1
|
Yamamoto Y, Yoshimura K, Yasui T. Synthesis of Spirocyclic Phthalans via Ru-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Ex-Situ Generated Acetylene. J Org Chem 2025; 90:5695-5703. [PMID: 40234188 DOI: 10.1021/acs.joc.5c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Spirocyclic motifs are attracting increasing attention owing to their three-dimensional geometries that endow bioactive molecules with superior physical and biological properties. We developed an efficient method for constructing spirocyclic phthalans via the Ru-catalyzed [2 + 2 + 2] cycloaddition of cycloalkanone-derived 1,6-diynes with acetylene gas ex-situ-generated from calcium carbide and H2O.
Collapse
Affiliation(s)
- Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kenichi Yoshimura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
2
|
Hadadianpour E, Abbasi M, Pouramiri B. Design, Synthesis, and Biological Evaluation of New Substituted 5-Aryl-Oxadiazole-based Derivatives as Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Chem Biodivers 2025:e202500775. [PMID: 40192155 DOI: 10.1002/cbdv.202500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
A series of novel 5-aryl-1,3,4-oxadiazole derivatives 4a-p has been designed and synthesized as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The chemical structures of all newly synthesized compounds were fully characterized using spectroscopic methods and elemental analyses. The in vitro studies showed that among the synthesized compounds, compound 4h was proved to have potent inhibitory activity against butyrylcholinesterase (39.63 µM). Additionally, to get more insights into the interaction of AChE and BuChE with synthesized compounds, molecular docking, and molecular mechanics-generalized Born surface area studies were carried out. The stability of the best-obtained compound (4h) was investigated using molecular dynamic simulation.
Collapse
Affiliation(s)
- Elahe Hadadianpour
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Maryam Abbasi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical, Sciences, Bandar Abbas, Iran
| | - Behjat Pouramiri
- Department of Chemistry, Qom University of Technology, Qom, Iran
| |
Collapse
|
3
|
Mondal S, Debnath S, Lo R, Maity S. Photoredox Activation of Donor-Acceptor Cyclopropanes: Distonic Radical Cation Reactivity in [3+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2025; 64:e202419426. [PMID: 39658810 DOI: 10.1002/anie.202419426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Altering the reactivity model of a molecule can potentially eliminate limitations existing in its current paradigm. When it comes to the activation of Donor-Acceptor Cyclopropanes (DACs), Lewis acids have been the state-of-the-art. Although a variety of polarized 2π components have been successfully coupled with DACs for [3+2] cycloaddition, unpolarized alkenes prove to be a roadblock due to an inherent polarity mismatch with the Lewis acid-mediated 1,3-zwitterionic intermediate. Hereby, harnessing the distonic radical cation mode of cleavage by photoredox catalysis overcomes this mismatched reactivity of the zwitterionic intermediate, providing a unique route to highly substituted cyclopentanes and cyclopentenes. Expansion of this strategy to bicyclo[1.1.0]butanes enables access to bicyclo[3.1.1]heptanes (BCHs) through a facile [3σ+2σ] cycloaddition. Detailed mechanistic insights are also provided using dispersion-corrected density functional theory.
Collapse
Affiliation(s)
- Subhashis Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| | - Saradindu Debnath
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 160 00, Prague, Czech Republic
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| |
Collapse
|
4
|
A M Subbaiah M, Mandal U, Patankar V, Bhaskaran S, Nutakki R, Rami B, Shah DP, Mahammad S, Murphy BJ, Huang C, Robl JA, Washburn WN. Exploring monocyclic core: Discovery of pyrrol-2-one derivatives as a new series of potent MCHR1 antagonists with in vivo efficacy. Eur J Med Chem 2024; 276:116686. [PMID: 39053192 DOI: 10.1016/j.ejmech.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
With an objective to improve the profiles of the 1st generation non-basic MCHR1 antagonists, a lean design approach of replacing the bicyclic thienopyrimidine core with a monocyclic pyrrol-2-one chemotype was examined in the context of reducing aromatic ring count, while also contemplating enhanced flexibility as a means of decreasing flat character. The new compounds exhibited potent antagonism up to the sub-nanomolar range, thereby implying that the monocyclic ring could effectively serve as an effective bioisostere of the bicyclic system. The prototype compound 2m offered benefits like improved potency, reduced half-life, and enhanced solubility, while also demonstrating >5% reduction in weight gain in rats, thereby providing proof-of-concept for this new class of compounds as anti-obesity agents.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India.
| | - Umasankar Mandal
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Vidya Patankar
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Selvakumar Bhaskaran
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Ravikumar Nutakki
- Department of Biology, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Bhadresh Rami
- Department of Biology, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Devang Praful Shah
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Shahe Mahammad
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, PIN 560099, Karnataka, India
| | - Brian J Murphy
- Department of Metabolic Diseases Biology, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - Christine Huang
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - Jeffrey A Robl
- Department of Metabolic Diseases Chemistry, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - William N Washburn
- Department of Metabolic Diseases Chemistry, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| |
Collapse
|
5
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 PMCID: PMC12045526 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Afzal O, Ali A, Ali A, Altamimi ASA, Alossaimi MA, Bakht MA, Salahuddin, Alamri MA, Ahsan MF, Ahsan MJ. Synthesis and Anticancer Evaluation of 4-Chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol Analogues: An Insight into Experimental and Theoretical Studies. Molecules 2023; 28:6086. [PMID: 37630338 PMCID: PMC10459877 DOI: 10.3390/molecules28166086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
We report herein the synthesis, docking studies and biological evaluation of a series of new 4-chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol analogues (6a-h). The new compounds were designed based on the oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332, prepared in five steps and further characterized via spectral analyses. The anticancer activity of the compounds was assessed against several cancer cell lines belonging to nine different panels as per National Cancer Institute (NCI US) protocol. 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6h) demonstrated significant anticancer activity against SNB-19 (PGI = 65.12), NCI-H460 (PGI = 55.61), and SNB-75 (PGI = 54.68) at 10 µM. The compounds were subjected to molecular docking studies against the active site of the tubulin-combretastatin A4 complex (PDB ID: 5LYJ); they displayed efficient binding and ligand 4h (with docking score = -8.030 kcal/mol) lay within the hydrophobic cavity surrounded by important residues Leu252, Ala250, Leu248, Leu242, Cys241, Val238, Ile318, Ala317, and Ala316. Furthermore, the antibacterial activity of some of the compounds was found to be promising. 4-Chloro-2-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6c) displayed the most promising antibacterial activity against both Gram-negative as well as Gram-positive bacteria with MICs of 8 µg/mL and a zone of inhibition ranging from 17.0 ± 0.40 to 17.0 ± 0.15 mm at 200 µg/mL; however, the standard drug ciprofloxacin exhibited antibacterial activity with MIC values of 4 µg/mL.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology, (Pharmacy Institute), Knowledge Park-2, Greater Noida 201 306, India
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md. Faiyaz Ahsan
- Department of Chemistry, Bihar National College, Patna 800 004, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur 302 039, India
| |
Collapse
|
7
|
Cardoso FS, Kadam AL, Nelson RC, Tomlin JW, Dahal D, Kuehner CS, Gudvangen G, Arduengo AJ, Burns JM, Aleshire SL, Snead DR, Qu F, Belmore K, Ahmad S, Agrawal T, Sieber JD, Donsbach KO. Practical and Scalable Two-Step Process for 6-(2-Fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane: A Key Intermediate of the Potent Antibiotic Drug Candidate TBI-223. Org Process Res Dev 2023; 27:1390-1399. [PMID: 37496954 PMCID: PMC10367134 DOI: 10.1021/acs.oprd.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 07/28/2023]
Abstract
A low-cost, protecting group-free route to 6-(2-fluoro-4-nitrophenyl)-2-oxa-6-azaspiro[3.3]heptane (1), the starting material for the in-development tuberculosis treatment TBI-223, is described. The key bond forming step in this route is the creation of the azetidine ring through a hydroxide-facilitated alkylation of 2-fluoro-4-nitroaniline (2) with 3,3-bis(bromomethyl)oxetane (BBMO, 3). After optimization, this ring formation reaction was demonstrated at 100 g scale with isolated yield of 87% and final product purity of >99%. The alkylating agent 3 was synthesized using an optimized procedure that starts from tribromoneopentyl alcohol (TBNPA, 4), a commercially available flame retardant. Treatment of 4 with sodium hydroxide under Schotten-Baumann conditions closed the oxetane ring, and after distillation, 3 was recovered in 72% yield and >95% purity. This new approach to compound 1 avoids the previous drawbacks associated with the synthesis of 2-oxa-6-azaspiro[3,3]heptane (5), the major cost driver used in previous routes to TBI-223. The optimization and multigram scale-up results for this new route are reported herein.
