1
|
Kuhne S, Bosma R, Kooistra AJ, Riemens R, Stroet MCM, Vischer HF, de Graaf C, Wijtmans M, Leurs R, de Esch IJP. Probing the Histamine H 1 Receptor Binding Site to Explore Ligand Binding Kinetics. J Med Chem 2025; 68:448-464. [PMID: 39723903 PMCID: PMC11726634 DOI: 10.1021/acs.jmedchem.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Analysis of structure-kinetic relationships (SKR) can contribute to an improved understanding of receptor-ligand interactions. Here, fragment 1 (4-(2-benzylphenoxy)-1-methylpiperidine) was used in different fragment growing approaches to mimic the putative binding mode of the long residence time (RT) ligands olopatadine, acrivastine, and levocetirizine at the histamine H1 receptor (H1R). SKR analyses reveal that introduction of a carboxylic acid moiety can increase RT at H1R up to 11-fold. Ligand efficiency (LE) decreases upon the introduction of the negatively charged group, whereas kinetic efficiency (KE) increases up to 8.5-fold. The olopatadine/acrivastine mimics give up to 15-fold differences in the RT, while the levocetirizine mimics afford similar RTs with only a 3-fold difference. Therefore, the levocetirizine mimics are less sensitive to structural changes. This study illustrates that for H1R, there are several ways to increase RT but the different strategies differ significantly in SKR.
Collapse
Affiliation(s)
| | | | - Albert J. Kooistra
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rick Riemens
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Marc C. M. Stroet
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Pinheiro PDSM, Franco LS, Fraga CAM. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals (Basel) 2023; 16:1157. [PMID: 37631072 PMCID: PMC10457765 DOI: 10.3390/ph16081157] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the key scientific aspects of small-molecule drug discovery and development is the analysis of the relationship between its chemical structure and biological activity. Understanding the effects that lead to significant changes in biological activity is of paramount importance for the rational design and optimization of bioactive molecules. The "methylation effect", or the "magic methyl" effect, is a factor that stands out due to the number of examples that demonstrate profound changes in either pharmacodynamic or pharmacokinetic properties. In many cases, this has been carried out rationally, but in others it has been the product of serendipitous observations. This paper summarizes recent examples that provide an overview of the current state of the art and contribute to a better understanding of the methylation effect in bioactive small-molecule drug candidates.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
3
|
Kok ZY, Stoddart LA, Mistry SJ, Mocking TAM, Vischer HF, Leurs R, Hill SJ, Mistry SN, Kellam B. Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H 1 Receptor. J Med Chem 2022; 65:8258-8288. [PMID: 35734860 PMCID: PMC9234962 DOI: 10.1021/acs.jmedchem.2c00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.
Collapse
Affiliation(s)
- Zhi Yuan Kok
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Leigh A Stoddart
- Division of Physiology, Pharmacology & Neuroscience, Medical School, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Sarah J Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Tamara A M Mocking
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelean 1083, 1083 HV Amsterdam, The Netherlands
| | - Stephen J Hill
- Division of Physiology, Pharmacology & Neuroscience, Medical School, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| | - Shailesh N Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K
| | - Barrie Kellam
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, U.K.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, the Midlands, Nottingham NG7 2UH, U.K
| |
Collapse
|
4
|
Optical control of Class A G protein-coupled receptors with photoswitchable ligands. Curr Opin Pharmacol 2022; 63:102192. [DOI: 10.1016/j.coph.2022.102192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022]
|
5
|
Ballante F, Kooistra AJ, Kampen S, de Graaf C, Carlsson J. Structure-Based Virtual Screening for Ligands of G Protein-Coupled Receptors: What Can Molecular Docking Do for You? Pharmacol Rev 2021; 73:527-565. [PMID: 34907092 DOI: 10.1124/pharmrev.120.000246] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome and are important therapeutic targets. During the last decade, the number of atomic-resolution structures of GPCRs has increased rapidly, providing insights into drug binding at the molecular level. These breakthroughs have created excitement regarding the potential of using structural information in ligand design and initiated a new era of rational drug discovery for GPCRs. The molecular docking method is now widely applied to model the three-dimensional structures of GPCR-ligand complexes and screen for chemical probes in large compound libraries. In this review article, we first summarize the current structural coverage of the GPCR superfamily and the understanding of receptor-ligand interactions at atomic resolution. We then present the general workflow of structure-based virtual screening and strategies to discover GPCR ligands in chemical libraries. We assess the state of the art of this research field by summarizing prospective applications of virtual screening based on experimental structures. Strategies to identify compounds with specific efficacy and selectivity profiles are discussed, illustrating the opportunities and limitations of the molecular docking method. Our overview shows that structure-based virtual screening can discover novel leads and will be essential in pursuing the next generation of GPCR drugs. SIGNIFICANCE STATEMENT: Extraordinary advances in the structural biology of G protein-coupled receptors have revealed the molecular details of ligand recognition by this large family of therapeutic targets, providing novel avenues for rational drug design. Structure-based docking is an efficient computational approach to identify novel chemical probes from large compound libraries, which has the potential to accelerate the development of drug candidates.
