1
|
Xiong G, Xiao Z. Computational approaches for the identification of novel metal-binding pharmacophores: advances and challenges. Drug Discov Today 2025; 30:104293. [PMID: 39805538 DOI: 10.1016/j.drudis.2025.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Metalloenzymes are important therapeutic targets for a variety of human diseases. Computational approaches have recently emerged as effective tools to understand metal-ligand interactions and expand the structural diversity of both metalloenzyme inhibitors (MIs) and metal-binding pharmacophores (MBPs). In this review, we highlight key advances in currently available fine-tuning modeling methods and data-driven cheminformatic approaches. We also discuss major challenges to the recognition of novel MBPs and MIs. The evidence provided herein could expedite future computational efforts to guide metalloenzyme-based drug discovery.
Collapse
Affiliation(s)
- Guoli Xiong
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
3
|
Khanfar MA, Saleh M. Design and Synthesis of 3-(Phenylsulfonamido)benzamide Derivatives as Potent Carbonic Anhydrase IX Inhibitors: Biological Evaluations and Molecular Modeling Studies. Med Chem 2025; 21:160-167. [PMID: 40007186 DOI: 10.2174/0115734064325144240823073504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Carbonic anhydrase IX (CAIX) is known to be overexpressed in various tumors and plays a significant role in tumor development and progression. METHODS A series of 3-(benzylsulfonamido)benzamides derivatives was synthesized and tested for their CAIX inhibitory activities. The two most active compounds were subjected to cytotoxicity testing against a panel of 60 cancer cell lines. RESULTS Many of the synthesized compounds successfully inhibited CAIX activities, exhibiting IC50 values in the low nanomolar range. The most potent CAIX inhibitor was compound 14, with an IC50 of 140 nM. Structure-activity relationship analysis of the synthesized compounds supported with molecular docking revealed strong coordination of sulfonamide moiety with the catalytic Zn2+ metal, hydrophobic interactions of the benzylsulfonamido ring with a hydrophobic pocket, and π- stacking interactions of the aryl ring with an aromatic surface. The two most active analogues (10 and 14) were further tested for their antiproliferative activities in the NCI-60 human tumor cell lines. Notably, compound 14 demonstrated potent growth inhibitory effects against several cancer cell lines. CONCLUSION The synthesized analogues represent a novel scaffold for the treatment of different types of cancer by targeting CAIX.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Mohammad Saleh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman 11942, Jordan
| |
Collapse
|
4
|
Szalai T, Bajusz D, Börzsei R, Zsidó BZ, Ilaš J, Ferenczy GG, Hetényi C, Keserű GM. Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments. J Chem Inf Model 2024; 64:8980-8998. [PMID: 39576659 PMCID: PMC11632780 DOI: 10.1021/acs.jcim.4c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/10/2024]
Abstract
Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein-ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks. However, quantitative experimental characterization of relevant protein-ligand-water systems, and consequently the validation of these modeling methods, remains challenging. Here, we investigated the impact of solvent exchange from light (H2O) to heavy water (D2O) to provide complete thermodynamic profiling of these ternary systems. Utilizing the solvent isotope effects, we gain a deeper understanding of the energetic contributions of various components. Specifically, we conducted isothermal titration calorimetry experiments on trypsin with a series of p-substituted benzamidines, as well as carbonic anhydrase II (CAII) with a series of aromatic sulfonamides. Significant differences in binding enthalpies found between light vs heavy water indicate a substantial role of the binding site water network in protein-ligand binding. Next, we challenged two conceptually distinct modeling methods, the grid-based WaterFLAP and the molecular dynamics-based MobyWat, by predicting and scoring relevant water networks. The predicted water positions accurately reproduce those in available high-resolution X-ray and neutron diffraction structures of the relevant protein-ligand complexes. Estimated energetic contributions of the identified water networks were corroborated by the experimental thermodynamics data. Besides providing a direct validation for the predictive power of these methods, our findings confirmed the importance of considering binding site water networks in computational ligand design.
Collapse
Affiliation(s)
- Tibor
Viktor Szalai
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Dávid Bajusz
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Rita Börzsei
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - Balázs Zoltán Zsidó
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - Janez Ilaš
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - György G. Ferenczy
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Csaba Hetényi
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
5
|
Huang X, Winter D, Glover DJ, Supuran CT, Donald WA. Effects of Phosphorylation on the Activity, Inhibition and Stability of Carbonic Anhydrases. Int J Mol Sci 2023; 24:ijms24119275. [PMID: 37298228 DOI: 10.3390/ijms24119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Carbonic anhydrases (CAs) are a metalloenzyme family that have important roles in cellular processes including pH homeostasis and have been implicated in multiple pathological conditions. Small molecule inhibitors have been developed to target carbonic anhydrases, but the effects of post-translational modifications (PTMs) on the activity and inhibition profiles of these enzymes remain unclear. Here, we investigate the effects of phosphorylation, the most prevalent carbonic anhydrase PTM, on the activities and drug-binding affinities of human CAI and CAII, two heavily modified active isozymes. Using serine to glutamic acid (S > E) mutations to mimic the effect of phosphorylation, we demonstrate that phosphomimics at a single site can significantly increase or decrease the catalytic efficiencies of CAs, depending on both the position of the modification and the CA isoform. We also show that the S > E mutation at Ser50 of hCAII decreases the binding affinities of hCAII with well-characterized sulphonamide inhibitors including by over 800-fold for acetazolamide. Our findings suggest that CA phosphorylation may serve as a regulatory mechanism for enzymatic activity, and affect the binding affinity and specificity of small, drug and drug-like molecules. This work should motivate future studies examining the PTM-modification forms of CAs and their distributions, which should provide insights into CA physiopathological functions and facilitate the development of 'modform-specific' carbonic anhydrase inhibitors.