Collapse
Affiliation(s)
- Flavio S.P. Cardoso
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Appasaheb L. Kadam
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Ryan C. Nelson
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - John W. Tomlin
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Dipendra Dahal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Christopher S. Kuehner
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Gard Gudvangen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Anthony J. Arduengo
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Justina M. Burns
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Sarah L. Aleshire
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - David R. Snead
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Fengrui Qu
- Department
of Chemistry and Biochemistry, The University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Ken Belmore
- Department
of Chemistry and Biochemistry, The University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Saeed Ahmad
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| | - Toolika Agrawal
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Joshua D. Sieber
- Department
of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3208, United States
| | - Kai Oliver Donsbach
- Medicines
for All Institute, Virginia Commonwealth
University, 737 N. 5th St., Box 980100, Richmond, Virginia 23298, United States
| |
Collapse
|
8
|
Isin EM. Unusual Biotransformation Reactions of Drugs and Drug Candidates. Drug Metab Dispos 2023; 51:413-426. [PMID: 36653118 DOI: 10.1124/dmd.121.000744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Detailed assessment of the fate of drugs in nonclinical test species and humans is essential to ensure the safety and efficacy of medicines in patients. In this context, biotransformation of drugs and drug candidates has been an area of keen interest over many decades in the pharmaceutical industry as well as academia. Although many of the enzymes and biotransformation pathways involved in the metabolism of xenobiotics and more specifically drugs have been well characterized, each drug molecule is unique and constitutes specific challenges for the biotransformation scientist. In this mini-review written for the special issue on the occasion of the 50th Anniversary celebration of Drug Metabolism and Disposition and to celebrate contributions of F. Peter Guengerich, one of the pioneers of the drug metabolism field, recently reported "unusual" biotransformation reactions are presented. Scientific and technological advances in the "toolbox" of the biotransformation scientists are summarized. As the pharmaceutical industry continues to explore therapeutic modalities different from the traditional small molecule drugs, the new challenges confronting the biotransformation scientist as well as future opportunities are discussed. SIGNIFICANCE STATEMENT: For the biotransformation scientists, it is essential to share and be aware of unexpected biotransformation reactions so that they can increase their confidence in predicting metabolites of drugs in humans to ensure the safety and efficacy of these metabolites before the medicines reach large numbers of patients. The purpose of this review is to highlight recent observations of "unusual" metabolites so that the scientists working in the area of drug metabolism can strengthen their readiness in expecting the unexpected.
Collapse
Affiliation(s)
- Emre M Isin
- Translational Medicine, Servier, 25/27 Rue Eugène Vignat, 45000, Orléans, France
| |
Collapse
|
9
|
Brewster JT, Randall SD, Kowalski J, Cruz C, Shoemaker R, Tarlton E, Hinklin RJ. A Decarboxylative Cross-Coupling Platform To Access 2-Heteroaryl Azetidines: Building Blocks with Application in Medicinal Chemistry. Org Lett 2022; 24:9123-9129. [DOI: 10.1021/acs.orglett.2c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James T. Brewster
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Samuel D. Randall
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - John Kowalski
- Drug Metabolism & Pharmacokinetics, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Cole Cruz
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Richard Shoemaker
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Eugene Tarlton
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Ronald J. Hinklin
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| |
Collapse
|
10
|
Trammel GL, Kannangara PB, Vasko D, Datsenko O, Mykhailiuk P, Brown MK. Arylboration of Enecarbamates for the Synthesis of Borylated Saturated N-Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202212117. [PMID: 36250954 PMCID: PMC9643676 DOI: 10.1002/anie.202212117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Two catalytic systems have been developed for the arylboration of endocyclic enecarbamates to deliver synthetically versatile borylated saturated N-heterocycles in good regio- and diastereoselectivities. A Cu/Pd dual catalytic reaction enables the synthesis of borylated, α-arylated azetidines, while a Ni-catalysed arylboration reaction efficiently functionalizes 5-, 6-, and 7-membered enecarbamates. In the case of the Cu/Pd-system, a remarkable additive effect was identified that allowed for broader scope. The products are synthetically useful, as demonstrated by manipulations of the boronic ester to access biologically active compounds.
Collapse
Affiliation(s)
- Grace L. Trammel
- Department of ChemistryIndiana University800 E. Kirkwood Ave.BloomingtonIN, 47401USA
| | | | | | | | - Pavel Mykhailiuk
- Enamine Ltd.Chervonotkatska 6002094KyivUkraine
- Taras Shevchenko National University of KyivChemistry DepartmentVolodymyrska 6401601KyivUkraine
| | - M. Kevin Brown
- Department of ChemistryIndiana University800 E. Kirkwood Ave.BloomingtonIN, 47401USA
| |
Collapse
|
11
|
Trammel GL, Kannangara PB, Vasko D, Datsenko O, Mykhailiuk P, Brown MK. Arylboration of Enecarbamates for the Synthesis of Borylated Saturated N‐Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Grace L. Trammel
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | | | - Dmytro Vasko
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
| | | | - Pavel Mykhailiuk
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv Chemistry Department Volodymyrska 64 01601 Kyiv Ukraine
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| |
Collapse
|
12
|
Musci P, Colella M, Andresini M, Aramini A, Degennaro L, Luisi R. Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry. Chem Commun (Camb) 2022; 58:6356-6359. [PMID: 35536561 DOI: 10.1039/d2cc01641a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of flow technology as an enabling tool for accessing 1-azabicyclo[1.1.0]butanes bearing strained 3-, 4-, and 5-membered O-heterocycles with C3(N-het)-C2(O-het) connectivity is reported. Reactivity and chemoselectivity (N-ring vs. O-ring) were also evaluated. New chemical space has been explored and new structural motifs such as ABB-aziridines or spiro azetidine-oxazetidines are also reported.
