1
|
Schettler F, Gattor AO, Koch P, Keller M. Characterization of [ 3H]Propionylated Human Peptide YY-A New Probe for Neuropeptide Y Y 2 Receptor Binding Studies. ACS Pharmacol Transl Sci 2025; 8:785-799. [PMID: 40109743 PMCID: PMC11915035 DOI: 10.1021/acsptsci.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
The neuropeptide Y (NPY) Y2 receptor (Y2R) is a G-protein-coupled receptor that is involved in the regulation of various physiological processes such as neurotransmitter release, bone metabolism, and memory. Consequently, the Y2R represents a potential drug target, e.g., for the treatment of epilepsy and mood disorders. Until now, the determination of the Y2R binding affinities of Y2R ligands has primarily been performed using 125I-labeled derivatives of the endogenous Y2R agonists NPY and peptide YY (PYY). A tritium-labeled NPY derivative has also been used; however, its suitability for binding assays in sodium-containing buffer is doubtful. We synthesized a tritium-labeled PYY derivative by [3H]propionylation at Lys4 ([3H]2). The radioligand was characterized by saturation binding, association, and dissociation kinetics and was applied in competition binding assays. Specific binding of [3H]2 at intact Chinese hamster ovary cells expressing the hY2R was saturable in both sodium-free buffer (apparent K d = 0.016-0.067 nM) and sodium-containing buffer (175 mM Na+, apparent K d = 0.16-0.18 nM). Competition binding experiments with Y2R reference ligands yielded K i values, which are in good agreement with the reported Y2R binding affinities, showing that [3H]2 represents a useful tritiated tool compound for the determination of Y2R binding affinities also in buffers containing sodium at physiological concentrations.
Collapse
Affiliation(s)
- Franziska Schettler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| |
Collapse
|
2
|
Gleixner J, Kopanchuk S, Grätz L, Tahk MJ, Laasfeld T, Veikšina S, Höring C, Gattor AO, Humphrys LJ, Müller C, Archipowa N, Köckenberger J, Heinrich MR, Kutta RJ, Rinken A, Keller M. Illuminating Neuropeptide Y Y 4 Receptor Binding: Fluorescent Cyclic Peptides with Subnanomolar Binding Affinity as Novel Molecular Tools. ACS Pharmacol Transl Sci 2024; 7:1142-1168. [PMID: 38633582 PMCID: PMC11019746 DOI: 10.1021/acsptsci.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The neuropeptide Y (NPY) Y4 receptor (Y4R), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The Y4R is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, Y4R binding affinities have been mostly studied in radiochemical binding assays. Except for a few fluorescently labeled PP derivatives, fluorescence-tagged Y4R ligands with high affinity have not been reported. Here, we introduce differently fluorescence-labeled (Sulfo-Cy5, Cy3B, Py-1, Py-5) Y4R ligands derived from recently reported cyclic hexapeptides showing picomolar Y4R binding affinity. With pKi values of 9.22-9.71 (radioligand competition binding assay), all fluorescent ligands (16-19) showed excellent Y4R affinity. Y4R saturation binding, binding kinetics, and competition binding with reference ligands were studied using different fluorescence-based methods: flow cytometry (Sulfo-Cy5, Cy3B, and Py-1 label), fluorescence anisotropy (Cy3B label), and NanoBRET (Cy3B label) binding assays. These experiments confirmed the high binding affinity to Y4R (equilibrium pKd: 9.02-9.9) and proved the applicability of the probes for fluorescence-based Y4R competition binding studies and imaging techniques such as single-receptor molecule tracking.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Lukas Grätz
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Carina Höring
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Christoph Müller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
3
|
Hagiwara H, Sonoda K. Impact of flexible hexyl chain ordering in a mononuclear spin crossover iron(III) complex. Dalton Trans 2024; 53:5851-5860. [PMID: 38477362 DOI: 10.1039/d4dt00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A novel FeIII complex [Fe(Hex-tnal)2]BPh4 (1) with a tridentate N2O ligand having an n-hexyl chain, Hex-Htnal (=1-((((1-hexyl-1H-1,2,3-triazol-4-yl)methyl)imino)methyl)naphthalen-2-ol), is reported. Temperature-dependent magnetic susceptibility measurements revealed that 1 exhibits a two-step spin crossover (SCO) transition in the 400-10 K temperature range, including an unusual gradual χMT change above RT (300-345 K) and a hysteretic χMT jump in a narrow temperature range of 345-357 K. These behaviors were also characterized by differential scanning calorimetry. Variable-temperature single-crystal X-ray diffraction studies revealed that the order-disorder transition and conformational change of the hexyl chains and the symmetry change associated with the re-entrant structural phase transition, namely triclinic P1̄ (100-275 K) ↔ monoclinic C2/c (296-340 K) ↔ triclinic P1̄ (360 K), are coupled to variations in intermolecular interactions and the N4O2 coordination environment, resulting in the occurrence of the unusual two-step SCO transition of 1. This study demonstrates that the flexible motion of alkyl substituents in the supramolecular lattice influences the occurrence of anomalous magnetic switching properties.