Collapse
Affiliation(s)
- Xiaojing Huang
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel Winter
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Liu W, Jiang J, Lin Y, You Q, Wang L. Insight into Thermodynamic and Kinetic Profiles in Small-Molecule Optimization. J Med Chem 2022; 65:10809-10847. [PMID: 35969687 DOI: 10.1021/acs.jmedchem.2c00682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationships (SARs) and structure-property relationships (SPRs) have been considered the most important factors during the drug optimization process. For medicinal chemists, improvements in the potencies and druglike properties of small molecules are regarded as their major goals. Among them, the binding affinity and selectivity of small molecules on their targets are the most important indicators. In recent years, there has been growing interest in using thermodynamic and kinetic profiles to analyze ligand-receptor interactions, which could provide not only binding affinities but also detailed binding parameters for small-molecule optimization. In this perspective, we are trying to provide an insight into thermodynamic and kinetic profiles in small-molecule optimization. Through a highlight of strategies on the small-molecule optimization with specific cases, we aim to put forward the importance of structure-thermodynamic relationships (STRs) and structure-kinetic relationships (SKRs), which could provide more guidance to find safe and effective small-molecule drugs.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jingsheng Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yating Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Khatua S, Taraphder S. In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II. J Biomol Struct Dyn 2022; 41:3187-3204. [PMID: 35257634 DOI: 10.1080/07391102.2022.2048075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crystal structure of human carbonic anhydrase (HCA) II bound to an inhibitor molecule, 6-hydroxy-2-thioxocoumarin (FC5), shows FC5 to be located in a hydrophobic pocket at the active site. The present work employs classical molecular dynamics (MD) simulation to follow the FC5 molecule for 1 μs as it unbinds from its binding location, adopts the path of substrate/product diffusion (path 1) to leave the active site at around 75 ns. It is then found to undergo repeated binding and unbinding at different locations on the surface of the enzyme in water. Several transient excursions through different regions of the enzyme are also observed prior to its exit from the active site. These transient paths are combined with functionally relevant cavities/channels to enlist five additional pathways (path 2-6). Pathways 1-6 are subsequently explored using steered MD and umbrella sampling simulations. A free energy barrier of 0.969 kcal mol-1 is encountered along path 1, while barriers in the range of 0.57-2.84 kcal mol-1 are obtained along paths 2, 4 and 5. We also analyze in detail the interaction between FC5 and the enzyme along each path as the former leaves the active site of HCA II. Our results indicate path 1 to be the major exit pathway for FC5, although competing contributions may also come from the paths 2, 4 and 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Khatua
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
8
|
Berrino E, Michelet B, Martin‐Mingot A, Carta F, Supuran CT, Thibaudeau S. Modulating the Efficacy of Carbonic Anhydrase Inhibitors through Fluorine Substitution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emanuela Berrino
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Bastien Michelet
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| | - Agnès Martin‐Mingot
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| | - Fabrizio Carta
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Claudiu T. Supuran
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Sébastien Thibaudeau
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| |
Collapse
|
9
|
Patel D, Athar M, Jha PC. Exploring Ruthenium‐Based Organometallic Inhibitors against Plasmodium falciparum Calcium Dependent Kinase 2 (PfCDPK2): A Combined Ensemble Docking, QM/MM and Molecular Dynamics Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202101801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dhaval Patel
- Department of Biological Sciences and Biotechnology Institute of Advanced Research Gujarat 382426 India
| | - Mohd Athar
- School of Chemical Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
- Center for Chemical Biology and Therapeutics InStem Bangalore 560065 Karnataka India
| | - Prakash C. Jha
- School of Applied Material Sciences Central University of Gujarat Gandhinagar 382030 Gujarat India
| |
Collapse
|
10
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Swain B, Aashritha K, Singh P, Angeli A, Kothari A, Sigalapalli DK, Yaddanapudi VM, Supuran CT, Arifuddin M. Design and synthesis of benzenesulfonamide-linked imidazo[2,1-b][1,3,4]thiadiazole derivatives as carbonic anhydrase I and II inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100028. [PMID: 33760299 DOI: 10.1002/ardp.202100028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/28/2022]
Abstract
A novel series of imidazothiadiazole-linked benzenesulfonamide derivatives (5a-t) was synthesized and subjected for screening against the four physiologically and pharmacologically relevant human carbonic anhydrase (hCA) isoforms: hCA I, II, VA, and IX. The compounds selectively inhibited hCA I and II over hCA VA and IX. Furthermore, among the two cytosolic isoforms, hCA II was more effectively inhibited as compared with hCA I. The most active compounds were 5o with K i = 0.246 µM and 5p with K i = 0.376 µM against hCA II, whereas compound 5f showed good inhibition against both hCA I and II with K i = 0.493 and 0.4 µM, respectively. This class of underexplored sulfonamides may be used to design isoform-selective CA inhibitors targeting enzymes of medicinal chemistry interest.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Kamtam Aashritha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Abhay Kothari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Dilep K Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Venkata M Yaddanapudi
- Process Chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
12
|
Baranauskiene L, Škiudaitė L, Michailovienė V, Petrauskas V, Matulis D. Thiazide and other Cl-benzenesulfonamide-bearing clinical drug affinities for human carbonic anhydrases. PLoS One 2021; 16:e0253608. [PMID: 34166457 PMCID: PMC8224972 DOI: 10.1371/journal.pone.0253608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
Twelve carbonic anhydrase (CA) isoforms catalyze carbon dioxide hydration to bicarbonate and acid protons and are responsible for many biological functions in human body. Despite their vital functions, they are also responsible for, or implicated in, numerous ailments and diseases such as glaucoma, high altitude sickness, and cancer. Because CA isoforms are highly homologous, clinical drugs designed to inhibit enzymatic activity of a particular isoform, can also bind to others with similar affinity causing toxic side effects. In this study, the affinities of twelve CA isoforms have been determined for nineteen clinically used drugs used to treat hypertension related diseases, i.e. thiazides, indapamide, and metolazone. Their affinities were determined using a fluorescent thermal shift assay. Stopped flow assay and isothermal titration calorimetry were also employed on a subset of compounds and proteins to confirm inhibition of CA enzymatic activity and verify the quantitative agreement between different assays. The findings of this study showed that pharmaceuticals could bind to human CA isoforms with variable affinities and inhibit their catalytic activity, even though the drug was intended to interact with a different (non-CA) protein target. Relatively minor structural changes of the compounds may cause significant changes in affinity and selectivity for a particular CA isoform.
Collapse
Affiliation(s)
- Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Škiudaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Pharmacy Center, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
13
|
Santos IC, Brodbelt JS. Structural Characterization of Carbonic Anhydrase-Arylsulfonamide Complexes Using Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1370-1379. [PMID: 33683877 PMCID: PMC8377746 DOI: 10.1021/jasms.1c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous mass spectrometry-based strategies ranging from hydrogen-deuterium exchange to ion mobility to native mass spectrometry have been developed to advance biophysical and structural characterization of protein conformations and determination of protein-ligand interactions. In this study, we focus on the use of ultraviolet photodissociation (UVPD) to examine the structure of human carbonic anhydrase II (hCAII) and its interactions with arylsulfonamide inhibitors. Carbonic anhydrase, which catalyzes the conversion of carbon dioxide to bicarbonate, has been the target of countless thermodynamic and kinetic studies owing to its well-characterized active site, binding cavity, and mechanism of inhibition by hundreds of ligands. Here, we showcase the application of UVPD for evaluating structural changes of hCAII upon ligand binding on the basis of variations in fragmentation of hCAII versus hCAII-arylsulfonamide complexes, particularly focusing on the hydrophobic pocket. To extend the coverage in the midregion of the protein sequence, a supercharging agent was added to the solutions to increase the charge states of the complexes. The three arylsulfonamides examined in this study largely shift the fragmentation patterns in similar ways, despite their differences in binding affinities.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Berrino E, Michelet B, Martin-Mingot A, Carta F, Supuran CT, Thibaudeau S. Modulating the Efficacy of Carbonic Anhydrase Inhibitors through Fluorine Substitution. Angew Chem Int Ed Engl 2021; 60:23068-23082. [PMID: 34028153 DOI: 10.1002/anie.202103211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Indexed: 12/19/2022]
Abstract
The insertion of fluorine atoms and/or fluoroalkyl groups can lead to many beneficial effects in biologically active molecules, such as enhanced metabolic stability, bioavailability, lipophilicity, and membrane permeability, as well as a strengthening of protein-ligand binding interactions. However, this "magic effect" of fluorine atom(s) insertion can often be meaningless. Taking advantage of the wide range of data coming from the quest for carbonic anhydrase (CA) fluorinated inhibitors, this Minireview attempts to give "general guidelines" on how to wisely insert fluorine atom(s) within an inhibitor moiety to precisely enhance or disrupt ligand-protein interactions, depending on the target location of the fluorine substitution in the ligand. Multiple approaches such as ITC, kinetic and inhibition studies, X-ray crystallography, and NMR spectroscopy are useful in dissecting single binding contributions to the overall observed effect. The exploitation of innovative directions made in the field of protein and ligand-based fluorine NMR screening is also discussed to avoid misconduct and finely tune the exploitation of selective fluorine atom insertion in the future.