Collapse
Affiliation(s)
- Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Michael Andresini
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila, 67100, Italy
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
13
|
van der Kolk MR, Janssen MACH, Rutjes FPJT, Blanco‐Ania D. Cyclobutanes in Small-Molecule Drug Candidates. ChemMedChem 2022; 17:e202200020. [PMID: 35263505 PMCID: PMC9314592 DOI: 10.1002/cmdc.202200020] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Indexed: 11/13/2022]
Abstract
Cyclobutanes are increasingly used in medicinal chemistry in the search for relevant biological properties. Important characteristics of the cyclobutane ring include its unique puckered structure, longer C-C bond lengths, increased C-C π-character and relative chemical inertness for a highly strained carbocycle. This review will focus on contributions of cyclobutane rings in drug candidates to arrive at favorable properties. Cyclobutanes have been employed for improving multiple factors such as preventing cis/trans-isomerization by replacing alkenes, replacing larger cyclic systems, increasing metabolic stability, directing key pharmacophore groups, inducing conformational restriction, reducing planarity, as aryl isostere and filling hydrophobic pockets.
Collapse
Affiliation(s)
- Marnix R. van der Kolk
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Mathilde A. C. H. Janssen
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Daniel Blanco‐Ania
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| |
Collapse
|
14
|
Comparative Study of the Synthetic Approaches and Biological Activities of the Bioisosteres of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles over the Past Decade. Molecules 2022; 27:molecules27092709. [PMID: 35566059 PMCID: PMC9102899 DOI: 10.3390/molecules27092709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure–activity relationship.
Collapse
|
15
|
Colella M, Musci P, Cannillo D, Spennacchio M, Aramini A, Degennaro L, Luisi R. Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. J Org Chem 2021; 86:13943-13954. [PMID: 34291947 DOI: 10.1021/acs.joc.1c01297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation and functionalization, under continuous flow conditions, of two different lithiated four-membered aza-heterocycles is reported. N-Boc-3-iodoazetidine acts as a common synthetic platform for the genesis of C3-lithiated azetidine and C2-lithiated azetine depending on the lithiation agent. Flow technology enables easy handling of such lithiated intermediates at much higher temperatures compared to batch processing. Flow technology combined with cyclopentylmethyl ether as an environmentally responsible solvent allows us to address sustainability concerns.
Collapse
Affiliation(s)
- Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Debora Cannillo
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Mauro Spennacchio
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila 67100, Italy
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
16
|
Parmar DR, Soni JY, Guduru R, Rayani RH, Kusurkar RV, Vala AG. Azetidines of pharmacological interest. Arch Pharm (Weinheim) 2021; 354:e2100062. [PMID: 34184778 DOI: 10.1002/ardp.202100062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
Azetidines are almost unexplored among nitrogen-containing saturated heterocycles due to difficulties associated with their synthesis. However, over the past few years, attempts have been made by scientists to advance their synthetic feasibility. Compounds with the azetidine moiety display an important and diverse range of pharmacological activities, such as anticancer, antibacterial, antimicrobial, antischizophrenic, antimalarial, antiobesity, anti-inflammatory, antidiabetic, antiviral, antioxidant, analgesic, and dopamine antagonist activities, and are also useful for the treatment of central nervous system disorders and so forth. Owing to its satisfactory stability, molecular rigidity, and chemical and biological properties, azetidine has emerged as a valuable scaffold and it has drawn the attention of medicinal researchers. The present review sheds light on the traditional method of synthesis of azetidine and advancements in synthetic methodology over the past few years, along with its application with various examples, and its biological significance.
Collapse
Affiliation(s)
- Deepa R Parmar
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Jigar Y Soni
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India
| | | | - Rahul H Rayani
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Rakesh V Kusurkar
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| | - Anand G Vala
- Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Sirohi, Rajasthan, India.,Piramal Pharma Limited-Discovery Solutions, Ahmedabad, Gujarat, India
| |
Collapse
|
17
|
Tyler JL, Noble A, Aggarwal VK. Strain-Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angew Chem Int Ed Engl 2021; 60:11824-11829. [PMID: 33754432 PMCID: PMC8251566 DOI: 10.1002/anie.202102754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Due to their intrinsic rigidity, three-dimensionality and structural novelty, spirocyclic molecules have become increasingly sought-after moieties in drug discovery. Herein, we report a strain-release driven synthesis of azetidine-containing spirocycles by harnessing the inherent ring strain of the azabicyclo[1.1.0]butane (ABB) fragment. Novel ABB-ketone precursors bearing silyl-protected alcohols were synthesized in a single step and shown to engage in electrophile-induced spirocyclization-desilylation reactions. Primary, secondary and tertiary silyl ethers were effectively transformed into a library of new spiro-azetidines, with a range of substituents and ring sizes. In addition, the products are generated with synthetically useful ketone and protected-amine functional groups, which provides the potential for further elaboration and for this chemistry to be utilized in the rapid assembly of medicinally relevant compounds.
Collapse
Affiliation(s)
- Jasper L. Tyler
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
18
|
Bauer MR, Di Fruscia P, Lucas SCC, Michaelides IN, Nelson JE, Storer RI, Whitehurst BC. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med Chem 2021; 12:448-471. [PMID: 33937776 PMCID: PMC8083977 DOI: 10.1039/d0md00370k] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Aliphatic three- and four-membered rings including cyclopropanes, cyclobutanes, oxetanes, azetidines and bicyclo[1.1.1]pentanes have been increasingly exploited in medicinal chemistry for their beneficial physicochemical properties and applications as functional group bioisosteres. This review provides a historical perspective and comparative up to date overview of commonly applied small rings, exemplifying key principles with recent literature examples. In addition to describing the merits and advantages of each ring system, potential hazards and liabilities are also illustrated and explained, including any significant chemical or metabolic stability and toxicity risks.