Collapse
Affiliation(s)
- Hiroaki Hagiwara
- Department of Chemistry, Faculty of Education, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Kento Sonoda
- Department of Chemistry, Faculty of Education, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
4
|
Gleixner J, Gattor AO, Humphrys LJ, Brunner T, Keller M. [ 3H]UR-JG102-A Radiolabeled Cyclic Peptide with High Affinity and Excellent Selectivity for the Neuropeptide Y Y 4 Receptor. J Med Chem 2023; 66:13788-13808. [PMID: 37773891 DOI: 10.1021/acs.jmedchem.3c01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The family of human neuropeptide Y receptors (YRs) comprises four subtypes (Y1R, Y2R, Y4R, and Y5R) that are involved in the regulation of numerous physiological processes. Until now, Y4R binding studies have been predominantly performed in hypotonic sodium-free buffers using 125I-labeled derivatives of the endogenous YR agonists pancreatic polypeptide or peptide YY. A few tritium-labeled Y4R ligands have been reported; however, when used in buffers containing sodium at a physiological concentration, their Y4R affinities are insufficient. Based on the cyclic hexapeptide UR-AK86C, we developed a new tritium-labeled Y4R radioligand ([3H]UR-JG102, [3H]20). In sodium-free buffer, [3H]20 exhibits a very low Y4R dissociation constant (Kd 0.012 nM). In sodium-containing buffer (137 mM Na+), the Y4R affinity is lower (Kd 0.11 nM) but still considerably higher compared to previously reported tritiated Y4R ligands. Therefore, [3H]20 represents a useful tool compound for the determination of Y4R binding affinities under physiological-like conditions.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Brunner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
5
|
Plut E, Calderón JC, Stanojlović V, Gattor AO, Höring C, Humphrys LJ, Konieczny A, Kerres S, Schubert M, Keller M, Cabrele C, Clark T, Reiser O. Stereochemistry-Driven Interactions of α,γ-Peptide Ligands with the Neuropeptide Y Y 4-Receptor. J Med Chem 2023. [PMID: 37440703 DOI: 10.1021/acs.jmedchem.3c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The G-protein-coupled Y4-receptor (Y4R) and its endogenous ligand, pancreatic polypeptide (PP), suppress appetite in response to food intake and, thus, are attractive drug targets for body-weight control. The C-terminus of human PP (hPP), T32-R33-P34-R35-Y36-NH2, penetrates deep into the binding pocket with its tyrosine-amide and di-arginine motif. Here, we present two C-terminally amidated α,γ-hexapeptides (1a/b) with sequence Ac-R31-γ-CBAA32-R33-L34-R35-Y36-NH2, where γ-CBAA is the (1R,2S,3R)-configured 2-(aminomethyl)-3-phenylcyclobutanecarboxyl moiety (1a) or its mirror image (1b). Both peptides bind the Y4R (Ki of 1a/b: 0.66/12 nM) and act as partial agonists (intrinsic activity of 1a/b: 50/39%). Their induced-fit binding poses in the Y4R pocket are unique and build ligand-receptor contacts distinct from those of the C-terminus of the endogenous ligand hPP. We conclude that energetically favorable interactions, although they do not match those of the native ligand hPP, still guarantee high binding affinity (with 1a rivaling hPP) but not the maximum receptor activation.