Collapse
Affiliation(s)
- Emanuela Berrino
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bastien Michelet
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 09, France
| | - Agnès Martin-Mingot
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 09, France
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sébastien Thibaudeau
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers Cedex 09, France
| |
Collapse
|
15
|
Mueller SL, Chrysanthopoulos PK, Halili MA, Hepburn C, Nebl T, Supuran CT, Nocentini A, Peat TS, Poulsen SA. The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors-A Spin-Off Discovery from Fragment Screening. Molecules 2021; 26:3010. [PMID: 34070212 PMCID: PMC8158703 DOI: 10.3390/molecules26103010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen-deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.
Collapse
Affiliation(s)
- Sarah L. Mueller
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Panagiotis K. Chrysanthopoulos
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd., Rydalmere, NSW 2116, Australia;
| | - Tom Nebl
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Thomas S. Peat
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
16
|
Ekanayake AI, Sobze L, Kelich P, Youk J, Bennett NJ, Mukherjee R, Bhardwaj A, Wuest F, Vukovic L, Derda R. Genetically Encoded Fragment-Based Discovery from Phage-Displayed Macrocyclic Libraries with Genetically Encoded Unnatural Pharmacophores. J Am Chem Soc 2021; 143:5497-5507. [PMID: 33784084 DOI: 10.1021/jacs.1c01186] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetically encoded macrocyclic peptide libraries with unnatural pharmacophores are valuable sources for the discovery of ligands for many targets of interest. Traditionally, generation of such libraries employs "early stage" incorporation of unnatural building blocks into the chemically or translationally produced macrocycles. Here, we describe a divergent late-stage approach to such libraries starting from readily available starting material: genetically encoded libraries of peptides. A diketone linchpin 1,5-dichloropentane-2,4-dione converts peptide libraries displayed on phage to 1,3-diketone bearing macrocyclic peptides (DKMP): shelf-stable precursors for Knorr pyrazole synthesis. Ligation of diverse hydrazine derivatives onto DKMP libraries displayed on phage that carries silent DNA-barcodes yields macrocyclic libraries in which the amino acid sequence and the pharmacophore are encoded by DNA. Selection of this library against carbonic anhydrase enriched macrocycles with benzenesulfonamide pharmacophore and nanomolar Kd. The methodology described in this manuscript can graft diverse pharmacophores into many existing genetically encoded phage libraries and significantly increase the value of such libraries in molecular discoveries.
Collapse
Affiliation(s)
- Arunika I Ekanayake
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Lena Sobze
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jihea Youk
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Nicholas J Bennett
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Raja Mukherjee
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Atul Bhardwaj
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
17
|
Uncertainty in protein-ligand binding constants: asymmetric confidence intervals versus standard errors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:661-670. [PMID: 33837826 DOI: 10.1007/s00249-021-01518-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/05/2021] [Accepted: 03/13/2021] [Indexed: 01/18/2023]
Abstract
Equilibrium binding constants (Kb) between chemical compounds and target proteins or between interacting proteins provide a quantitative understanding of biological interaction mechanisms. Reported uncertainties of measured experimental parameters are critical for decision-making in many scientific areas, e.g., in lead compound discovery processes and in comparing computational predictions with experimental results. Uncertainties in measured Kb values are commonly represented by a symmetric normal distribution, often quoted in terms of the experimental value plus-minus the standard deviation. However, in general, the distributions of measured Kb (and equivalent Kd) values and the corresponding free energy change ΔGb are all asymmetric to varying degree. Here, using a simulation approach, we illustrate the effect of asymmetric Kb distributions within the realm of isothermal titration calorimetry (ITC) experiments. Further we illustrate the known, but perhaps not widely appreciated, fact that when distributions of any of Kb, Kd and ΔGb are transformed into each other, their degree of asymmetry is changed. Consequently, we recommend that a more accurate way of expressing the uncertainties of Kb, Kd, and ΔGb values is to consistently report 95% confidence intervals, in line with other authors' suggestions. The ways to obtain such error ranges are discussed in detail and exemplified for a binding reaction obtained by ITC.
Collapse
|
18
|
De Simone G, Bua S, Supuran CT, Alterio V. Benzyl alcohol inhibits carbonic anhydrases by anchoring to the zinc coordinated water molecule. Biochem Biophys Res Commun 2021; 548:217-221. [PMID: 33647799 DOI: 10.1016/j.bbrc.2021.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Up to date alcohols have been scarcely investigated as carbonic anhydrase (CA) inhibitors. To get more insights into the CA inhibition properties of this class of molecules, in this paper, by means of inhibition assays and X-ray crystallographic studies we report a detailed characterization of the CA inhibition properties and the binding mode to human CA II of benzyl alcohol. Results show that, although possessing a very simple scaffold, this molecule acts as a micromolar CA II inhibitor, which anchors to the enzyme active site by means of an H-bond interaction with the zinc bound solvent molecule. Taken together our results clearly indicate primary alcohols as a class of CA inhibitors that deserve to be more investigated.
Collapse
Affiliation(s)
| | - Silvia Bua
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | | |
Collapse
|
19
|
Oebbeke M, Siefker C, Wagner B, Heine A, Klebe G. Fragment‐Bindung an die Kinase‐Scharnier‐Region: Wenn Ladungsverteilung und lokale p
K
a
‐Verschiebungen etablierte Bioisosterie‐Konzepte fehlleiten. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthias Oebbeke
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Christof Siefker
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Björn Wagner
- Roche Innovation Center Grenzacherstr. 124 4070 Basel Schweiz
| | - Andreas Heine
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Gerhard Klebe
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| |
Collapse
|
20
|
Oebbeke M, Siefker C, Wagner B, Heine A, Klebe G. Fragment Binding to Kinase Hinge: If Charge Distribution and Local pK a Shifts Mislead Popular Bioisosterism Concepts. Angew Chem Int Ed Engl 2021; 60:252-258. [PMID: 33021032 PMCID: PMC7821265 DOI: 10.1002/anie.202011295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/25/2022]
Abstract
Medicinal-chemistry optimization follows strategies replacing functional groups and attaching larger substituents at a promising lead scaffold. Well-established bioisosterism rules are considered, however, it is difficult to estimate whether the introduced modifications really match the required properties at a binding site. The electron density distribution and pKa values are modulated influencing protonation states and bioavailability. Considering the adjacent H-bond donor/acceptor pattern of the hinge binding motif in a kinase, we studied by crystallography a set of fragments to map the required interaction pattern. Unexpectedly, benzoic acid and benzamidine, decorated with the correct substituents, are totally bioisosteric just as carboxamide and phenolic OH. A mono-dentate pyridine nitrogen out-performs bi-dentate functionalities. The importance of correctly designing pKa values of attached functional groups by additional substituents at the parent scaffold is rendered prominent.