Collapse
Affiliation(s)
- Flavio Ballante
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Albert J Kooistra
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Stefanie Kampen
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Chris de Graaf
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (F.B., S.K., J.C.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); and Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, United Kingdom (C.d.G.)
| |
Collapse
|
6
|
Wang Z, Bosma R, Kuhne S, van den Bor J, Garabitian W, Vischer HF, Wijtmans M, Leurs R, de Esch IJ. Exploring the Effect of Cyclization of Histamine H 1 Receptor Antagonists on Ligand Binding Kinetics. ACS OMEGA 2021; 6:12755-12768. [PMID: 34056427 PMCID: PMC8154229 DOI: 10.1021/acsomega.0c06358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics.
Collapse
Affiliation(s)
| | | | | | - Jelle van den Bor
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wrej Garabitian
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J.P. de Esch
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Mehta P, Miszta P, Filipek S. Molecular Modeling of Histamine Receptors-Recent Advances in Drug Discovery. Molecules 2021; 26:1778. [PMID: 33810008 PMCID: PMC8004658 DOI: 10.3390/molecules26061778] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer's disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014-2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.
Collapse
Affiliation(s)
| | | | - Sławomir Filipek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
8
|
Jastrzębski S, Szymczak M, Pocha A, Mordalski S, Tabor J, Bojarski AJ, Podlewska S. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening. J Chem Inf Model 2020; 60:4246-4262. [DOI: 10.1021/acs.jcim.9b01202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanisław Jastrzębski
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Maciej Szymczak
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Agnieszka Pocha
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Stefan Mordalski
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Jacek Tabor
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
9
|
Kobayashi C, Tanaka A, Yasuda T, Hishinuma S. Roles of Lys191 and Lys179 in regulating thermodynamic binding forces of ligands to determine their binding affinity for human histamine H 1 receptors. Biochem Pharmacol 2020; 180:114185. [PMID: 32738199 DOI: 10.1016/j.bcp.2020.114185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Docking simulations based on the crystal structure of human histamine H1 receptors have predicted crucial roles of Lys1915.39 and Lys179ECL2, which exist at the entrance of the ligand-binding pocket, in increasing the H1-receptor selectivity for carboxylated second-generation antihistamines via electrostatic interaction. In this study, we evaluated the roles of Lys1915.39 and Lys179ECL2 in regulating the thermodynamic binding forces of non-carboxylated and carboxylated antihistamines that determine their binding affinity for human H1 receptors. The binding enthalpy and entropy of the 3 sets of non-carboxylated and corresponding carboxylated antihistamines (doxepin and olopatadine, desloratadine and loratadine, and terfenadine and fexofenadine, respectively) were estimated using the van't Hoff equation with the dissociation constants obtained from the displacement curves of the non-carboxylated and carboxylated antihistamines against the binding of [3H]mepyramine to the membrane preparations of Chinese hamster ovary cells expressing human H1 receptors at various temperatures, ranging from 4 °C to 37 °C. We found that the affinity for carboxylated antihistamines was lower than that for the corresponding non-carboxylated compounds due to lower enthalpy-dependent electrostatic binding forces and/or entropy-dependent hydrophobic binding forces. Mutations of Lys1915.39 and/or Lys179ECL2 to alanine mostly increased the binding affinity for antihistamines due to a variety of changes in both enthalpy- and entropy-dependent binding forces. These results suggest that Lys1915.39 and Lys179ECL2 may not contribute to selectively increasing the binding affinity for carboxylated antihistamines via electrostatic interaction, but that they can negatively modulate the binding affinity for non-carboxylated and carboxylated antihistamines non-selectively by affecting their electrostatic as well as hydrophobic binding forces.