Collapse
Affiliation(s)
- Matthias R Bauer
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Paolo Di Fruscia
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Simon C C Lucas
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | | | - Jennifer E Nelson
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - R Ian Storer
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | | |
Collapse
|
19
|
Tyler JL, Noble A, Aggarwal VK. Strain‐Release Driven Spirocyclization of Azabicyclo[1.1.0]butyl Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jasper L. Tyler
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
20
|
Gregson CHU, Noble A, Aggarwal VK. Divergent, Strain-Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angew Chem Int Ed Engl 2021; 60:7360-7365. [PMID: 33555105 PMCID: PMC8247891 DOI: 10.1002/anie.202100583] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/17/2022]
Abstract
The azetidine moiety is a privileged motif in medicinal chemistry and new methods that access them efficiently are highly sought after. Towards this goal, we have found that azabicyclo[1.1.0]butyl carbinols, readily obtained from the highly strained azabicyclo[1.1.0]butane (ABB), can undergo divergent strain-release reactions upon N-activation. Treatment with trifluoroacetic anhydride or triflic anhydride triggered a semipinacol rearrangement to give keto 1,3,3-substituted azetidines. More than 20 examples were explored, enabling us to evaluate selectivity and the migratory aptitude of different groups. Alternatively, treatment of the same alcohols with benzyl chloroformate in the presence of NaI led to iodohydrin intermediates which gave spiroepoxy azetidines upon treatment with base. The electronic nature of the activating agent dictates which pathway operates.
Collapse
Affiliation(s)
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
21
|
MCH-R1 Antagonist GPS18169, a Pseudopeptide, Is a Peripheral Anti-Obesity Agent in Mice. Molecules 2021; 26:molecules26051291. [PMID: 33673598 PMCID: PMC7957705 DOI: 10.3390/molecules26051291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19 amino acid long peptide found in the brain of animals, including fishes, batrachians, and mammals. MCH is implicated in appetite and/or energy homeostasis. Antagonists at its receptor (MCH-R1) could be major tools (or ultimately drugs) to understand the mechanism of MCH action and to fight the obesity syndrome that is a worldwide societal health problem. Ever since the deorphanisation of the MCH receptor, we cloned, expressed, and characterized the receptor MCH-R1 and started a vast medicinal chemistry program aiming at the discovery of such usable compounds. In the present final work, we describe GPS18169, a pseudopeptide antagonist at the MCH-R1 receptor with an affinity in the nanomolar range and a Ki for its antagonistic effect in the 20 picomolar range. Its metabolic stability is rather ameliorated compared to its initial parent compound, the antagonist S38151. We tested it in an in vivo experiment using high diet mice. GPS18169 was found to be active in limiting the accumulation of adipose tissues and, correlatively, we observed a normalization of the insulin level in the treated animals, while no change in food or water consumption was observed.
Collapse
|
22
|
Gregson CHU, Noble A, Aggarwal VK. Divergent, Strain‐Release Reactions of Azabicyclo[1.1.0]butyl Carbinols: Semipinacol or Spiroepoxy Azetidine Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
23
|
Abstract
Spirocyclic scaffolds are incorporated in various approved drugs and drug candidates. The increasing interest in less planar bioactive compounds has given rise to the development of synthetic methodologies for the preparation of spirocyclic scaffolds. In this Perspective, we summarize the diverse synthetic routes to obtain spirocyclic systems. The impact of spirocycles on potency and selectivity, including the aspect of stereochemistry, is discussed. Furthermore, we examine the changes in physicochemical properties as well as in in vitro and in vivo ADME using selected studies that compare spirocyclic compounds to their nonspirocyclic counterparts. In conclusion, the value of spirocyclic scaffolds in medicinal chemistry is discussed.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
24
|
Parmar DR, Rayani RH, Vala AG, Kusurkar RV, Manvar RK, Talukdar SN, Preeti, Zunjar V, Battula S, Soni JY. Design, Synthesis, In Silico Studies and In Vitro Anticancer Activity of 3‐(4‐Methoxyphenyl)azetidine Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202003654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Deepa R. Parmar
- Department of Chemistry Faculty of Basic and Applied Sciences Madhav University Abu Road Sirohi Rajasthan India
| | - Rahul H. Rayani
- Department of Chemistry Faculty of Basic and Applied Sciences Madhav University Abu Road Sirohi Rajasthan India
| | - Anand G. Vala
- Department of Chemistry Faculty of Basic and Applied Sciences Madhav University Abu Road Sirohi Rajasthan India
| | - Rakesh V. Kusurkar
- Department of Chemistry Faculty of Basic and Applied Sciences Madhav University Abu Road Sirohi Rajasthan India
| | - Roshani K. Manvar
- Piramal Research Lab Piramal Enterprises Limited - Discovery Solutions Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda Ahmedabad, Gujarat India
| | - Sahista N. Talukdar
- In Vitro Department Piramal Enterprises Limited - Discovery Solutions Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda Ahmedabad, Gujarat India
| | - Preeti
- Department of Chemistry Institute of Science Banaras Hindu University (BHU) Varanasi India
| | - Vishwanath Zunjar
- School of Engineering and Technology Navrachana University Vadodara Gujarat India
| | | | - Jigar Y. Soni
- Department of Chemistry Faculty of Basic and Applied Sciences Madhav University Abu Road Sirohi Rajasthan India
| |
Collapse
|
25
|
Li J, Lu XC, Xu Y, Wen JX, Hou GQ, Liu L. Photoredox Catalysis Enables Decarboxylative Cyclization with Hypervalent Iodine(III) Reagents: Access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Org Lett 2020; 22:9621-9626. [DOI: 10.1021/acs.orglett.0c03663] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xue-Chen Lu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yue Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jin-Xia Wen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Guo-Quan Hou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Li Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
26
|
Khojasteh SC, Driscoll JP, Jackson KD, Miller GP, Mitra K, Rietjens IMCM, Zhang D. Novel advances in biotransformation and bioactivation research-2019 year in review .. Drug Metab Rev 2020; 52:333-365. [PMID: 32645275 PMCID: PMC10805366 DOI: 10.1080/03602532.2020.1772281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 01/25/2023]
Abstract
Biotransformation is one of the main mechanisms used by the body to eliminate drugs. As drug molecules become more complicated, the involvement of drug metabolizing enzymes increases beyond those that are typically studied, such as the cytochrome P450 enzymes. In this review, we try to capture the many outstanding articles that were published in the past year in the field of biotransformation (see Table 1). We have divided the articles into two categories of (1) metabolites and drug metabolizing enzymes, and (2) bioactivation and safety. This annual review is the fifth of its kind since 2016 (Baillie et al. 2016; Khojasteh et al. 2017, 2018, 2019). This effort in itself also continues to evolve. We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. I am pleased of the continued support of Rietjens, Miller, Zhang, Driscoll and Mitra to this review. We would like to welcome Klarissa D. Jackson as a new author for this year's issue. We strive to maintain a balance of authors from academic and industry settings. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, MyoKardia, Inc, South San Francisco, CA, USA