Collapse
Affiliation(s)
- Matthias Oebbeke
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Christof Siefker
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Björn Wagner
- Roche Innovation CenterGrenzacherstr. 1244070BaselSwitzerland
| | - Andreas Heine
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Gerhard Klebe
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| |
Collapse
|
21
|
Palermo G, Spinello A, Saha A, Magistrato A. Frontiers of metal-coordinating drug design. Expert Opin Drug Discov 2020; 16:497-511. [PMID: 33874825 DOI: 10.1080/17460441.2021.1851188] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The occurrence of metal ions in biomolecules is required to exert vital cellular functions. Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The use of both drug types exploiting metal-ligand interactions is well established to treat distinct pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challenging, part of medicinal chemistry.Area covered: Atomic-level simulations are increasingly employed to overcome the challenges met by traditional drug-discovery approaches and to complement wet-lab experiments in elucidating the mechanisms of drugs' action. Multiscale simulations, allow deciphering the mechanism of metal-binding inhibitors and metallo-containing-drugs, enabling a reliable description of metal-complexes in their biological environment. In this compendium, the authors review selected applications exploiting the metal-ligand interactions by focusing on understanding the mechanism and design of (i) inhibitors targeting iron and zinc-enzymes, and (ii) ruthenium and gold-based anticancer agents targeting the nucleosome and aquaporin protein, respectively.Expert opinion: The showcased applications exemplify the current role and the potential of atomic-level simulations and reveal how their synergic use with experiments can contribute to uncover fundamental mechanistic facets and exploit metal-ligand interactions in medicinal chemistry.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, United States
| | - Angelo Spinello
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, Riverside, United States
| | - Alessandra Magistrato
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
22
|
Effendi SSW, Tan SI, Ting WW, Ng IS. Genetic design of co-expressed Mesorhizobium loti carbonic anhydrase and chaperone GroELS to enhancing carbon dioxide sequestration. Int J Biol Macromol 2020; 167:326-334. [PMID: 33275972 DOI: 10.1016/j.ijbiomac.2020.11.189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
Mesorhizobium loti carbonic anhydrase (MlCA), an intrinsically high catalytic enzyme, has been employed for carbon dioxide capture and sequestration. However, recombinant expression of MlCA in Escherichia coli often forms inclusion bodies. Hence, protein partners such as fusion-tags and molecular chaperones are involved in regarding reduce the harshness of protein folding. TrxA-tag and GroELS have been chosen to co-express with MlCA in E. coli under an inducible T7 promoter or a constitutive J23100 promoter to compare productivity and activity. The results possessed that coupling protein partners effectively increased soluble MlCA up to 2.9-folds under T7 promoter, thus enhancing the CA activity by 120% and achieving a 5.2-folds turnover rate. Besides, it has also shifted the optimum temperature from 40 °C to 50 °C, promoted stability in the broad pH range (4.5 to 9.5) and the presence of various metal ions. Based on the in vitro assay and isothermal titration calorimetry (ITC) analysis, GroELS enhancing CA activity was due to change the intrinsic thermodynamic properties of the enzyme from endothermic to exothermic reaction (i.e., ∆H = 89.8 to -121.8 kJ/mol). Therefore, the collaboration of TrxA-MlCA with GroELS successfully augmented CO2 biomineralization.
Collapse
Affiliation(s)
- Sefli Sri Wahyu Effendi
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
23
|
Glöckner S, Klebe G. Simultaneous determination of thermodynamic and kinetic data by isothermal titration calorimetry. Biochim Biophys Acta Gen Subj 2020; 1865:129772. [PMID: 33191201 DOI: 10.1016/j.bbagen.2020.129772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thermodynamic and binding kinetic data increasingly support and guide the drug optimization process. METHODS Because ITC thermograms contain binding thermodynamic and kinetic information, an efficient protocol for the simultaneous extraction of thermodynamic and kinetic data for 1:1 protein ligand reactions from AFFINImeter kinITC in one single experiment are presented. RESULTS The effort to apply this protocol requires the same time as for the standard protocol but increases the precision of both thermodynamic and kinetic data. CONCLUSIONS The protocol enables reliable extraction of both thermodynamic and kinetic data for 1:1 protein-ligand binding reactions with improved precision compared to the 'standard protocol'. GENERAL SIGNIFICANCE Thermodynamic and kinetic data are recorded under exactly the same conditions in solution without any labeling or immobilization from a protein sample that is not 100% active and would otherwise render the extraction of kinetic parameters impossible.
Collapse
Affiliation(s)
- Steffen Glöckner
- Philipps-University Marburg, Institute for Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany.
| | - Gerhard Klebe
- Philipps-University Marburg, Institute for Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany.
| |
Collapse
|
24
|
Schuetz DA, Richter L, Martini R, Ecker GF. A structure-kinetic relationship study using matched molecular pair analysis. RSC Med Chem 2020; 11:1285-1294. [PMID: 34085042 PMCID: PMC8126976 DOI: 10.1039/d0md00178c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifetime of a binary drug–target complex is increasingly acknowledged as an important parameter for drug efficacy and safety. With a better understanding of binding kinetics and better knowledge about kinetic parameter optimization, intentionally induced prolongation of the drug–target residence time through structural changes of the ligand could become feasible. In this study we assembled datasets from 21 publications and the K4DD (Kinetic for Drug Discovery) database to conduct large scale data analysis. This resulted in 3812 small molecules annotated to 78 different targets from five protein classes (GPCRs: 273, kinases: 3238, other enzymes: 240, HSPs: 160, ion channels: 45). Performing matched molecular pair (MMP) analysis to further investigate the structure–kinetic relationship (SKR) in this data collection allowed us to identify a fundamental contribution of a ligand's polarity to its association rate, and in selected cases, also to its dissociation rate. However, we furthermore observed that the destabilization of the transition state introduced by increased polarity is often accompanied by simultaneous destabilization of the ground state resulting in an unaffected or even worsened residence time. Supported by a set of case studies, we provide concepts on how to alter ligands in ways to trigger on-rates, off-rates, or both. A large-scale study employing matched molecular pair (MMP) analysis to uncover the contribution of a compound's polarity to its association and dissociation rates.![]()
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Riccardo Martini
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
25
|
Kaur J, Cao X, Abutaleb NS, Elkashif A, Graboski AL, Krabill AD, AbdelKhalek AH, An W, Bhardwaj A, Seleem MN, Flaherty DP. Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant Enterococcus. J Med Chem 2020; 63:9540-9562. [PMID: 32787141 DOI: 10.1021/acs.jmedchem.0c00734] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vancomycin-resistant enterococci (VRE) are the second leading cause of hospital-acquired infections (HAIs) attributed to a drug-resistant bacterium in the United States, and resistance to the frontline treatments is well documented. To combat VRE, we have repurposed the FDA-approved carbonic anhydrase drug acetazolamide to design potent antienterococcal agents. Through structure-activity relationship optimization we have arrived at two leads possessing improved potency against clinical VRE strains from MIC = 2 μg/mL (acetazolamide) to MIC = 0.007 μg/mL (22) and 1 μg/mL (26). Physicochemical properties were modified to design leads that have either high oral bioavailability to treat systemic infections or low intestinal permeability to treat VRE infections in the gastrointestinal tract. Our data suggest the intracellular targets for the molecules are putative α-carbonic and γ-carbonic anhydrases, and homology modeling and molecular dynamics simulations were performed. Together, this study presents potential anti-VRE therapeutic options to provide alternatives for problematic VRE infections.