Collapse
Affiliation(s)
- Eva Plut
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Jacqueline C Calderón
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Vesna Stanojlović
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Sabine Kerres
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Grätz L, Müller C, Pegoli A, Schindler L, Bernhardt G, Littmann T. Insertion of Nanoluc into the Extracellular Loops as a Complementary Method To Establish BRET-Based Binding Assays for GPCRs. ACS Pharmacol Transl Sci 2022; 5:1142-1155. [PMID: 36407949 PMCID: PMC9667534 DOI: 10.1021/acsptsci.2c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/13/2022]
Abstract
Luminescence-based techniques play an increasingly important role in all areas of biochemical research, including investigations on G protein-coupled receptors (GPCRs). One quite recent and popular addition has been made by introducing bioluminescence resonance energy transfer (BRET)-based binding assays for GPCRs, which are based on the fusion of nanoluciferase (Nluc) to the N-terminus of the receptor and the occurring energy transfer via BRET to a bound fluorescent ligand. However, being based on BRET, the technique is strongly dependent on the distance/orientation between the luciferase and the fluorescent ligand. Here we describe an alternative strategy to establish BRET-based binding assays for GPCRs, where the N-terminal fusion of Nluc did not result in functioning test systems with our fluorescent ligands (e.g., for the neuropeptide Y Y1 receptor (Y1R) and the neurotensin receptor type 1 (NTS1R)). Instead, we introduced Nluc into their second extracellular loop and we obtained binding data for the fluorescent ligands and reported standard ligands (in saturation and competition binding experiments, respectively) comparable to data from the literature. The strategy was transferred to the angiotensin II receptor type 1 (AT1R) and the M1 muscarinic acetylcholine receptor (M1R), which led to affinity estimates comparable to data from radioligand binding experiments. Additionally, an analysis of the binding kinetics of all fluorescent ligands at their respective target was performed using the newly described receptor/Nluc-constructs.
Collapse
Affiliation(s)
| | - Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | - Lisa Schindler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | |
Collapse
|
7
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Konieczny A, Conrad M, Ertl FJ, Gleixner J, Gattor AO, Grätz L, Schmidt MF, Neu E, Horn AHC, Wifling D, Gmeiner P, Clark T, Sticht H, Keller M. N-Terminus to Arginine Side-Chain Cyclization of Linear Peptidic Neuropeptide Y Y 4 Receptor Ligands Results in Picomolar Binding Constants. J Med Chem 2021; 64:16746-16769. [PMID: 34748345 DOI: 10.1021/acs.jmedchem.1c01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The family of neuropeptide Y (NPY) receptors comprises four subtypes (Y1R, Y2R, Y4R, Y5R), which are addressed by at least three endogenous peptides, i.e., NPY, peptide YY, and pancreatic polypeptide (PP), the latter showing a preference for Y4R. A series of cyclic oligopeptidic Y4R ligands were prepared by applying a novel approach, i.e., N-terminus to arginine side-chain cyclization. Most peptides acted as Y4R partial agonists, showing up to 60-fold higher Y4R affinity compared to the linear precursor peptides. Two cyclic hexapeptides (18, 24) showed higher Y4R potency (Ca2+ aequorin assay) and, with pKi values >10, also higher Y4R affinity compared to human pancreatic polypeptide (hPP). Compounds such as 18 and 24, exhibiting considerably lower molecular weight and considerably more pronounced Y4R selectivity than PP and previously described dimeric peptidic ligands with high Y4R affinity, represent promising leads for the preparation of labeled tool compounds and might support the development of drug-like Y4R ligands.