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kaushik Mitra
- Department of Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories (MRL), Merck & Co., Inc, West Point, PA, USA
| | | | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
27
|
Curing acceleration of cyanate ester resin by a phenolic compound having a tertiary amino group at the ortho-position. Polym J 2020. [DOI: 10.1038/s41428-020-0380-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Li XQ, Grönberg G, Bangur EH, Hayes MA, Castagnoli N, Weidolf L. Metabolism of Strained Rings: Glutathione S-transferase-Catalyzed Formation of a Glutathione-Conjugated Spiro-azetidine without Prior Bioactivation. Drug Metab Dispos 2019; 47:1247-1256. [PMID: 31492694 DOI: 10.1124/dmd.119.088658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022] Open
Abstract
AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] is a melanin-concentrating hormone receptor 1 antagonist designed for the treatment of obesity. In this study, metabolite profiles of AZD1979 in human hepatocytes revealed a series of glutathione-related metabolites, including the glutathionyl, cysteinyl, cysteinylglycinyl, and mercapturic acid conjugates. The formation of these metabolites was not inhibited by coincubation with the cytochrome P450 (P450) inhibitor 1-aminobenzotriazole. In efforts to identify the mechanistic features of this pathway, investigations were performed to characterize the structure of the glutathionyl conjugate M12 of AZD1979 and to identify the enzyme system catalyzing its formation. Studies with various human liver subcellular fractions established that the formation of M12 was NAD(P)H-independent and proceeded in cytosol and S9 fractions but not in microsomal or mitochondrial fractions. The formation of M12 was inhibited by ethacrynic acid, an inhibitor of glutathione S-transferases (GSTs). Several human recombinant GSTs, including GSTA1, A2-2, M1a, M2-2, T1-1, and GST from human placenta, were incubated with AZD1979. All GSTs tested catalyzed the formation of M12, with GSTA2-2 being the most efficient. Metabolite M12 was purified from rat liver S9 incubations and its structure elucidated by NMR. These results establish that M12 is the product of the GST-catalyzed glutathione attack on the carbon atom α to the nitrogen atom of the strained spiro-azetidinyl moiety to give, after ring opening, the corresponding amino-thioether conjugate product, a direct conjugation pathway that occurs without the prior substrate bioactivation by P450. SIGNIFICANCE STATEMENT: The investigated compound, AZD1979, contains a 6-substituted-2-oxa-6-azaspiro[3.3]heptanyl derivative that is an example of strained heterocycles, including spiro-fused ring systems, that are widely used in synthetic organic chemistry. An unusual azetidinyl ring-opening reaction involving a nucleophilic attack by glutathione, which does not involve prior cytochrome P450-catalyzed bioactivation of the substrate and which is catalyzed by glutathione transferases, is reported. We propose a mechanism involving the protonated cyclic aminyl intermediate that undergoes nucleophilic attack by glutathione thiolate anion in this reaction, catalyzed by glutathione transferases.
Collapse
Affiliation(s)
- Xue-Qing Li
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Gunnar Grönberg
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Eva-Henriette Bangur
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Martin A Hayes
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Neal Castagnoli
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| | - Lars Weidolf
- Drug Metabolism and Pharmacokinetics, Research and Early Development Cardiovascular, Renal and Metabolism (X.-Q.L., E.-H.B., L.W.), Hit Discovery, Discovery Sciences (M.A.H.), and Medicinal Chemistry, Early Respiratory, Inflammation and Autoimmunity (G.G.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.J.)
| |
Collapse
|
29
|
Degorce SL, Bodnarchuk MS, Scott JS. Lowering Lipophilicity by Adding Carbon: AzaSpiroHeptanes, a log D Lowering Twist. ACS Med Chem Lett 2019; 10:1198-1204. [PMID: 31417667 DOI: 10.1021/acsmedchemlett.9b00248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
We have conducted an analysis of azaspiro[3.3]heptanes used as replacements for morpholines, piperidines, and piperazines in a medicinal chemistry context. In most cases, introducing a spirocyclic center lowered the measured logD 7.4 of the corresponding molecules by as much as -1.0 relative to the more usual heterocycle. This may seem counterintuitive, as the net change in the molecule is the addition of a single carbon atom, but it may be rationalized in terms of increased basicity. An exception to this was found with N-linked 2-azaspiro[3.3]heptane, where logD 7.4 increased by as much as +0.5, consistent with the addition of carbon. During our investigation, we also concluded that azaspiro[3.3]heptanes are most likely not suitable bioisosteres for morpholines, piperidines, and piperazines, when not used as terminal groups, due to significant changes in their geometry.
Collapse
Affiliation(s)
- Sébastien L. Degorce
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Michael S. Bodnarchuk
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - James S. Scott
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| |
Collapse
|
30
|
Toselli F, Fredenwall M, Svensson P, Li XQ, Johansson A, Weidolf L, Hayes MA. Hip To Be Square: Oxetanes as Design Elements To Alter Metabolic Pathways. J Med Chem 2019; 62:7383-7399. [DOI: 10.1021/acs.jmedchem.9b00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Francesca Toselli
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marlene Fredenwall
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peder Svensson
- Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg 413 46, Sweden
| | - Xue-Qing Li
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Johansson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Weidolf
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A. Hayes
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
31
|
Yan L, Deng M, Chen A, Li Y, Zhang W, Du ZY, Dong CZ, Meunier B, Chen H. Synthesis of N-pyrimidin[1,3,4]oxadiazoles and N-pyrimidin[1,3,4]-thiadiazoles from 1,3,4-oxadiazol-2-amines and 1,3,4-thiadiazol-2-amines via Pd-catalyzed heteroarylamination. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Brown DG, Boström J. Where Do Recent Small Molecule Clinical Development Candidates Come From? J Med Chem 2018; 61:9442-9468. [DOI: 10.1021/acs.jmedchem.8b00675] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dean G. Brown
- Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jonas Boström
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Gothenburg SE-431 83, Sweden
| |
Collapse
|
33
|
Abdildinova A, Gong YD. Current Parallel Solid-Phase Synthesis of Drug-like Oxadiazole and Thiadiazole Derivatives for Combinatorial Chemistry. ACS COMBINATORIAL SCIENCE 2018; 20:309-329. [PMID: 29714475 DOI: 10.1021/acscombsci.8b00044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Solid-phase organic synthesis is a powerful tool in the synthesis of small organic molecules and building of libraries of compounds for drug discovery. Heterocyclic compounds are important components of the drug discovery field as well and serve as a core for hundreds of marketed drugs. In particular, oxadiazole and thiadiazole cores are compounds of great interest due to their comprehensive biological activities and structural features. Therefore, a plethora of oxadiazole and thiadiazole synthesis methodologies have been reported to date, including solution and solid-phase synthesis methodologies. In this review, we concentrate on and summarize solid-phase synthetic approaches of the oxadiazole and thiadiazole derivatives.