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Amanda L Graboski
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Ahmed Hassan AbdelKhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Weiwei An
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Atul Bhardwaj
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, Indiana 47907, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, 207 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, Indiana 47907, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, 207 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Glöckner S, Heine A, Klebe G. A Proof-of-Concept Fragment Screening of a Hit-Validated 96-Compounds Library against Human Carbonic Anhydrase II. Biomolecules 2020; 10:biom10040518. [PMID: 32235320 PMCID: PMC7226012 DOI: 10.3390/biom10040518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Fragment screening is a powerful tool to identify and characterize binding pockets in proteins. We herein present the results of a proof-of-concept screening campaign of a versatile 96-entry fragment library from our laboratory against the drug target and model protein human carbonic anhydrase II. The screening revealed a novel chemotype for carbonic anhydrase inhibition, as well as less common non-covalent interaction types and unexpected covalent linkages. Lastly, different runs of the PanDDA tool reveal a practical hint for its application.
Collapse
|
27
|
Glöckner S, Ngo K, Wagner B, Heine A, Klebe G. The Influence of Varying Fluorination Patterns on the Thermodynamics and Kinetics of Benzenesulfonamide Binding to Human Carbonic Anhydrase II. Biomolecules 2020; 10:E509. [PMID: 32230853 PMCID: PMC7226267 DOI: 10.3390/biom10040509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The fluorination of lead-like compounds is a common tool in medicinal chemistry to alter molecular properties in various ways and with different goals. We herein present a detailed study of the binding of fluorinated benzenesulfonamides to human Carbonic Anhydrase II by complementing macromolecular X-ray crystallographic observations with thermodynamic and kinetic data collected with the novel method of kinITC. Our findings comprise so far unknown alternative binding modes in the crystalline state for some of the investigated compounds as well as complex thermodynamic and kinetic structure-activity relationships. They suggest that fluorination of the benzenesulfonamide core is especially advantageous in one position with respect to the kinetic signatures of binding and that a higher degree of fluorination does not necessarily provide for a higher affinity or more favorable kinetic binding profiles. Lastly, we propose a relationship between the kinetics of binding and ligand acidity based on a small set of compounds with similar substitution patterns.
Collapse
Affiliation(s)
- Steffen Glöckner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany; (S.G.); (K.N.); (A.H.)
| | - Khang Ngo
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany; (S.G.); (K.N.); (A.H.)
| | - Björn Wagner
- F. Hoffmann-La Roche AG, Pharmaceutical Research & Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland;
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany; (S.G.); (K.N.); (A.H.)
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany; (S.G.); (K.N.); (A.H.)
| |
Collapse
|
28
|
Glöckner S, Ngo K, Sager CP, Hüfner-Wulsdorf T, Heine A, Klebe G. Conformational Changes in Alkyl Chains Determine the Thermodynamic and Kinetic Binding Profiles of Carbonic Anhydrase Inhibitors. ACS Chem Biol 2020; 15:675-685. [PMID: 32027480 DOI: 10.1021/acschembio.9b00895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermodynamics and kinetics of protein-ligand binding are both important aspects for the design of novel drug molecules. Presently, thermodynamic data are collected with isothermal titration calorimetry, while kinetic data are mostly derived from surface plasmon resonance. The new method of kinITC provides both thermodynamic and kinetic data from calorimetric titration measurements. The present study demonstrates the convenient collection of calorimetric data suitable for both thermodynamic and kinetic analysis for two series of congeneric ligands of human carbonic anhydrase II and correlates these findings with structural data obtained by macromolecular crystallography to shed light on the importance of shape complementarity for thermodynamics and kinetics governing a protein-ligand binding event. The study shows how minute chemical alterations change preferred ligand conformation and can be used to manipulate thermodynamic and kinetic signatures of binding. They give rise to the observation that analogous n-alkyl and n-alkyloxy derivatives of identical chain length swap their binding kinetic properties at unchanged binding affinity.
Collapse
Affiliation(s)
- Steffen Glöckner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Khang Ngo
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Christoph P Sager
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Tobias Hüfner-Wulsdorf
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
29
|
Palese LL. Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters. Biochim Biophys Acta Gen Subj 2020; 1864:129480. [DOI: 10.1016/j.bbagen.2019.129480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
30
|
Hüfner-Wulsdorf T, Klebe G. Role of Water Molecules in Protein–Ligand Dissociation and Selectivity Discrimination: Analysis of the Mechanisms and Kinetics of Biomolecular Solvation Using Molecular Dynamics. J Chem Inf Model 2020; 60:1818-1832. [DOI: 10.1021/acs.jcim.0c00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tobias Hüfner-Wulsdorf
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
31
|
Singh H, Vasa SK, Jangra H, Rovó P, Päslack C, Das CK, Zipse H, Schäfer LV, Linser R. Fast Microsecond Dynamics of the Protein–Water Network in the Active Site of Human Carbonic Anhydrase II Studied by Solid-State NMR Spectroscopy. J Am Chem Soc 2019; 141:19276-19288. [DOI: 10.1021/jacs.9b05311] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Himanshu Singh
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Suresh K. Vasa
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Harish Jangra
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Christopher Päslack
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chandan K. Das
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Hendrik Zipse
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Lars V. Schäfer
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Rasmus Linser
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
32
|
Li X, Jiao W, Zhang W, Xu Y, Cao J, Jiang W. Characterizing the Interactions of Dietary Condensed Tannins with Bile Salts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9543-9550. [PMID: 31379164 DOI: 10.1021/acs.jafc.9b03985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to reveal the mechanisms underlying the interaction between condensed tannins (CTs) and bile salts. The interaction mechanism was analyzed by transmission electron microscopy, exposure to various physicochemical conditions, electrophoresis, fluorescence spectroscopy, isothermal titration calorimetry, and molecular modeling. A new complex was formed from CTs and bile salts. The complex showed a negative enthalpy change and a positive entropy change, demonstrating that the main thermodynamic driving force was both entropy and enthalpy and indicating that binding occurred through hydrogen bonds and hydrophobic interactions. The analysis of the effects of CTs on the stability and digestion properties of bile salt emulsions indicated that CTs were able to inhibit lipid digestion to an extent. Our findings may provide evidence that foods rich in CTs offer health benefits by aggregating with bile salts and reducing the absorption of fat.
