1
|
Zhang X, Ge Y, Ye M, Wang X, Tong Y, Liu C, Xu S, Zhao Z, You Q, Guo X, Jiang Z. A Keap1-recruiting BRD4 degrader offers a single-molecular polypharmacology approach for the treatment of metabolic dysfunction-associated steatohepatitis. Free Radic Biol Med 2025; 232:15-27. [PMID: 40023298 DOI: 10.1016/j.freeradbiomed.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) involves multiple pathophysiological processes, including abnormal lipid metabolism, insulin resistance, oxidative stress, endoplasmic reticulum stress, inflammatory response, and fibrosis. These factors interact to form a complex network and the development of synergistic and pleiotropic drug modalities targeting multiple pathogenesis of MASH may have a better therapeutic effect. Herein, the bifunctional proteolytic targeting chimeras (PROTAC) technology was utilized for developing pleiotropic drugs for MASH treatment. We constructed a Keap1-recruiting degrader KB-3 which stabilizes the natural Keap1 target Nrf2 and degrades BRD4 synergistically, exhibiting combined therapeutic advantages against MASH-related pathologies. Experimental results confirmed that KB-3 could effectively alleviate MASH in mice by improving lipid metabolic disorder, enhancing the defense against oxidative stress, reducing inflammation, and delaying the progression of liver fibrosis. Such Keap1-recruiting degrader offering a single-molecular approach with polypharmacology effects may be an attractive strategy for the treatment of multifactorial disease.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxin Ge
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengjie Ye
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaolu Wang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Chihong Liu
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Sang Y, Huang W, Lin J, Yang L, Zhou Y, Yu C, Sun X, Yu H, Kong X. Fluorinated sulfonamide-flavonoid derivatives as novel Keap1-Nrf2 inhibitors: Potent induction of cytoprotective gene HO-1 in vivo. Eur J Med Chem 2025; 291:117650. [PMID: 40262300 DOI: 10.1016/j.ejmech.2025.117650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a key regulator in cellular defense against oxidative stress. While flavonoids have been identified as Nrf2 activators by inhibiting Keap1-Nrf2 protein-protein interaction (PPI), their limited bioactivity presents significant challenges for therapeutic applications. To compensate for this shortcoming, 28 sulfonamide-flavonoid analogues targeting the Keap1-Nrf2 PPI were synthesized by a fragment-based approach. Among these, SG16, which incorporates a fluorine atom, exhibited potent Nrf2-activated capacity and notable anti-inflammatory properties. In AML12 hepatocytes, SG16 significantly enhanced the expression of antioxidant genes by promoting Nrf2 nuclear translocation. In an acute liver injury (ALI) mouse model, SG16 treatment led to a substantial, hundredfold upregulation of the cytoprotective gene HO-1 mRNA. Meanwhile, a dose-dependent decline in ALT, AST, and inflammatory cytokine levels was observed, reflecting improved liver function. Histopathological evaluations, including hematoxylin and eosin (HE) staining, TUNEL, myeloperoxidase (MPO) activity assessment, and F4/80 macrophage marker analysis, consistently demonstrated substantial attenuation of liver tissue damage following SG16 treatment. Moreover, Co-IP assays combined with experiments in Nrf2 knockout mice suggested that the novel sulfonamide-containing flavonoids are a promising class of Nrf2-targeted therapeutic candidates, warranting further exploration for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Yali Sang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifang Huang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Yu
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hong Yu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhao Z, Lu H, Wang J, Wu T, Xu S, Ge Y, You Q, Jiang Z, Lu M. Discovery of β-amino acid substituted naphthalene sulfonamide derivatives as potent Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) protein-protein interaction inhibitors for ulcerative colitis management. Eur J Med Chem 2025; 288:117384. [PMID: 39965408 DOI: 10.1016/j.ejmech.2025.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of cellular defense system against oxidative insults. Directly inhibiting the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 protein-protein interaction (PPI) has emerged as a promising approach to activate Nrf2 for the treatment of diseases associated with oxidative stress. Herein, we identified β-amino acids as privileged structural fragments for designing novel naphthalene sulfonamide-based Keap1-Nrf2 PPI inhibitors. Comprehensive structure-activity relationship (SAR) exploration identified compound 19 as the optimal inhibitor with an IC50 of 0.55 μM for disrupting the Keap1-Nrf2 interaction and a Kd of 0.50 μM for binding to Keap1. Further studies demonstrated that 19 effectively activated the Nrf2-regulated cytoprotective system and provided protective effects against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in both in vitro and in vivo models. These findings highlight the potential of β-amino acid substituted naphthalene sulfonamide Keap1-Nrf2 inhibitor 19 as a prospective therapeutic agent for UC via Keap1 targeting.