Collapse
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, 26, 3-ga, Pil-dong, Jung-gu, Seoul 04620, Korea
| |
Collapse
|
34
|
Villa A, Dumoleijn K, Evangelisti C, Moonen K, Prati L. Selective catalytic amination of halogenated aldehydes with calcined palladium catalysts. RSC Adv 2018; 8:15202-15206. [PMID: 35541363 PMCID: PMC9080020 DOI: 10.1039/c8ra01987h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
This work focuses on understanding the influence of the conditions used in the calcination step of palladium catalysts on the performance of this catalyst in the reductive amination of halogen-containing substrates. The results show that increasing the calcination temperatures (from 100 °C to 400 °C) has a detrimental effect on catalytic activity but a strong positive effect on the selectivity (from 45 to 96%), avoiding the undesired dehalogenation reaction. TEM investigation showed that the reason for the different selectivity can be addressed to different Pd mean particles size and particle size distribution. In particular, larger Pd particles obtained at the highest calcination temperature (400 °C) showed the best selectivity to halogenated benzylamines (96%), with a good stability in terms of both activity and selectivity as confirmed by performing recycling tests. This work focuses on understanding the influence of the conditions used in the calcination step of palladium catalysts on the performance of this catalyst in the reductive amination of halogen-containing substrates.![]()
Collapse
Affiliation(s)
- Alberto Villa
- Università degli Studi di Milano, Dipartimento di Chimica Via C. Golgi 19 20133 Milano Italy .,Institute of Molecular Science and Technologies, CNR Via G. Fantoli 16/15 Milano Italy
| | - Kim Dumoleijn
- Eastman Chemical Company, Taminco BVBA Pantserschipstraat 207 Ghent Belgium
| | - Claudio Evangelisti
- Institute of Molecular Science and Technologies, CNR Via G. Fantoli 16/15 Milano Italy
| | - Kristof Moonen
- Eastman Chemical Company, Taminco BVBA Pantserschipstraat 207 Ghent Belgium
| | - Laura Prati
- Università degli Studi di Milano, Dipartimento di Chimica Via C. Golgi 19 20133 Milano Italy .,Institute of Molecular Science and Technologies, CNR Via G. Fantoli 16/15 Milano Italy
| |
Collapse
|
35
|
Cheng R, Mori W, Ma L, Alhouayek M, Hatori A, Zhang Y, Ogasawara D, Yuan G, Chen Z, Zhang X, Shi H, Yamasaki T, Xie L, Kumata K, Fujinaga M, Nagai Y, Minamimoto T, Svensson M, Wang L, Du Y, Ondrechen MJ, Vasdev N, Cravatt BF, Fowler C, Zhang MR, Liang SH. In Vitro and in Vivo Evaluation of 11C-Labeled Azetidinecarboxylates for Imaging Monoacylglycerol Lipase by PET Imaging Studies. J Med Chem 2018; 61:2278-2291. [PMID: 29481079 PMCID: PMC5966020 DOI: 10.1021/acs.jmedchem.7b01400] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Monoacylglycerol lipase (MAGL) is the principle enzyme for metabolizing endogenous cannabinoid ligand 2-arachidonoyglycerol (2-AG). Blockade of MAGL increases 2-AG levels, resulting in subsequent activation of the endocannabinoid system, and has emerged as a novel therapeutic strategy to treat drug addiction, inflammation, and neurodegenerative diseases. Herein we report a new series of MAGL inhibitors, which were radiolabeled by site-specific labeling technologies, including 11C-carbonylation and spirocyclic iodonium ylide (SCIDY) radiofluorination. The lead compound [11C]10 (MAGL-0519) demonstrated high specific binding and selectivity in vitro and in vivo. We also observed unexpected washout kinetics with these irreversible radiotracers, in which in vivo evidence for turnover of the covalent residue was unveiled between MAGL and azetidine carboxylates. This work may lead to new directions for drug discovery and PET tracer development based on azetidine carboxylate inhibitor scaffold.
Collapse
Affiliation(s)
- Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gengyang Yuan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Hang Shi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Mona Svensson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
36
|
Pancholi AK, Iacobini GP, Clarkson GJ, Porter DW, Shipman M. Synthesis of 4,5-Diazaspiro[2.3]hexanes and 1,2-Diazaspiro[3.3]heptanes as Hexahydropyridazine Analogues. J Org Chem 2018; 83:491-498. [PMID: 29183129 DOI: 10.1021/acs.joc.7b02622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
4,5-Diazaspiro[2.3]hexanes are made by dihalocarbene addition across the exocyclic double bond of readily accessible 3-alkylidene-1,2-diazetidines. Using difluorocarbene, generated from TMSCF3/NaI, these spirocycles were produced in yields up to 97% by stereospecific addition across the alkene. Lower yields (up to 64%) were observed using more reactive dichlorocarbene, due to competitive insertion of the carbene into the N-N bond. Larger 1,2-diazaspiro[3.3]heptanes are produced by [2 + 2] cycloaddition of 3-alkylidene-1,2-diazetidines with tetracyanoethylene (TCNE) in up to 99% yield.
Collapse
Affiliation(s)
- Alpa K Pancholi
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Greg P Iacobini
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - David W Porter
- Novartis Institutes for BioMedical Research, Horsham Research Centre , Wimblehurst Road, West Sussex, RH12 5AB, United Kingdom
| | - Michael Shipman
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
37
|
Toselli F, Fredenwall M, Svensson P, Li XQ, Johansson A, Weidolf L, Hayes MA. Oxetane Substrates of Human Microsomal Epoxide Hydrolase. Drug Metab Dispos 2017; 45:966-973. [PMID: 28600384 DOI: 10.1124/dmd.117.076489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022] Open
Abstract
Oxetanyl building blocks are increasingly used in drug discovery because of the improved drug-like properties they confer on drug candidates, yet little is currently known about their biotransformation. A series of oxetane-containing analogs was studied and we provide the first direct evidence of oxetane hydrolysis by human recombinant microsomal epoxide hydrolase (mEH). Incubations with human liver fractions and hepatocytes were performed with and without inhibitors of cytochrome P450 (P450), mEH and soluble epoxide hydrolase (sEH). Reaction dependence on NADPH was investigated in subcellular fractions. A full kinetic characterization of oxetane hydrolysis is presented, in both human liver microsomes and human recombinant mEH. In human liver fractions and hepatocytes, hydrolysis by mEH was the only oxetane ring-opening metabolic route, with no contribution from sEH or from cytochrome P450-catalyzed oxidation. Minimally altering the structural elements in the immediate vicinity of the oxetane can greatly modulate the efficiency of hydrolytic ring cleavage. In particular, higher pKa in the vicinity of the oxetane and an increased distance between the oxetane ring and the benzylic nitrogen improve reaction rate, which is further enhanced by the presence of methyl groups near or on the oxetane. This work defines oxetanes as the first nonepoxide class of substrates for human mEH, which was previously known to catalyze the hydrolytic ring opening of electrophilic and potentially toxic epoxide-containing drugs, drug metabolites, and exogenous organochemicals. These findings will be of value for the development of biologically active oxetanes and may be exploited for the biocatalytic generation of enantiomerically pure oxetanes and diols.