Collapse
Affiliation(s)
- Xiangxin Li
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Wenxiao Jiao
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Yan Xu
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| |
Collapse
|
33
|
Vasa SK, Singh H, Grohe K, Linser R. Charakterisierung eines großen Enzym‐Wirkstoff‐Komplexes mittels protonendetektierter Festkörper‐NMR ohne Deuterierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suresh K. Vasa
- Fakultät für Chemie und PharmazieLudwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Himanshu Singh
- Fakultät für Chemie und PharmazieLudwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| | - Kristof Grohe
- Fakultät für Chemie und PharmazieLudwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Rasmus Linser
- Fakultät für Chemie und PharmazieLudwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| |
Collapse
|
34
|
Vasa SK, Singh H, Grohe K, Linser R. Assessment of a Large Enzyme–Drug Complex by Proton‐Detected Solid‐State NMR Spectroscopy without Deuteration. Angew Chem Int Ed Engl 2019; 58:5758-5762. [DOI: 10.1002/anie.201811714] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/07/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Suresh K. Vasa
- Faculty for Chemistry and PharmacyLudwig-Maximilians-University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Himanshu Singh
- Faculty for Chemistry and PharmacyLudwig-Maximilians-University Munich Butenandtstr. 5–13 81377 Munich Germany
- Faculty of Chemistry and Chemical BiologyTechnical University Dortmund Otto-Hahn-Straße 4a 44227 Dortmund Germany
| | - Kristof Grohe
- Faculty for Chemistry and PharmacyLudwig-Maximilians-University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Rasmus Linser
- Faculty for Chemistry and PharmacyLudwig-Maximilians-University Munich Butenandtstr. 5–13 81377 Munich Germany
- Faculty of Chemistry and Chemical BiologyTechnical University Dortmund Otto-Hahn-Straße 4a 44227 Dortmund Germany
| |
Collapse
|
35
|
Su H, Xu Y. Application of ITC-Based Characterization of Thermodynamic and Kinetic Association of Ligands With Proteins in Drug Design. Front Pharmacol 2018; 9:1133. [PMID: 30364164 PMCID: PMC6193069 DOI: 10.3389/fphar.2018.01133] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
A comprehensive characterization of the thermodynamic and kinetic profiling of ligands binding to a given target protein is crucial for the hit selection as well as the hit-to-lead-to-drug evolution. Isothermal titration calorimetry (ITC), widely known as an invaluable tool to measure the thermodynamic data, has recently found its way to determine the binding kinetics too. The extensive application of ITC in measurement of both thermodynamic and kinetic data manifests unique roles of ITC in drug discovery and development. This mini-review concentrates on elaborating how to gain the thermodynamic and kinetic data using ITC, highlighting the importance of these data in lead discovery and optimization, and intends to provide an overview of the technical and conceptual advances that offer unprecedented access to protein–ligand recognition by ITC measurement.
Collapse
Affiliation(s)
- Haixia Su
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Zihlmann P, Silbermann M, Sharpe T, Jiang X, Mühlethaler T, Jakob RP, Rabbani S, Sager CP, Frei P, Pang L, Maier T, Ernst B. KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists. Chemistry 2018; 24:13049-13057. [PMID: 29939458 DOI: 10.1002/chem.201802599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/21/2018] [Indexed: 11/09/2022]
Abstract
Affinity data, such as dissociation constants (KD ) or inhibitory concentrations (IC50 ), are widely used in drug discovery. However, these parameters describe an equilibrium state, which is often not established in vivo due to pharmacokinetic effects and they are therefore not necessarily sufficient for evaluating drug efficacy. More accurate indicators for pharmacological activity are the kinetics of binding processes, as they shed light on the rate of formation of protein-ligand complexes and their half-life. Nonetheless, although highly desirable for medicinal chemistry programs, studies on structure-kinetic relationships (SKR) are still rare. With the recently introduced analytical tool kinITC this situation may change, since not only thermodynamic but also kinetic information of the binding process can be deduced from isothermal titration calorimetry (ITC) experiments. Using kinITC, ITC data of 29 mannosides binding to the bacterial adhesin FimH were re-analyzed to make their binding kinetics accessible. To validate these kinetic data, surface plasmon resonance (SPR) experiments were conducted. The kinetic analysis by kinITC revealed that the nanomolar affinities of the FimH antagonists arise from both (i) an optimized interaction between protein and ligand in the bound state (reduced off-rate constant koff ) and (ii) a stabilization of the transition state or a destabilization of the unbound state (increased on-rate constant kon ). Based on congeneric ligand modifications and structural input from co-crystal structures, a strong relationship between the formed hydrogen-bond network and koff could be concluded, whereas electrostatic interactions and conformational restrictions upon binding were found to have mainly an impact on kon .
Collapse
Affiliation(s)
- Pascal Zihlmann
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Marleen Silbermann
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Facility, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman P Jakob
- Focal Area Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Said Rabbani
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Christoph P Sager
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Priska Frei
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lijuan Pang
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Timm Maier
- Focal Area Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
37
|
De Benedetti PG, Fanelli F. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery. Drug Discov Today 2018; 23:1396-1406. [PMID: 29574212 DOI: 10.1016/j.drudis.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 11/22/2022]
Abstract
Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling.
Collapse
Affiliation(s)
- Pier G De Benedetti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| |
Collapse
|
38
|
|
39
|
Perricone U, Gulotta MR, Lombino J, Parrino B, Cascioferro S, Diana P, Cirrincione G, Padova A. An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. MEDCHEMCOMM 2018; 9:920-936. [PMID: 30108981 PMCID: PMC6072422 DOI: 10.1039/c8md00166a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) has become increasingly popular due to the development of hardware and software solutions and the improvement in algorithms, which allowed researchers to scale up calculations in order to speed them up. MD simulations are usually used to address protein folding issues or protein-ligand complex stability through energy profile analysis over time. In recent years, the development of new tools able to deeply explore a potential energy surface (PES) has allowed researchers to focus on the dynamic nature of the binding recognition process and binding-induced protein conformational changes. Moreover, modern approaches have been demonstrated to be effective and reliable in calculating some kinetic and thermodynamic parameters behind the host-guest recognition process. Starting from all of these considerations, several efforts have been made in order to integrate MD within the virtual screening process in drug discovery. Knowledge retrieved from MD can, in fact, be exploited as a starting point to build pharmacophores or docking constraints in the early stage of the screening campaign as well as to define key features, in order to unravel hidden binding modes and help the optimisation of the molecular structure of a lead compound. Based on these outcomes, researchers are nowadays using MD as an invaluable tool to discover and target previously considered undruggable binding sites, including protein-protein interactions and allosteric sites on a protein surface. As a matter of fact, the use of MD has been recognised as vital to the discovery of selective protein-protein interaction modulators. The use of a dynamic overview on how the host-guest recognition occurs and of the relative conformational modifications induced allows researchers to optimise small molecules and small peptides capable of tightly interacting within the cleft between two proteins. In this review, we aim to present the most recent applications of MD as an integrated tool to be used in the rational design of small molecules or small peptides able to modulate undruggable targets, such as allosteric sites and protein-protein interactions.