Collapse
Affiliation(s)
- Chihiro Kobayashi
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan
| | - Airi Tanaka
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan
| | - Tomomi Yasuda
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
10
|
Mehta P, Miszta P, Rzodkiewicz P, Michalak O, Krzeczyński P, Filipek S. Enigmatic Histamine Receptor H 4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life (Basel) 2020; 10:E50. [PMID: 32344736 PMCID: PMC7235846 DOI: 10.3390/life10040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
The histamine H4 receptor, belonging to the family of G-protein coupled receptors, is an increasingly attractive drug target. It plays an indispensable role in many cellular pathways, and numerous H4R ligands are being studied for the treatment of several inflammatory, allergic, and autoimmune disorders, including pulmonary fibrosis. Activation of H4R is involved in cytokine production and mediates mast cell activation and eosinophil chemotaxis. The importance of this receptor has also been shown in inflammatory models: peritonitis, respiratory tract inflammation, colitis, osteoarthritis, and rheumatoid arthritis. Recent studies suggest that H4R acts as a modulator in cancer, neuropathic pain, vestibular disorders, and type-2 diabetes, however, its role is still not fully understood.
Collapse
Affiliation(s)
- Pakhuri Mehta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Rzodkiewicz
- Department of General and Experimental Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Olga Michalak
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Piotr Krzeczyński
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
11
|
Arimont M, Hoffmann C, de Graaf C, Leurs R. Chemokine Receptor Crystal Structures: What Can Be Learned from Them? Mol Pharmacol 2019; 96:765-777. [PMID: 31266800 DOI: 10.1124/mol.119.117168] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Chemokine receptors belong to the class A of G protein-coupled receptors (GPCRs) and are implicated in a wide variety of physiologic functions, mostly related to the homeostasis of the immune system. Chemokine receptors are also involved in multiple pathologic processes, including immune and autoimmune diseases, as well as cancer. Hence, several members of this GPCR subfamily are considered to be very relevant therapeutic targets. Since drug discovery efforts can be significantly reinforced by the availability of crystal structures, substantial efforts in the area of chemokine receptor structural biology could dramatically increase the outcome of drug discovery campaigns. This short review summarizes the available data on chemokine receptor crystal structures, discusses the numerous applications from chemokine receptor structures that can enhance the daily work of molecular pharmacologists, and describes the challenges and pitfalls to consider when relying on crystal structures for further research applications. SIGNIFICANCE STATEMENT: This short review summarizes the available data on chemokine receptor crystal structures, discusses the numerous applications from chemokine receptor structures that can enhance the daily work of molecular pharmacologists, and describes the challenges and pitfalls to consider when relying on crystal structures for further research applications.
Collapse
Affiliation(s)
- Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Carsten Hoffmann
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Chris de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.A., R.L.); Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University, Jena, Germany (C.H.); and Sosei Heptares, Great Abington, Cambridge, United Kingdom (C.d.G.)
| |
Collapse
|
12
|
Bosma R, Wang Z, Kooistra AJ, Bushby N, Kuhne S, van den Bor J, Waring MJ, de Graaf C, de Esch IJ, Vischer HF, Sheppard RJ, Wijtmans M, Leurs R. Route to Prolonged Residence Time at the Histamine H 1 Receptor: Growing from Desloratadine to Rupatadine. J Med Chem 2019; 62:6630-6644. [PMID: 31274307 PMCID: PMC6750840 DOI: 10.1021/acs.jmedchem.9b00447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Drug–target
binding kinetics are an important predictor of in vivo drug efficacy,
yet the relationship
between ligand structures and their binding kinetics is often poorly
understood. We show that both rupatadine (1) and desloratadine
(2) have a long residence time at the histamine H1 receptor (H1R). Through development of a [3H]levocetirizine radiolabel, we find that the residence time
of 1 exceeds that of 2 more than 10-fold.