Collapse
Affiliation(s)
- Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongjin Lu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junjie Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxin Ge
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| |
Collapse
|
4
|
Cuadrado A, Cazalla E, Bach A, Bathish B, Naidu SD, DeNicola GM, Dinkova-Kostova AT, Fernández-Ginés R, Grochot-Przeczek A, Hayes JD, Kensler TW, León R, Liby KT, López MG, Manda G, Shivakumar AK, Hakomäki H, Moerland JA, Motohashi H, Rojo AI, Sykiotis GP, Taguchi K, Valverde ÁM, Yamamoto M, Levonen AL. Health position paper and redox perspectives - Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol 2025; 81:103569. [PMID: 40059038 PMCID: PMC11970334 DOI: 10.1016/j.redox.2025.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-activated transcription factor regulating cellular defense against oxidative stress, thereby playing a pivotal role in maintaining cellular homeostasis. Its dysregulation is implicated in the progression of a wide array of human diseases, making NRF2 a compelling target for therapeutic interventions. However, challenges persist in drug discovery and safe targeting of NRF2, as unresolved questions remain especially regarding its context-specific role in diseases and off-target effects. This comprehensive review discusses the dualistic role of NRF2 in disease pathophysiology, covering its protective and/or destructive roles in autoimmune, respiratory, cardiovascular, and metabolic diseases, as well as diseases of the digestive system and cancer. Additionally, we also review the development of drugs that either activate or inhibit NRF2, discuss main barriers in translating NRF2-based therapies from bench to bedside, and consider the ways to monitor NRF2 activation in vivo.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Eduardo Cazalla
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28007, Madrid, Spain
| | - Karen T Liby
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Manuela G López
- Department of Pharmacology, School of Medicine, Universidad Autónoma Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain; Instituto Teófilo Hernando, Madrid, Spain
| | - Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica A Moerland
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Graduate School of Medicine Tohoku University, Sendai, Japan; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Keiko Taguchi
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Luo Y, Yang Z, Zhang Y, Jiang S, Zhu J, Li X, You Q, Lu M. Patenting perspective on Keap1 inhibitors (2019-2024). Expert Opin Ther Pat 2025; 35:325-356. [PMID: 39909720 DOI: 10.1080/13543776.2025.2462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Kelch-like ECH-associated protein 1 (Keap1), an E3 ligase negatively regulating the nuclear factor erythroid 2-related factor 2 (Nrf2), has emerged as an auspicious drug target for treating ailments associated with oxidative stress and inflammation. Discovery of Keap1 inhibitors have attracted significant interest. AREAS COVERED This review covers patents on Keap1 inhibitors from 2019 to 2024, providing a comprehensive analysis of their structural characteristics, optimization strategies, pharmacological properties and clinical progress. EXPERT OPINION Extensive efforts have been devoted to enhance potency and drug-like properties of Keap1 inhibitors. Strategies such as ROS-cleavable prodrug design, bivalent inhibition and PROTACs are emerging. As the range of drug types and applications expands, Keap1 inhibitors are becoming a sagacious option for disease treating.