Collapse
Affiliation(s)
- Ugo Perricone
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
| | - Maria Rita Gulotta
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Jessica Lombino
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Alessandro Padova
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
| |
Collapse
|
40
|
Novel fluorinated carbonic anhydrase IX inhibitors reduce hypoxia-induced acidification and clonogenic survival of cancer cells. Oncotarget 2018; 9:26800-26816. [PMID: 29928486 PMCID: PMC6003569 DOI: 10.18632/oncotarget.25508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Human carbonic anhydrase (CA) IX has emerged as a promising anticancer target and a diagnostic biomarker for solid hypoxic tumors. Novel fluorinated CA IX inhibitors exhibited up to 50 pM affinity towards the recombinant human CA IX, selectivity over other CAs, and direct binding to Zn(II) in the active site of CA IX inducing novel conformational changes as determined by X-ray crystallography. Mass spectrometric gas-analysis confirmed the CA IX-based mechanism of the inhibitors in a CRISPR/Cas9-mediated CA IX knockout in HeLa cells. Hypoxia-induced extracellular acidification was significantly reduced in HeLa, H460, MDA-MB-231, and A549 cells exposed to the compounds, with the IC50 values up to 1.29 nM. A decreased clonogenic survival was observed when hypoxic H460 3D spheroids were incubated with our lead compound. These novel compounds are therefore promising agents for CA IX-specific therapy.
Collapse
|
41
|
Schuetz DA, Richter L, Amaral M, Grandits M, Grädler U, Musil D, Buchstaller HP, Eggenweiler HM, Frech M, Ecker GF. Ligand Desolvation Steers On-Rate and Impacts Drug Residence Time of Heat Shock Protein 90 (Hsp90) Inhibitors. J Med Chem 2018; 61:4397-4411. [DOI: 10.1021/acs.jmedchem.8b00080] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Doris A. Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Melanie Grandits
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Ulrich Grädler
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Djordje Musil
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | | | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
42
|
Vasa SK, Singh H, Rovó P, Linser R. Dynamics and Interactions of a 29 kDa Human Enzyme Studied by Solid-State NMR. J Phys Chem Lett 2018; 9:1307-1311. [PMID: 29481091 DOI: 10.1021/acs.jpclett.8b00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solid-state NMR has been employed for characterization of a broad range of biomacromolecules and supramolecular assemblies. However, because of limitations in sensitivity and resolution, the size of the individual monomeric units has rarely exceeded 15 kDa. As such, enzymes, which are often more complex and comprise long peptide chains, have not been easily accessible, even though manifold desirable information could potentially be provided by solid-state NMR studies. Here, we demonstrate that more than 1200 backbone and side-chain chemical shifts can be reliably assessed from minimal sample quantities for a 29 kDa human enzyme of the carbonic anhydrase family, giving access to its backbone dynamics and intermolecular interactions with a small-molecule inhibitor. The possibility of comprehensive assessment of enzymes in this molecular-weight regime without molecular-tumbling-derived limitations enables the study of residue-specific properties important for their mode of action as well as for pharmacological interference in this and many other enzymes.
Collapse
Affiliation(s)
- Suresh K Vasa
- Department Chemistry and Pharmacy , Ludwig-Maximilians-University Munich , Butenandtstr. 5-13 , 81377 Munich , Germany
- Center for Integrated Protein Science (CiPSM), Munich , Germany
| | - Himanshu Singh
- Department Chemistry and Pharmacy , Ludwig-Maximilians-University Munich , Butenandtstr. 5-13 , 81377 Munich , Germany
- Center for Integrated Protein Science (CiPSM), Munich , Germany
| | - Petra Rovó
- Department Chemistry and Pharmacy , Ludwig-Maximilians-University Munich , Butenandtstr. 5-13 , 81377 Munich , Germany
- Center for Integrated Protein Science (CiPSM), Munich , Germany
| | - Rasmus Linser
- Department Chemistry and Pharmacy , Ludwig-Maximilians-University Munich , Butenandtstr. 5-13 , 81377 Munich , Germany
- Center for Integrated Protein Science (CiPSM), Munich , Germany
| |
Collapse
|
43
|
Linkuvienė V, Talibov VO, Danielson UH, Matulis D. Introduction of Intrinsic Kinetics of Protein–Ligand Interactions and Their Implications for Drug Design. J Med Chem 2018; 61:2292-2302. [DOI: 10.1021/acs.jmedchem.7b01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vaida Linkuvienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| | - Vladimir O. Talibov
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, SE-751 23, Sweden
| | - U. Helena Danielson
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, SE-751 23, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
44
|
Kovalevsky A, Aggarwal M, Velazquez H, Cuneo MJ, Blakeley MP, Weiss KL, Smith JC, Fisher SZ, McKenna R. "To Be or Not to Be" Protonated: Atomic Details of Human Carbonic Anhydrase-Clinical Drug Complexes by Neutron Crystallography and Simulation. Structure 2018; 26:383-390.e3. [PMID: 29429876 DOI: 10.1016/j.str.2018.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Human carbonic anhydrases (hCAs) play various roles in cells, and have been drug targets for decades. Sequence similarities of hCA isoforms necessitate designing specific inhibitors, which requires detailed structural information for hCA-inhibitor complexes. We present room temperature neutron structures of hCA II in complex with three clinical drugs that provide in-depth analysis of drug binding, including protonation states of the inhibitors, hydration water structure, and direct visualization of hydrogen-bonding networks in the enzyme's active site. All sulfonamide inhibitors studied bind to the Zn metal center in the deprotonated, anionic, form. Other chemical groups of the drugs can remain neutral or be protonated when bound to hCA II. MD simulations have shown that flexible functional groups of the inhibitors may alter their conformations at room temperature and occupy different sub-sites. This study offers insights into the design of specific drugs to target cancer-related hCA isoform IX.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Mayank Aggarwal
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hector Velazquez
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biochemistry and Cellular Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Matthew J Cuneo
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Kevin L Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy C Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biochemistry and Cellular Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - S Zoë Fisher
- Scientific Activities Division, Science Directorate, European Spallation Source ERIC, 22100 Lund, Sweden; Department of Biology, Lund University, 35 Sölvegatan, 22362 Lund, Sweden
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
45
|
Murray AB, Lomelino CL, Supuran CT, McKenna R. "Seriously Sweet": Acesulfame K Exhibits Selective Inhibition Using Alternative Binding Modes in Carbonic Anhydrase Isoforms. J Med Chem 2018; 61:1176-1181. [PMID: 29266943 DOI: 10.1021/acs.jmedchem.7b01470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human carbonic anhydrase IX (CA IX) is upregulated in neoplastic tissues; as such, it is studied as a drug target for anticancer chemotherapy. Inhibition of CA IX has been shown to be therapeutically favorable in terms of reducing tumor growth. Previously, saccharin, a commonly used artificial sweetener, has been observed to selectively inhibit CA IX over other CA isoforms. In this study, X-ray crystallography showed acesulfame potassium (Ace K) binding directly to the catalytic zinc in CA IX (mimic) and through a bridging water in CA II. This modulation in binding is reflected in the binding constants, with Ace K inhibiting CA IX but not other CA isoforms. Hence, this study establishes the potential of Ace K (an FDA approved food additive) as a lead compound in the design and development of CA IX specific inhibitors.