Collapse
Affiliation(s)
- Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Marcus Conrad
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Lukas Grätz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Eduard Neu
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstraße 25, D-91052 Erlangen, Germany
| | - Anselm H C Horn
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.,Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstraße 25, D-91052 Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
9
|
Laasfeld T, Ehrminger R, Tahk MJ, Veiksina S, Kõlvart KR, Min M, Kopanchuk S, Rinken A. Budded baculoviruses as a receptor display system to quantify ligand binding with TIRF microscopy. NANOSCALE 2021; 13:2436-2447. [PMID: 33464268 DOI: 10.1039/d0nr06737g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studying mechanisms of receptor-ligand interactions has remained challenging due to several limitations of different measurement methods. Here we present a total internal reflection fluorescence microscopy-based method that maintains the right balance between retaining the receptors in the natural lipid environment, sufficient throughput for ligand screening, high sensitivity, and offering more detailed view into the ligand-binding process. The novel method combines G protein-coupled receptor display in budded baculovirus particles and the immobilization of the particles to a functionalized coverslip. We adapted and validated the functionalized coverslip preparation process to achieve selective immobilization of budded baculovirus particles. The selectivity of budded baculovirus immobilization was validated with budded baculovirus particles displaying either Frizzled 6 receptors labeled with mCherry or neuropeptide Y Y1 receptors. To scale the system for ligand binding assays, we developed both open-source multiwell systems and image analysis software SPOTNIC for flexible assay design. The neuropeptide Y Y1 receptor was used for further receptor-ligand binding studies with high-affinity TAMRA labeled fluorescent ligand UR-MC026. The affinities of the fluorescent ligand and four unlabeled ligands (BIBO3304, UR-MK299, PYY, pNPY) were obtained with the developed method and followed a similar trend with both the parallel measurements with fluorescence anisotropy method and the data published earlier. The novel method could be extended for various advanced assays utilizing multidimensional detection modes, integrating super-resolution methods for single molecule detection and microfluidic devices for kinetic measurements.
Collapse
Affiliation(s)
- Tõnis Laasfeld
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Robin Ehrminger
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia. and Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Maris-Johanna Tahk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Santa Veiksina
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Karl Rene Kõlvart
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Mart Min
- Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Sergei Kopanchuk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Ago Rinken
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| |
Collapse
|
10
|
Kaiser A, Wanka L, Ziffert I, Beck-Sickinger AG. Biased agonists at the human Y 1 receptor lead to prolonged membrane residency and extended receptor G protein interaction. Cell Mol Life Sci 2020; 77:4675-4691. [PMID: 31919571 PMCID: PMC11104783 DOI: 10.1007/s00018-019-03432-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Functionally selective ligands to address specific cellular responses downstream of G protein-coupled receptors (GPCR) open up new possibilities for therapeutics. We designed and characterized novel subtype- and pathway-selective ligands. Substitution of position Q34 of neuropeptide Y to glycine (G34-NPY) results in unprecedented selectivity over all other YR subtypes. Moreover, this ligand displays a significant bias towards activation of the Gi/o pathway over recruitment of arrestin-3. Notably, no bias is observed for an established Y1R versus Y2R selective ligand carrying a proline at position 34 (F7,P34-NPY). Next, we investigated the spatio-temporal signaling at the Y1R and demonstrated that G protein-biased ligands promote a prolonged localization at the cell membrane, which leads to enhanced G protein signaling, while endosomal receptors do not contribute to cAMP signaling. Thus, spatial components are critical for the signaling of the Y1R that can be modulated by tailored ligands and represent a novel mode for biased pathways.