This was further explored with 22 synthesized rupatadine and desloratadine
analogues. Methylene-linked cycloaliphatic or β-branched substitutions
of desloratadine increase the residence time at the H1R,
conveying a longer duration of receptor antagonism. However, cycloaliphatic
substituents directly attached to the piperidine amine (i.e., lacking
the spacer) have decreased binding affinity and residence time compared
to their methylene-linked structural analogues. Guided by docking
studies, steric constraints within the binding pocket are hypothesized
to explain the observed differences in affinity and binding kinetics
between analogues.
Collapse
Affiliation(s)
- Reggie Bosma
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Zhiyong Wang
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Albert J Kooistra
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Nick Bushby
- Operations, BioPharmaceuticals R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Sebastiaan Kuhne
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Michael J Waring
- Medicinal Chemistry, Research and Early Development, Oncology R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Chris de Graaf
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Iwan J de Esch
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Robert J Sheppard
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D , AstraZeneca , Gothenburg 431 50 , Sweden
| | - Maikel Wijtmans
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
13
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
14
|
Probe dependency in the determination of ligand binding kinetics at a prototypical G protein-coupled receptor. Sci Rep 2019; 9:7906. [PMID: 31133718 PMCID: PMC6536503 DOI: 10.1038/s41598-019-44025-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023] Open
Abstract
Drug-target binding kinetics are suggested to be important parameters for the prediction of in vivo drug-efficacy. For G protein-coupled receptors (GPCRs), the binding kinetics of ligands are typically determined using association binding experiments in competition with radiolabelled probes, followed by analysis with the widely used competitive binding kinetics theory developed by Motulsky and Mahan. Despite this, the influence of the radioligand binding kinetics on the kinetic parameters derived for the ligands tested is often overlooked. To address this, binding rate constants for a series of histamine H1 receptor (H1R) antagonists were determined using radioligands with either slow (low koff) or fast (high koff) dissociation characteristics. A correlation was observed between the probe-specific datasets for the kinetic binding affinities, association rate constants and dissociation rate constants. However, the magnitude and accuracy of the binding rate constant-values was highly dependent on the used radioligand probe. Further analysis using recently developed fluorescent binding methods corroborates the finding that the Motulsky-Mahan methodology is limited by the employed assay conditions. The presented data suggest that kinetic parameters of GPCR ligands depend largely on the characteristics of the probe used and results should therefore be viewed within the experimental context and limitations of the applied methodology.
Collapse
|
15
|
Vass M, Podlewska S, de Esch IJP, Bojarski AJ, Leurs R, Kooistra AJ, de Graaf C. Aminergic GPCR-Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. J Med Chem 2018; 62:3784-3839. [PMID: 30351004 DOI: 10.1021/acs.jmedchem.8b00836] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aminergic family of G protein-coupled receptors (GPCRs) plays an important role in various diseases and represents a major drug discovery target class. Structure determination of all major aminergic subfamilies has enabled structure-based ligand design for these receptors. Site-directed mutagenesis data provides an invaluable complementary source of information for elucidating the structural determinants of binding of different ligand chemotypes. The current study provides a comparative analysis of 6692 mutation data points on 34 aminergic GPCR subtypes, covering the chemical space of 540 unique ligands from mutagenesis experiments and information from experimentally determined structures of 52 distinct aminergic receptor-ligand complexes. The integrated analysis enables detailed investigation of structural receptor-ligand interactions and assessment of the transferability of combined binding mode and mutation data across ligand chemotypes and receptor subtypes. An overview is provided of the possibilities and limitations of using mutation data to guide the design of novel aminergic receptor ligands.