Collapse
Affiliation(s)
- Akilah B Murray
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| | - Claudiu T Supuran
- Sezione di Farmaceutica e Nutraceutica, NEUROFARBA, University of Florence , Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
46
|
Ma H, Li A, Gao K. Network of Conformational Transitions Revealed by Molecular Dynamics Simulations of the Carbonic Anhydrase II Apo-Enzyme. ACS OMEGA 2017; 2:8414-8420. [PMID: 30023582 PMCID: PMC6045336 DOI: 10.1021/acsomega.7b01414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/15/2017] [Indexed: 05/30/2023]
Abstract
Human carbonic anhydrase II (HCA II) is an enzyme that catalyzes the reversible hydration of CO2 into bicarbonate (HCO3-) and a proton (H+) as well as other reactions at an extremely high rate. This enzyme plays fundamental roles in human physiology/pathology, such as controlling the pH level in cells and so on. However, the binding mechanism between apo-HCA II and CO2 or other ligands as well as related conformational changes remains poorly understood, and atomic investigation into it could promote our understanding of related internal physiological/pathological mechanisms. In this study, long-time atomic molecular dynamics simulations as well as the clustering and free-energy analysis were performed to reveal the dynamics of apo-HCA II as well as the mechanism upon ligand binding. Our simulations indicate that the crystallographic B-factors considerably underestimate the loop dynamics: multiple conformations can be adopted by loops 1 and 2, especially for loop 1 because loop 1 is one side of the binding pocket, and its left-to-right movement can compress or extend the binding pocket, leading to one inactive (closed) state, three intermediate (semiopen) states, and one active (open) state; CO2 cannot get into the binding pocket of the inactive state but can get into those of intermediate and active states. The coexistence of multiple conformational states proposes a possible conformational selection model for the binding mechanism between apo-HCA II and CO2 or other ligands, revising our previous view of its functional mechanism of conformational change upon ligand binding and offering valuable structural insights into the workings of HCA II.
Collapse
Affiliation(s)
- Huishu Ma
- Institute of Biophysics and Department
of Physics, Central China Normal University, Wuhan 430079, P. R. China
| | - Anbang Li
- Institute of Biophysics and Department
of Physics, Central China Normal University, Wuhan 430079, P. R. China
| | - Kaifu Gao
- Institute of Biophysics and Department
of Physics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
47
|
Appel EA, Biedermann F, Hoogland D, Del Barrio J, Driscoll MD, Hay S, Wales DJ, Scherman OA. Decoupled Associative and Dissociative Processes in Strong yet Highly Dynamic Host-Guest Complexes. J Am Chem Soc 2017; 139:12985-12993. [PMID: 28661667 DOI: 10.1021/jacs.7b04821] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Kinetics and thermodynamics in supramolecular systems are intimately linked, yet both are independently important for application in sensing assays and stimuli-responsive switching/self-healing of materials. Host-guest interactions are of particular interest in many water-based materials, sensing, and drug delivery applications. Herein we investigate the binding dynamics of a variety of electron-rich aromatic moieties forming hetero-ternary complexes with the macrocycle cucurbit[8]uril (CB[8]) and an auxiliary guest, dimethyl viologen, with high selectivity and equilibrium binding constants (Keq up to 1014 M-2). Using stopped-flow spectrofluorimetry, association rate constants were observed to approach the diffusion limit and were found to be insensitive to the structure of the guest. Conversely, the dissociation rate constants of the ternary complexes varied dramatically with the guest structure and were correlated with the thermodynamic binding selectivity. Hence differing molecular features were found to contribute to the associative and dissociative processes, mimicking naturally occurring reactions and giving rise to a decoupling of these kinetic parameters. Moreover, we demonstrate the ability to exploit these phenomena and selectively perturb the associative process with external stimuli (e.g., viscosity and pressure). Significantly, these complexes exhibit increased binding equilibria with increasing pressure, with important implications for the application of the CB[8] ternary complex for the formation of hydrogels, as these gels exhibit unprecedented pressure-insensitive rheological properties. A high degree of flexibility therefore exists in the design of host-guest systems with tunable kinetic and thermodynamic parameters for tailor-made applications across a broad range of fields.
Collapse
Affiliation(s)
- Eric A Appel
- Department of Materials Science and Engineering, Stanford University , Stanford California 94305, United States.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Dominique Hoogland
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jesús Del Barrio
- Schlumberger Gould Research Center, High Cross , Madingley Road, Cambridge CB3 0EL, U.K
| | - Max D Driscoll
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester , 131 Princess Street, Manchester M1 7DN, U.K
| | - David J Wales
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | - Oren A Scherman
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
48
|
Sun H, Li Y, Shen M, Li D, Kang Y, Hou T. Characterizing Drug-Target Residence Time with Metadynamics: How To Achieve Dissociation Rate Efficiently without Losing Accuracy against Time-Consuming Approaches. J Chem Inf Model 2017; 57:1895-1906. [PMID: 28749138 DOI: 10.1021/acs.jcim.7b00075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug-target residence time plays a vital role in drug efficacy. However, there is still no effective strategy to predict drug residence time. Here, we propose to use the optimized (or minimized) structures derived from holo-state proteins to calculate drug residence time, which could give a comparable or even better prediction accuracy compared with those calculated utilizing a large number of molecular dynamics (MD) structures based on the Poisson process. Besides, in addition to the Poisson process, one may use fewer samples for predicting residence time due to the reason that, in a large extent, the calculated drug residence time is stable and independent of the number of samples used for the prediction. With remarkably reduced computational load, the proposed strategy may be promising for large-scale drug residence time prediction, such as post-processing in virtual screening (VS) and lead compound optimization.
Collapse
Affiliation(s)
- Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China.,State Key Lab of CAD&CG, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou, Jiangsu 215123, P. R. China
| | - Mingyun Shen
- Yangtze River Pharmaceutical Group , Taizhou, Jiangsu 225300, P. R. China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China.,State Key Lab of CAD&CG, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
49
|
Piazzetta P, Marino T, Russo N. Mechanistic Explanation of the Weak Carbonic Anhydrase's Esterase Activity. Molecules 2017; 22:E1009. [PMID: 28629166 PMCID: PMC6152773 DOI: 10.3390/molecules22061009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
Abstract
In order to elucidate the elementary mechanism of the promiscuous esterase activity of human carbonic anhydrase (h-CA), we present an accurate theoretical investigation on the hydrolysis of fully-acetylated d-glucose functionalized as sulfamate. This h-CA's inhibitor is of potential relevance in cancer therapy. The study has been performed within the framework of three-layer ONIOM (QM-high:QM'-medium:MM-low) hybrid approach. The computations revealed that the hydrolysis process is not energetically favored, in agreement with the observed weak carbonic anhydrase's esterase activity.
Collapse
Affiliation(s)
- Paolo Piazzetta
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
50
|
Li D, Chen L, Wang R, Liu R, Ge G. Synergetic Determination of Thermodynamic and Kinetic Signatures Using Isothermal Titration Calorimetry: A Full-Curve-Fitting Approach. Anal Chem 2017; 89:7130-7138. [DOI: 10.1021/acs.analchem.7b01091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dexing Li
- CAS Key Laboratory
of Standardization
and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Lan Chen
- CAS Key Laboratory
of Standardization
and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ruimin Wang
- CAS Key Laboratory
of Standardization
and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Renxiao Liu
- CAS Key Laboratory
of Standardization
and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Guanglu Ge
- CAS Key Laboratory
of Standardization
and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| |
Collapse
|