Collapse
Affiliation(s)
- Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Isabelle Ziffert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
Konieczny A, Braun D, Wifling D, Bernhardt G, Keller M. Oligopeptides as Neuropeptide Y Y4 Receptor Ligands: Identification of a High-Affinity Tetrapeptide Agonist and a Hexapeptide Antagonist. J Med Chem 2020; 63:8198-8215. [DOI: 10.1021/acs.jmedchem.0c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Diana Braun
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
12
|
Liu C, Xia L, Fu K, Cao X, Yan W, Cheng J, Roux T, Peletier LA, Yin X, Guo D. Revisit ligand-receptor interaction at the human vasopressin V 2 receptor: A kinetic perspective. Eur J Pharmacol 2020; 880:173157. [PMID: 32360346 DOI: 10.1016/j.ejphar.2020.173157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
The vasopressin V2 receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target for water balance disorders such as polycystic kidney disease. Traditionally, the discovery of novel agents for the vasopressin V2 receptor has been guided by evaluating their receptor affinity, largely ignoring the binding kinetics. However, the latter is receiving increasing attention in the drug research community and has been proved to be a more complete descriptor of the dynamic process of ligand-receptor interaction. Herein we aim to revisit the molecular basis of ligand-vasopressin V2 receptor interaction from the less-investigated kinetic perspective. A homogenous time-resolved fluorescence resonance energy transfer (TR-FRET) assay was set up and optimized, which enabled accurate kinetic profiling of unlabeled vasopressin V2 receptor ligands. Receptor occupancy profiles of two representative antagonists with distinct target residence time were simulated. Their functional effects were further explored in cAMP assays. Our results showed that the antagonist with longer receptor residence time (lixivaptan) displayed sustained target occupancy than the antagonist with shorter receptor residence time (mozavaptan). In accordance, lixivaptan displayed insurmountable antagonism and wash-resistant inhibitory effect on the cellular cAMP level, while not so for mozavaptan. Together, our data provide evidence that binding kinetics, next to their affinity, offers additional information for the dynamic process of ligand-receptor interaction. Hopefully, this study may lead to more kinetics-directed medicinal chemistry efforts and aid the design and discovery of different-in-class of vasopressin V2 receptor ligands for clinical applications.
Collapse
Affiliation(s)
- Chunji Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Leyi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Thomas Roux
- Cisbio Bioassays, Parc Marcel Boiteux, BP 84175, 30200, Codolet, France
| | - Lambertus A Peletier
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300, RA, Leiden, the Netherlands
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Spinnler K, von Krüchten L, Konieczny A, Schindler L, Bernhardt G, Keller M. An Alkyne-functionalized Arginine for Solid-Phase Synthesis Enabling "Bioorthogonal" Peptide Conjugation. ACS Med Chem Lett 2020; 11:334-339. [PMID: 32184966 DOI: 10.1021/acsmedchemlett.9b00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Lately, amino-functionalized N ω-carbamoylated arginines were introduced as arginine surrogates enabling peptide labeling. However, this approach is hardly compatible with peptides also containing lysine or cysteine. Here, we present the synthesis of an alkyne-functionalized, N ω-carbamoylated arginine building block (7), which is compatible with Fmoc-strategy solid-phase peptide synthesis. The alkynylated arginine was incorporated into three biologically active linear hexapeptides and into a cyclic pentapeptide. Peptide conjugation to an azido-functionalized fluorescent dye via "click" chemistry was successfully demonstrated. In the case of a peptide also containing lysine besides the alkyne-functionalized arginine, this was feasible in a "bioorthogonal" manner.
Collapse
Affiliation(s)
- Katrin Spinnler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Lara von Krüchten
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Lisa Schindler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| |
Collapse
|
14
|
Buschmann J, Seiler T, Bernhardt G, Keller M, Wifling D. Argininamide-type neuropeptide Y Y 1 receptor antagonists: the nature of N ω-carbamoyl substituents determines Y 1R binding mode and affinity. RSC Med Chem 2020; 11:274-282. [PMID: 33479634 PMCID: PMC7536821 DOI: 10.1039/c9md00538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2023] Open
Abstract
The recently resolved crystal structure of the neuropeptide Y Y1 receptor (Y1R), co-crystallized with the high-affinity (pK i: 10.11), argininamide-type Y1R antagonist UR-MK299 (2), revealed that the N ω-carbamoyl substituent (van der Waals volume: 139 Å3) is deeply buried in the receptor, occupying a hydrophobic pocket. We synthesized and characterized a series of argininamides, structurally related to 2. Y1R affinity decreased with increasing size of the carbamoyl residue (minimal pK i: 5.67). Exceeding a critical size of the substituent (van der Waals volume: 212 Å3), the ligands bound in an inverted mode with the carbamoyl side chain located at the surface of the receptor, as suggested by induced-fit docking and MD simulations.
