathogen replication, and dissemination. MIPs share an FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain, making them attractive targets for inhibitor development. We determined high-resolution crystal structures of Burkholderia pseudomallei and Trypanosoma cruzi MIPs in complex with fluorinated pipecolic acid inhibitors. The inhibitor binding profiles in solution were compared across B. pseudomallei, T. cruzi, and Legionella pneumophila MIPs using 1H, 15N, and 19F NMR spectroscopy. Demonstrating the versatility of fluorinated ligands for characterizing inhibitor complexes, 19F NMR spectroscopy identified differences in ligand binding dynamics across MIPs. EPR spectroscopy and SAXS further revealed inhibitor-induced global structural changes in homodimeric L. pneumophila MIP. This study demonstrates the importance of integrating diverse methods to probe protein dynamics and provides a foundation for optimizing MIP-targeted inhibitors in this structurally conserved yet dynamically variable protein family.
Collapse
Affiliation(s)
- Victor
Hugo Pérez Carrillo
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Jacob J. Whittaker
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Christoph Wiedemann
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Jean-Martin Harder
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Theresa Lohr
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| | - Anil K. Jamithireddy
- Living
Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, U.K.
| | - Marina Dajka
- Department
of Physics, Free University of Berlin, 14195 Berlin, Germany
| | - Benedikt Goretzki
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Center for
Biomolecular Magnetic Resonance, Goethe-University, 60438 Frankfurt/Main, Germany
| | - Benesh Joseph
- Department
of Physics, Free University of Berlin, 14195 Berlin, Germany
| | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Nicholas J. Harmer
- Living
Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, U.K.
| | - Ulrike Holzgrabe
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| | - Ute A. Hellmich
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Center for
Biomolecular Magnetic Resonance, Goethe-University, 60438 Frankfurt/Main, Germany
- Cluster
of Excellence “Balance of the Microverse”, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Lohr T, Herbst C, Bzdyl NM, Jenkins C, Scheuplein NJ, Sugiarto WO, Whittaker JJ, Guskov A, Norville I, Hellmich UA, Hausch F, Sarkar-Tyson M, Sotriffer C, Holzgrabe U. High Affinity Inhibitors of the Macrophage Infectivity Potentiator Protein from Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila─A Comparison. ACS Infect Dis 2024; 10:3681-3691. [PMID: 39357850 PMCID: PMC11476723 DOI: 10.1021/acsinfecdis.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Since Chagas disease, melioidosis, and Legionnaires' disease are all potentially life-threatening infections, there is an urgent need for new treatment strategies. All causative agents, Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila, express a virulence factor, the macrophage infectivity potentiator (MIP) protein, emerging as a promising new therapeutic target. Inhibition of MIP proteins having a peptidyl-prolyl isomerase activity leads to reduced viability, proliferation, and cell invasion. The affinity of a series of pipecolic acid-type MIP inhibitors was evaluated against all MIPs using a fluorescence polarization assay. The analysis of structure-activity relationships led to highly active inhibitors of MIPs of all pathogens, characterized by a one-digit nanomolar affinity for the MIPs and a very effective inhibition of their peptidyl-prolyl isomerase activity. Docking studies, molecular dynamics simulations, and quantum mechanical calculations suggest an extended σ-hole of the meta-halogenated phenyl sulfonamide to be responsible for the high affinity.
Collapse
Affiliation(s)
- Theresa Lohr
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Carina Herbst
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Nicole M. Bzdyl
- Marshall
Centre for Infectious Diseases Research and Training, School of Biomedical
Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Christopher Jenkins
- DSTL,
Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Nicolas J. Scheuplein
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Wisely Oki Sugiarto
- Department
of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, Darmstadt 64287, Germany
| | - Jacob J. Whittaker
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Groningen 9747AG, Netherlands
| | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Groningen 9747AG, Netherlands
| | - Isobel Norville
- DSTL,
Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Ute A. Hellmich
- Institute
of Organic Chemistry & Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena 07743, Germany
- Center
for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main 60438, Germany
- Cluster
of Excellence “Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, Darmstadt 64287, Germany
- Centre
for Synthetic Biology, Technical University
Darmstadt, Darmstadt 64287, Germany
| | - Mitali Sarkar-Tyson
- Marshall
Centre for Infectious Diseases Research and Training, School of Biomedical
Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Christoph Sotriffer
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Ulrike Holzgrabe
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| |
Collapse
|
3
|
Lohr T, Scheuplein NJ, Jenkins C, Norville I, Erk C, Stapf M, Kirchner L, Sarkar-Tyson M, Holzgrabe U. Identification of active main metabolites of anti-infective inhibitors of the macrophage infectivity potentiator protein by liquid chromatography using mass detection. Arch Pharm (Weinheim) 2024; 357:e2400032. [PMID: 38687906 DOI: 10.1002/ardp.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Due to increasing antibiotic resistance, the development of anti-infectives with new mechanisms of action is crucial. Virulence factors such as the "macrophage infectivity potentiator" (Mip) protein, which catalyzes the folding of proline-containing proteins by means of their cis-trans isomerase (PPIase) activity, have come into focus as a potential new target. Since the inhibition of Mip by small molecules has been shown to lead to reduced virulence and survival in vitro, especially of Gram-negative bacteria such as Burkholderia pseudomallei (Bp), Neisseria meningitidis (Nm), and Neisseria gonorrhoeae (Ng), or Coxiella burnetii (Cb), among many others, a library of Mip inhibitors was developed. As drug metabolism has a significant impact on the overall therapeutic outcome, this report describes the biotransformation of the most potent Mip inhibitors. Therefore, the anti-infectives were treated using human liver microsomes in vitro. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) methods were applied to identify the metabolites and quantify the metabolic degradation of the hit compounds. Active metabolites, N-oxides, were found, leading to new opportunities for further drug development.
Collapse
Affiliation(s)
- Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | | | | | - Isobel Norville
- DSTL, Defence Science and Technology Laboratory, Salisbury, UK
| | - Christine Erk
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Maximilian Stapf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Lukas Kirchner
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Iwasaki J, Bzdyl NM, Lin-Sullivan DJM, Scheuplein NJ, Dueñas ME, de Jong E, Harmer NJ, Holzgrabe U, Sarkar-Tyson M. Inhibition of macrophage infectivity potentiator in Burkholderia pseudomallei suppresses pro-inflammatory responses in murine macrophages. Front Cell Infect Microbiol 2024; 14:1353682. [PMID: 38590438 PMCID: PMC10999550 DOI: 10.3389/fcimb.2024.1353682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response. Methods Murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection. Results Global transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1β levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release. Discussion These data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock.
Collapse
Affiliation(s)
- Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Nicole M. Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dion J. M. Lin-Sullivan
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | | | - Maria Emilia Dueñas
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Emma de Jong
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Nicholas J. Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|