Collapse
Affiliation(s)
- Yongfu Luo
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Ziyu Yang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Yuan Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Shutong Jiang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Jingyu Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Xiangyang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Department of Research and development, Microcell Pharmaceutical (Suzhou) Co., Ltd, Suzhou, China
| | - Qidong You
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| |
Collapse
|
6
|
Davidovich P, Nikolaev D, Khadiullina R, Gurzhiy V, Bulatov E. Cyclic vinyl sulfones activate NRF2 to protect from oxidative stress-induced programmed necrosis. Bioorg Med Chem Lett 2025; 117:130058. [PMID: 39644937 DOI: 10.1016/j.bmcl.2024.130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The NRF2 transcriptional factor is a member of cellular stress response machinery and is activated in response to oxidative stress caused either by cellular homeostasis imbalance or by environmental challenges. NRF2 levels are stringently controlled by rapid and continuous proteasomal degradation. KEAP1 is a specific NRF2 binding protein that acts as a bridge between NRF2 and the E3 ligase Cullin-3. In this study, we examine model cyclic vinyl sulfone derivatives as potential NRF2 activating probes. Previously, we and other authors have found anti-inflammatory properties of these compounds in in vivo models; however, the mechanism of action remained unknown. Here, we show that the naphthohydroquinone derivative LCB1353 efficiently stabilizes NRF2 protein levels and upregulates its target genes. At low 5-10 µM concentrations LCB1353 protects non-small cell lung cancer H1299 cells from ferroptotic death induced by cytotoxic concentrations of RSL3, reducing cell death from 90 % to 5 %. Thus, we suggest that cyclic vinyl sulfones are promising scaffolds for the design of protective molecules for conditions associated with toxic and inflammatory levels of oxidative stress.
Collapse
Affiliation(s)
| | - Dmitriy Nikolaev
- Research Institute of Experimental Medicine, Saint-Petersburg, Russia
| | | | | | - Emil Bulatov
- Kazan Federal University, Kazan, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
7
|
Zhou Y, Wang H, Zhu X, Zhao Q, Deng G, Li Y, Chen Q. Improving anti-oxidant stress treatment of subarachnoid hemorrhage through self-assembled nanoparticles of oleanolic acid. Drug Deliv 2024; 31:2388735. [PMID: 39169653 PMCID: PMC11342817 DOI: 10.1080/10717544.2024.2388735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening acute hemorrhagic cerebrovascular disease, with early brain injury (EBI) being the main cause of high mortality and severe neurological dysfunction. Oxidative stress plays a crucial role in the pathogenesis of EBI. In this study, we synthesized antioxidant stress nanoparticles based on self-assembled oleanolic acid (OA) using the solvent volatilization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques were employed to analyze and understand the self-assembly mechanism of oleic acid nanoparticles (OA NPs). The TUNEL assay, Nissl staining, and brain water content measurements were conducted to investigate the impact of OA NPs on cortical neuronal injury. Additionally, Western blot analysis was performed to investigate the antioxidant stress mechanism of OA NPs. The result showed that OA NPs exhibited a spherical structure with an average diameter of 168 nm. The application of OA NPs in SAH has been found to contribute to the reduction of keap1 protein levels and an increase in the nuclear level of Nrf2. As a result, the transcription of antioxidant stress proteins, including HO1 and NQO1, is triggered. The activation of the antioxidant stress pathway by OA NPs ultimately leads to a decrease in neuron damage and an improvement in neurological dysfunction. In conclusion, we successfully designed and synthesized OA NPs that can efficiently target the site of SAH. These nanoparticles have demonstrated their potential as antioxidants for the treatment of SAH, offering significant clinical applications.