Collapse
Affiliation(s)
- Jonas Buschmann
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Theresa Seiler
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Günther Bernhardt
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - Max Keller
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| | - David Wifling
- Institute of Pharmacy , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstrasse 31 , D-93053 Regensburg , Germany .
| |
Collapse
|
15
|
Bresso E, Fernandez D, Amora DX, Noel P, Petitot AS, de Sa MEL, Albuquerque EVS, Danchin EGJ, Maigret B, Martins NF. A Chemosensory GPCR as a Potential Target to Control the Root-Knot Nematode Meloidogyne incognita Parasitism in Plants. Molecules 2019; 24:E3798. [PMID: 31652525 PMCID: PMC6832152 DOI: 10.3390/molecules24203798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/10/2023] Open
Abstract
Root-knot nematodes (RKN), from the Meloidogyne genus, have a worldwide distribution and cause severe economic damage to many life-sustaining crops. Because of their lack of specificity and danger to the environment, most chemical nematicides have been banned from use. Thus, there is a great need for new and safe compounds to control RKN. Such research involves identifying beforehand the nematode proteins essential to the invasion. Since G protein-coupled receptors GPCRs are the target of a large number of drugs, we have focused our research on the identification of putative nematode GPCRs such as those capable of controlling the movement of the parasite towards (or within) its host. A datamining procedure applied to the genome of Meloidogyne incognita allowed us to identify a GPCR, belonging to the neuropeptide GPCR family that can serve as a target to carry out a virtual screening campaign. We reconstructed a 3D model of this receptor by homology modeling and validated it through extensive molecular dynamics simulations. This model was used for large scale molecular dockings which produced a filtered limited set of putative antagonists for this GPCR. Preliminary experiments using these selected molecules allowed the identification of an active compound, namely C260-2124, from the ChemDiv provider, which can serve as a starting point for further investigations.
Collapse
Affiliation(s)
- Emmanuel Bresso
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
| | - Diana Fernandez
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
- IRD, CIRAD, Université de Montpellier, IPME, F-34398 Montpellier, France.
| | - Deisy X Amora
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
| | - Philippe Noel
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
| | | | | | | | - Etienne G J Danchin
- INRA, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, F-06903 Sophia-Antipolis, France.
| | - Bernard Maigret
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
| | - Natália F Martins
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
| |
Collapse
|
16
|
18F-labelled triazolyl-linked argininamides targeting the neuropeptide Y Y 1R for PET imaging of mammary carcinoma. Sci Rep 2019; 9:12990. [PMID: 31506520 PMCID: PMC6736837 DOI: 10.1038/s41598-019-49399-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y Y1 receptors (Y1R) have been found to be overexpressed in a number of different tumours, such as breast, ovarian or renal cell cancer. In mammary carcinoma the high Y1R density together with its high incidence of 85% in primary human breast cancers and 100% in breast cancer derived lymph node metastases attracted special attention. Therefore, the aim of this study was the development of radioligands for Y1R imaging by positron emission tomography (PET) with a special emphasis on imaging agents with reduced lipophilicity to provide a PET ligand with improved biodistribution in comparison with previously published tracers targeting the Y1R. Three new radioligands based on BIBP3226, bearing an 18F-fluoroethoxy linker (12), an 18F-PEG-linker (13) or an 18F-fluoroglycosyl moiety (11) were radiosynthesised in high radioactivity yields. The new radioligands displayed Y1R affinities of 2.8 nM (12), 29 nM (13) and 208 nM (11) and were characterised in vitro regarding binding to human breast cancer MCF-7-Y1 cells and slices of tumour xenografts. In vivo, small animal PET studies were conducted in nude mice bearing MCF-7-Y1 tumours. The binding to tumours, solid tumour slices and tumour cells correlated well with the Y1R affinities. Although 12 and 13 showed displaceable and specific binding to Y1R in vitro and in vivo, the radioligands still need to be optimised to achieve higher tumour-to-background ratios for Y1R imaging by PET. Yet the present study is another step towards an optimized PET radioligand for imaging of Y1R in vivo.