Collapse
Affiliation(s)
- Francesca Toselli
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Marlene Fredenwall
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Peder Svensson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Xue-Qing Li
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Anders Johansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Lars Weidolf
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| | - Martin A Hayes
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.)
| |
Collapse
|
38
|
Schaller D, Hagenow S, Alpert G, Naß A, Schulz R, Bermudez M, Stark H, Wolber G. Systematic Data Mining Reveals Synergistic H3R/MCHR1 Ligands. ACS Med Chem Lett 2017. [PMID: 28626527 DOI: 10.1021/acsmedchemlett.7b00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we report a ligand-centric data mining approach that guided the identification of suitable target profiles for treating obesity. The newly developed method is based on identifying target pairs for synergistic positive effects and also encompasses the exclusion of compounds showing a detrimental effect on obesity treatment (off-targets). Ligands with known activity against obesity-relevant targets were compared using fingerprint representations. Similar compounds with activities to different targets were evaluated for the mechanism of action since activation or deactivation of drug targets determines the pharmacological effect. In vitro validation of the modeling results revealed that three known modulators of melanin-concentrating hormone receptor 1 (MCHR1) show a previously unknown submicromolar affinity to the histamine H3 receptor (H3R). This synergistic activity may present a novel therapeutic option against obesity.
Collapse
Affiliation(s)
- David Schaller
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Stefanie Hagenow
- Pharmaceutical
and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gina Alpert
- Pharmaceutical
and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Naß
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Robert Schulz
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Holger Stark
- Pharmaceutical
and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gerhard Wolber
- Pharmaceutical
and Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
39
|
Gennemark P, Trägårdh M, Lindén D, Ploj K, Johansson A, Turnbull A, Carlsson B, Antonsson M. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:458-468. [PMID: 28556607 PMCID: PMC5529746 DOI: 10.1002/psp4.12199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
In this study, we present the translational modeling used in the discovery of AZD1979, a melanin‐concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body‐composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non‐parametric input estimation (e.g., predicting energy intake from longitudinal body‐weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose‐prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly.
Collapse
Affiliation(s)
- P Gennemark
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Trägårdh
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden.,University of Warwick, School of Engineering, Coventry, UK
| | - D Lindén
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - K Ploj
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Johansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Turnbull
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - B Carlsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Antonsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
40
|
Lei B, Wang X, Ma L, Jiao H, Zhu L, Li Z. DDQ-promoted direct C5-alkylation of oxazoles with alkylboronic acids via palladium-catalysed C–H bond activation. Org Biomol Chem 2017; 15:6084-6088. [DOI: 10.1039/c7ob01083d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first protocol for the direct C5-alkylation of oxazoles through transition-metal-catalysed C(5)–H bond activation.
Collapse
Affiliation(s)
- Bowen Lei
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaojiao Wang
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Huixuan Jiao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lisi Zhu
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
41
|
Kawata Y, Okuda S, Hotta N, Igawa H, Takahashi M, Ikoma M, Kasai S, Ando A, Satomi Y, Nishida M, Nakayama M, Yamamoto S, Nagisa Y, Takekawa S. A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models. Eur J Pharmacol 2016; 796:45-53. [PMID: 27986627 DOI: 10.1016/j.ejphar.2016.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023]
Abstract
Melanin-concentrating hormone (MCH), a cyclic neuropeptide expressed predominantly in the lateral hypothalamus, plays an important role in the control of feeding behavior and energy homeostasis. Mice lacking MCH or MCH1 receptor are resistant to diet-induced obesity (DIO) and MCH1 receptor antagonists show potent anti-obesity effects in preclinical studies, indicating that MCH1 receptor is a promising target for anti-obesity drugs. Moreover, recent studies have suggested the potential of MCH1 receptor antagonists for treatment of non-alcoholic fatty liver disease (NAFLD). In the present study, we show the anti-obesity and anti-hepatosteatosis effect of our novel MCH1 receptor antagonist, Compound A. Repeated oral administration of Compound A resulted in dose-dependent body weight reduction and had an anorectic effect in DIO mice. The body weight lowering effect of Compound A was more potent than that of pair-feeding. Compound A also reduced lipid content and the expression level of lipogenesis-, inflammation-, and fibrosis-related genes in the liver of DIO mice. Conversely, intracerebroventricular infusion of MCH caused induction of hepatic steatosis as well as increase in body weight in high-fat diet-fed wild type mice, but not MCH1 receptor knockout mice. The pair-feeding study revealed the MCH-MCH1 receptor system affects hepatic steatosis through a mechanism that is independent of body weight change. Metabolome analysis demonstrated that Compound A upregulated lipid metabolism-related molecules, such as acylcarnitines and cardiolipins, in the liver. These findings suggest that our novel MCH1 receptor antagonist, Compound A, exerts its beneficial therapeutic effect on NAFLD and obesity through a central MCH-MCH1 receptor pathway.
Collapse
Affiliation(s)
- Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Shoki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ayumi Ando
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mayumi Nishida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shiro Takekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
42
|
Bochevarov AD, Watson MA, Greenwood JR, Philipp DM. Multiconformation, Density Functional Theory-Based pKa Prediction in Application to Large, Flexible Organic Molecules with Diverse Functional Groups. J Chem Theory Comput 2016; 12:6001-6019. [PMID: 27951674 DOI: 10.1021/acs.jctc.6b00805] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Art D. Bochevarov
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Mark A. Watson
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Jeremy R. Greenwood
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Dean M. Philipp
- Schrödinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| |
Collapse
|
43
|
Ahmad S, Washburn WN, Hernandez AS, Bisaha S, Ngu K, Wang W, Pelleymounter MA, Longhi D, Flynn N, Azzara AV, Rohrbach K, Devenny J, Rooney S, Thomas M, Glick S, Godonis H, Harvey S, Zhang H, Gemzik B, Janovitz EB, Huang C, Zhang L, Robl JA, Murphy BJ. Synthesis and Antiobesity Properties of 6-(4-Chlorophenyl)-3-(4-((3,3-difluoro-1-hydroxycyclobutyl)methoxy)-3-methoxyphenyl)thieno[3,2-d]pyrimidin-4(3H)-one (BMS-814580): A Highly Efficacious Melanin Concentrating Hormone Receptor 1 (MCHR1) Inhibitor. J Med Chem 2016; 59:8848-8858. [DOI: 10.1021/acs.jmedchem.6b00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saleem Ahmad
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - William N. Washburn
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andres S. Hernandez
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Sharon Bisaha
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Khehyong Ngu
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Wei Wang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary Ann Pelleymounter
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Longhi
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Neil Flynn
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Anthony V. Azzara
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kenneth Rohrbach
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James Devenny
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Suzanne Rooney
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael Thomas
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Susan Glick
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Helen Godonis
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Susan Harvey
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Hongwei Zhang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Brian Gemzik
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Evan B. Janovitz
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Christine Huang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lisa Zhang
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jeffrey A. Robl
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Brian J. Murphy
- Metabolic Diseases Chemistry, ‡Metabolic Diseases Biology, §PCO MAP, ∥PCO Discovery Toxicology, and ⊥PCO Bioanalytical Research, Bristol-Myers Squibb Research & Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
44
|
Evolution of physicochemical properties of melanin concentrating hormone receptor 1 (MCHr1) antagonists. Bioorg Med Chem Lett 2016; 26:4559-4564. [PMID: 27595423 DOI: 10.1016/j.bmcl.2016.08.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/20/2016] [Indexed: 02/07/2023]
Abstract
One pharmacological principle for the treatment of obesity is blockade of the melanin concentrating hormone receptor 1 (MCHr1), which in rodents has been shown to be strongly associated with food intake and energy expenditure. However, discovery of safe and efficacious MCHr1 antagonists has proved to be complex. So far, six compounds have been progressed into clinical trials, but clinical validation of the concept is still lacking. An account of discovery of the three most recent clinical candidates targeting the MCHr1 receptor is given, with an emphasis on their physicochemical properties.