Collapse
Affiliation(s)
- Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
| | - Hengyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
8
|
Chi F, Cheng C, Zhang M, Su B, Hou Y, Bai G. Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118353. [PMID: 38762209 DOI: 10.1016/j.jep.2024.118353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Polygonum cuspidatum Sieb. et Zucc (PC), known as 'Huzhang' in the Chinese Pharmacopoeia, has been traditionally employed for its anti-inflammatory, antiviral, antimicrobial, and other biological activities. Polydatin (PD) and its aglycone, resveratrol (RES), are key pharmacologically active components responsible for exerting anti-inflammatory and antioxidant effects. However, its specific targets and action mechanisms remain unclear. AIM OF THE STUDY The equilibrium of the KEAP1-NRF2 system serves as the primary protective response to oxidative and electrophilic stresses within the body, particularly in cases of acute lung injury caused by pathogenic microbial infection. In this study, the precise mechanisms by which RES alleviates oxidative stress damage in conjunction with NRF2 activators are discussed. MATERIALS AND METHODS The active components from PC were screened to evaluate their potential to inhibit reactive oxygen species (ROS) and activate antioxidant activity dependent on antioxidant response elements (ARE). RES was evaluated for its potential to alleviate the oxidative stress caused by pathogenic microbial infection. Functional probes were designed to study the RES distribution and identify its targets. A lipopolysaccharide (LPS)-induced oxidative injury model was used to evaluate the effects of RES on the KEAP1-NRF2/ARE pathway in RAW 264.7 cells. The interaction between RES and NRF2 was elucidated using drug-affinity responsive target stability (DARTS), cellular thermal shift assays (CETSA), co-immunoprecipitation (Co-IP), and microscale thermophoresis (MST) techniques. The key binding sites were predicted using molecular docking and validated in NRF2-knockdownand reconstructed cells. Finally, protective effects against pulmonary stress were verified in a mouse model of pathogenic infection. RESULTS The accumulation of RES in lung macrophages disrupted the binding between KEAP1 and NRF2, thereby preventing the ubiquitination degradation of NRF2 through its interaction with Ile28 on the NRF2-DLG motif. The activation of NRF2 resulted in the upregulation of nuclear transcription, enhances the expression of antioxidant genes dependent on ARE, suppresses ROS generation, and ameliorates oxidative damage both in vivo and in vitro. CONCLUSION These findings shed light on the potential of RES to mitigate oxidative stress damage caused by pathogenic microorganism-induced lung infections and facilitate the discovery of novel small molecule modulators targeting the KEAP1-NRF2 DLG motif interaction.
Collapse
Affiliation(s)
- Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bo Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
9
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Otake K, Hara Y, Ubukata M, Inoue M, Nagahashi N, Motoda D, Ogawa N, Hantani Y, Hantani R, Adachi T, Nomura A, Yamaguchi K, Maekawa M, Mamada H, Motomura T, Sato M, Harada K. Optimization Efforts for Identification of Novel Highly Potent Keap1-Nrf2 Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3741-3763. [PMID: 38408347 DOI: 10.1021/acs.jmedchem.3c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In research focused on protein-protein interaction (PPI) inhibitors, the optimization process to achieve both high inhibitory activity and favorable physicochemical properties remains challenging. Our previous study reported the discovery of novel and bioavailable Keap1-Nrf2 PPI inhibitor 8 which exhibited moderate in vivo activity in rats. In this work, we present our subsequent efforts to optimize this compound. Two distinct approaches were employed, targeting high energy water molecules and Ser602 as "hot spots" from the anchor with good aqueous solubility, metabolic stability, and membrane permeability. Through ligand efficiency (LE)-guided exploration, we identified two novel inhibitors 22 and 33 with good pharmacokinetics (PK) profiles and more potent in vivo activities, which appear to be promising chemical probes among the existing inhibitors.
Collapse
Affiliation(s)
- Kazuki Otake
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshinori Hara
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Minoru Ubukata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masafumi Inoue
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Noboru Nagahashi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Dai Motoda
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoki Ogawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshiji Hantani
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Rie Hantani
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akihiro Nomura
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Keishi Yamaguchi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mariko Maekawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hideaki Mamada
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takahisa Motomura
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Motohide Sato
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kazuhito Harada
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
11
|
Barreca M, Qin Y, Cadot MEH, Barraja P, Bach A. Advances in developing noncovalent small molecules targeting Keap1. Drug Discov Today 2023; 28:103800. [PMID: 37852355 DOI: 10.1016/j.drudis.2023.103800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Kelch-like ECH-associated protein 1 (Keap1) is a drug target for diseases involving oxidative stress and inflammation. There are three covalent Keap1-binding drugs on the market, but noncovalent compounds that inhibit the interaction between Keap1 and nuclear factor erythroid 2-related factor 2 (Nrf2) represent an attractive alternative. Both compound types prevent degradation of Nrf2, leading to the expression of antioxidant and antiinflammatory proteins. However, their off-target profiles differ as do their exact pharmacodynamic effects. Here, we discuss the opportunities and challenges of targeting Keap1 with covalent versus noncovalent inhibitors. We then provide a comprehensive overview of current noncovalent Keap1-Nrf2 inhibitors, with a focus on their pharmacological effects, to examine the therapeutic potential for this compound class.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Marie Elodie Hélène Cadot
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|