Collapse
|
17
|
Lachmann D, Konieczny A, Keller M, König B. Photochromic peptidic NPY Y4 receptor ligands. Org Biomol Chem 2019; 17:2467-2478. [DOI: 10.1039/c8ob03221a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoresponsive NPY Y4R ligands, containing an azobenzene, azopyrazole, diethienylethene or a fulgimide chromophore were prepared to explore structural requirements of Y4R agonists on Y4R binding.
Collapse
Affiliation(s)
- D. Lachmann
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Organic Chemistry
- 93053 Regensburg
- Germany
| | - A. Konieczny
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Pharmacy
- 93053 Regensburg
- Germany
| | - M. Keller
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Pharmacy
- 93053 Regensburg
- Germany
| | - B. König
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Organic Chemistry
- 93053 Regensburg
- Germany
| |
Collapse
|
18
|
Yang Z, Han S, Keller M, Kaiser A, Bender BJ, Bosse M, Burkert K, Kögler LM, Wifling D, Bernhardt G, Plank N, Littmann T, Schmidt P, Yi C, Li B, Ye S, Zhang R, Xu B, Larhammar D, Stevens RC, Huster D, Meiler J, Zhao Q, Beck-Sickinger AG, Buschauer A, Wu B. Structural basis of ligand binding modes at the neuropeptide Y Y 1 receptor. Nature 2018; 556:520-524. [PMID: 29670288 PMCID: PMC5920736 DOI: 10.1038/s41586-018-0046-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.
Collapse
Affiliation(s)
- Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Shuo Han
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Brian J. Bender
- Department of Pharmacology, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
| | - Mathias Bosse
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Kerstin Burkert
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Lisa M. Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - David Wifling
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Guenther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Nicole Plank
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Timo Littmann
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Peter Schmidt
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Cuiying Yi
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Sheng Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongguang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Xu
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Jens Meiler
- Department of Pharmacology, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
- Departments of Chemistry and Bioinformatics, Center for Structural Biology, Vanderbilt University, 465 21 Ave South, Nashville, TN 37203, USA
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D 04103 Leipzig, Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua Xia Zhong Road, Shanghai 201210, China
- CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Kuhn K, Littmann T, Dukorn S, Tanaka M, Keller M, Ozawa T, Bernhardt G, Buschauer A. In Search of NPY Y 4R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or d-Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists. ACS OMEGA 2017; 2:3616-3631. [PMID: 30023699 PMCID: PMC6044894 DOI: 10.1021/acsomega.7b00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The cross-linked pentapeptides (2R,7R)-diaminooctanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) ((2R,7R)-BVD-74D, (2R,7R)-1) and octanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) (2) as well as the pentapeptide Ac-Tyr-Arg-Leu-Arg-Tyr-amide (3) were previously described as neuropeptide Y Y4 receptor (Y4R) partial agonists. Here, we report on a series of analogues of (2R,7R)-1 and 2 in which Arg2, Leu3, or Arg4 were replaced by the respective aza-amino acids. The replacement of Arg2 in 3 with a carbamoylated arginine building block and the extension of the N-terminus by an additional arginine led to the high-affinity hexapeptide Ac-Arg-Tyr-Nω-[(4-aminobutyl)aminocarbonyl]Arg-Leu-Arg-Tyr-amide (35), which was used as a precursor for a d-amino acid scan. The target compounds were investigated for Y4R functional activity in assays with complementary readouts: aequorin Ca2+ and β-arrestin 1 or β-arrestin 2 assays. In contrast to the parent compounds, which are Y4R agonists, several ligands were able to suppress the effect elicited by the endogenous ligand pancreatic polypeptide and therefore represent a novel class of peptide Y4R antagonists.