Collapse
|
45
|
Ploj K, Benthem L, Kakol-Palm D, Gennemark P, Andersson L, Bjursell M, Börjesson J, Kärrberg L, Månsson M, Antonsson M, Johansson A, Iverson S, Carlsson B, Turnbull A, Lindén D. Effects of a novel potent melanin-concentrating hormone receptor 1 antagonist, AZD1979, on body weight homeostasis in mice and dogs. Br J Pharmacol 2016; 173:2739-51. [PMID: 27400775 DOI: 10.1111/bph.13548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/13/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanin-concentrating hormone (MCH) is an orexigen, and while rodents express one MCH receptor (MCH1 receptor), humans, non-human primates and dogs express two MCH receptors (MCH1 and MCH2 ). MCH1 receptor antagonists have been developed for the treatment of obesity and lower body weight in rodents. However, the mechanisms for the body weight loss and whether MCH1 receptor antagonism can lower body weight in species expressing both MCH receptors are not fully understood. EXPERIMENTAL APPROACH A novel recently identified potent MCH1 receptor antagonist, AZD1979, was studied in wild type and Mchr1 knockout (KO) mice and by using pair-feeding and indirect calorimetry in diet-induced obese (DIO) mice. The effect of AZD1979 on body weight was also studied in beagle dogs. KEY RESULTS AZD1979 bound to MCH1 receptors in the CNS and dose-dependently reduced body weight in DIO mice leading to improved homeostasis model assessment-index of insulin sensitivity. AZD1979 did not affect food intake or body weight in Mchr1 KO mice demonstrating specificity for the MCH1 receptor mechanism. In DIO mice, initial AZD1979-mediated body weight loss was driven by decreased food intake, but an additional component of preserved energy expenditure was apparent in pair-feeding and indirect calorimetry studies. AZD1979 also dose-dependently reduced body weight in dogs. CONCLUSION AND IMPLICATIONS AZD1979 is a novel potent MCH1 receptor antagonist that affects both food intake and energy expenditure. That AZD1979 also lowers body weight in a species expressing both MCH receptors holds promise for the use of MCH1 receptor antagonists for the treatment of human obesity.
Collapse
Affiliation(s)
- Karolina Ploj
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | - Lambertus Benthem
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Dorota Kakol-Palm
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Peter Gennemark
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Liselotte Andersson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | - Mikael Bjursell
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Jenny Börjesson
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Lillevi Kärrberg
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | | | - Madeleine Antonsson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Anders Johansson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | | | - Björn Carlsson
- Early Clinical Development, AstraZeneca, Mölndal, Sweden
| | - Andrew Turnbull
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Daniel Lindén
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| |
Collapse
|
46
|
Li XQ, Hayes MA, Grönberg G, Berggren K, Castagnoli N, Weidolf L. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane. Drug Metab Dispos 2016; 44:1341-8. [PMID: 27256986 DOI: 10.1124/dmd.116.071142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022] Open
Abstract
Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979.
Collapse
Affiliation(s)
- Xue-Qing Li
- Cardiovascular and Metabolic Diseases(X.-Q.L., M.A.H., L.W.) and Respiratory, Inflammation, and Autoimmune Disease (G.G., K.B.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.)
| | - Martin A Hayes
- Cardiovascular and Metabolic Diseases(X.-Q.L., M.A.H., L.W.) and Respiratory, Inflammation, and Autoimmune Disease (G.G., K.B.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.)
| | - Gunnar Grönberg
- Cardiovascular and Metabolic Diseases(X.-Q.L., M.A.H., L.W.) and Respiratory, Inflammation, and Autoimmune Disease (G.G., K.B.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.)
| | - Kristina Berggren
- Cardiovascular and Metabolic Diseases(X.-Q.L., M.A.H., L.W.) and Respiratory, Inflammation, and Autoimmune Disease (G.G., K.B.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.)
| | - Neal Castagnoli
- Cardiovascular and Metabolic Diseases(X.-Q.L., M.A.H., L.W.) and Respiratory, Inflammation, and Autoimmune Disease (G.G., K.B.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.)
| | - Lars Weidolf
- Cardiovascular and Metabolic Diseases(X.-Q.L., M.A.H., L.W.) and Respiratory, Inflammation, and Autoimmune Disease (G.G., K.B.), Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden; and Department of Chemistry, Virginia Tech, Blacksburg, Virginia (N.C.)
| |
Collapse
|
47
|
Meanwell NA. Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing Problematic Elements, and Compounds in Nontraditional Drug Space. Chem Res Toxicol 2016; 29:564-616. [DOI: 10.1021/acs.chemrestox.6b00043] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development, Wallingford, Connecticut 06492, United States
| |
Collapse
|
48
|
Golden M, Legg D, Milne D, Bharadwaj M. A, Deepthi K, Gopal M, Dokka N, Nambiar S, Ramachandra P, Santhosh U, Sharma P, Sridharan R, Sulur M, Linderberg M, Nilsson A, Sohlberg R, Kremers J, Oliver S, Patra D. The Development of a Manufacturing Route to an MCHr1 Antagonist. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Golden
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, U.K
| | - Danny Legg
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, U.K
| | - David Milne
- Pharmaceutical
Development, AstraZeneca, Silk Road Business Park, Macclesfield, U.K
| | - Arun Bharadwaj M.
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - K. Deepthi
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - Madan Gopal
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - Nagaraju Dokka
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - Sudhir Nambiar
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - Puranik Ramachandra
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - U. Santhosh
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - Parhalad Sharma
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - R. Sridharan
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | - Manjunatha Sulur
- Pharmaceutical Development, AstraZeneca India, Hebbal, Bellary Road, Bangalore, India
| | | | | | | | - John Kremers
- Process R&D, Albany Molecular Research (U.K.) Ltd., Mostyn Road, Holywell, Flintshire CH8 9DN, U.K
| | - Samuel Oliver
- Process R&D, Albany Molecular Research (U.K.) Ltd., Mostyn Road, Holywell, Flintshire CH8 9DN, U.K
| | - Debasis Patra
- Process R&D, Albany Molecular Research, Inc., 26 Corporate Circle, P.O. Box 15098, Albany, New York 12203, United States
| |
Collapse
|