Collapse
Affiliation(s)
- Kilian
K. Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Miho Tanaka
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Takeaki Ozawa
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| |
Collapse
|
20
|
Dukorn S, Littmann T, Keller M, Kuhn K, Cabrele C, Baumeister P, Bernhardt G, Buschauer A. Fluorescence- and Radiolabeling of [Lys4,Nle17,30]hPP Yields Molecular Tools for the NPY Y4 Receptor. Bioconjug Chem 2017; 28:1291-1304. [DOI: 10.1021/acs.bioconjchem.7b00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Kilian Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Division
of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Billrothstraße 11, 5020 Salzburg, Austria
| | - Paul Baumeister
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Keller M, Maschauer S, Brennauer A, Tripal P, Koglin N, Dittrich R, Bernhardt G, Kuwert T, Wester HJ, Buschauer A, Prante O. Prototypic 18F-Labeled Argininamide-Type Neuropeptide Y Y 1R Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS Med Chem Lett 2017; 8:304-309. [PMID: 28337321 DOI: 10.1021/acsmedchemlett.6b00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/24/2022] Open
Abstract
The neuropeptide Y (NPY) Y1 receptor (Y1R) selective radioligand (R)-Nα-(2,2-diphenylacetyl)-Nω-[4-(2-[18F]fluoropropanoylamino)butyl]aminocarbonyl-N-(4-hydroxybenzyl)argininamide ([18F]23), derived from the high-affinity Y1R antagonist BIBP3226, was developed for imaging studies of Y1R-positive tumors. Starting from the argininamide core bearing amine-functionalized spacer moieties, a series of fluoropropanoylated and fluorobenzoylated derivatives was synthesized and studied for Y1R affinity. The fluoropropanoylated derivative 23 displayed high affinity (Ki = 1.3 nM) and selectivity toward Y1R. Radiosynthesis was accomplished via 18F-fluoropropanoylation, yielding [18F]23 with excellent stability in mice; however, the biodistribution study revealed pronounced hepatobiliary clearance with high accumulation in the gall bladder (>100 %ID/g). Despite the unfavorable biodistribution, [18F]23 was successfully used for imaging of Y1R positive MCF-7 tumors in nude mice. Therefore, we suggest [18F]23 as a lead for the design of PET ligands with optimized physicochemical properties resulting in more favorable biodistribution and higher Y1R-dependent enrichment in mammary carcinoma.
Collapse
Affiliation(s)
- Max Keller
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Albert Brennauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Philipp Tripal
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Norman Koglin
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Ralf Dittrich
- Department
of Obstetrics and Gynecology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Universitätsstr. 21/23, D-91054 Erlangen, Germany
| | - Günther Bernhardt
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Torsten Kuwert
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Hans-Jürgen Wester
- Department
of Pharmaceutical Radiochemistry, Technical University Munich (TUM), Walther-Meißner-Str. 3, D-85748 Garching, Germany
| | - Armin Buschauer
- Department
of Pharmaceutical/Medicinal Chemistry II, Faculty of Chemistry and
Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
22
|
Kuhn KK, Ertl T, Dukorn S, Keller M, Bernhardt G, Reiser O, Buschauer A. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J Med Chem 2016; 59:6045-58. [DOI: 10.1021/acs.jmedchem.6b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kilian K. Kuhn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Stefanie Dukorn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Keller M, Kuhn KK, Einsiedel J, Hübner H, Biselli S, Mollereau C, Wifling D, Svobodová J, Bernhardt G, Cabrele C, Vanderheyden PML, Gmeiner P, Buschauer A. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. J Med Chem 2016; 59:1925-45. [PMID: 26824643 DOI: 10.1021/acs.jmedchem.5b01495] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Collapse
Affiliation(s)
- Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Kilian K Kuhn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale, CNRS/IPBS , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jaroslava Svobodová
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Patrick M L Vanderheyden
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|