Collapse
Affiliation(s)
- Márton Vass
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Sabina Podlewska
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Department of Drug Design and Pharmacology , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Sosei Heptares , Steinmetz Building, Granta Park, Great Abington , Cambridge CB21 6DG , U.K
| |
Collapse
|
16
|
Bosma R, van den Bor J, Vischer HF, Labeaga L, Leurs R. The long duration of action of the second generation antihistamine bilastine coincides with its long residence time at the histamine H 1 receptor. Eur J Pharmacol 2018; 838:107-111. [PMID: 30201377 DOI: 10.1016/j.ejphar.2018.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Drug-target binding kinetics has recently attracted considerable interest in view of the potential predictive power for in vivo drug efficacy. The recently introduced antihistamine bilastine has a long duration of in vivo drug action, which outlasts pharmacological active bilastine concentrations in blood. To provide a molecular basis for the long duration of action, we explored the kinetics of bilastine binding to the human histamine H1 receptor using [3H]mepyramine binding studies and compared its pharmacodynamics properties to the reference compounds fexofenadine and diphenhydramine, which have a long (60 ± 20 min) and short (0.41 ± 0.1 min) residence time, respectively. Bilastine shows a long drug-target residence time at the H1 receptor (73 ± 5 min) and this results in a prolonged H1 receptor antagonism in vitro (Ca2+ mobilization in Fluo-4 loaded HeLa cells), following a washout of unbound antagonist. Hence, the long residence time of bilastine can explain the observed long duration of drug action in vivo.
Collapse
Affiliation(s)
- Reggie Bosma
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Luis Labeaga
- Clinical Research Department, Faes Farma SA, Leioa, Bizkaia, Spain
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Structural insights into serotonin receptor ligands polypharmacology. Eur J Med Chem 2018; 151:797-814. [DOI: 10.1016/j.ejmech.2018.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/03/2023]
|
18
|
Hauwert NJ, Mocking TAM, Da Costa Pereira D, Kooistra AJ, Wijnen LM, Vreeker GCM, Verweij EWE, De Boer AH, Smit MJ, De Graaf C, Vischer HF, de Esch IJP, Wijtmans M, Leurs R. Synthesis and Characterization of a Bidirectional Photoswitchable Antagonist Toolbox for Real-Time GPCR Photopharmacology. J Am Chem Soc 2018; 140:4232-4243. [PMID: 29470065 PMCID: PMC5879491 DOI: 10.1021/jacs.7b11422] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Noninvasive methods
to modulate G protein-coupled receptors (GPCRs)
with temporal and spatial precision are in great demand. Photopharmacology
uses photons to control in situ the biological properties
of photoswitchable small-molecule ligands, which bodes well for chemical
biological precision approaches. Integrating the light-switchable
configurational properties of an azobenzene into the ligand core,
we developed a bidirectional antagonist toolbox for an archetypical
family A GPCR, the histamine H3 receptor (H3R). From 16 newly synthesized photoswitchable compounds, VUF14738
(28) and VUF14862 (33) were selected as
they swiftly and reversibly photoisomerize and show over 10-fold increased
or decreased H3R binding affinities, respectively, upon
illumination at 360 nm. Both ligands combine long thermal half-lives
with fast and high photochemical trans-/cis conversion, allowing their use in real-time electrophysiology experiments
with oocytes to confirm dynamic photomodulation of H3R
activation in repeated second-scale cycles. VUF14738 and VUF14862
are robust and fatigue-resistant photoswitchable GPCR antagonists
suitable for spatiotemporal studies of H3R signaling.
Collapse
Affiliation(s)
- Niels J Hauwert
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Tamara A M Mocking
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Daniel Da Costa Pereira
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Lisa M Wijnen
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Gerda C M Vreeker
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Eléonore W E Verweij
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Albertus H De Boer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Chris De Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|
19
|
Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, Ferenczy GG, Keserű GM. Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. J Med Chem 2018; 62:207-222. [DOI: 10.1021/acs.jmedchem.7b01722] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- John A. Christopher
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - Miles Congreve
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S. Doré
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C. Errey
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H. Marshall
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Prakash Rucktooa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | | | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| |
Collapse
|
20
|
Stoddart LA, Vernall AJ, Bouzo-Lorenzo M, Bosma R, Kooistra AJ, de Graaf C, Vischer HF, Leurs R, Briddon SJ, Kellam B, Hill SJ. Development of novel fluorescent histamine H 1-receptor antagonists to study ligand-binding kinetics in living cells. Sci Rep 2018; 8:1572. [PMID: 29371669 PMCID: PMC5785503 DOI: 10.1038/s41598-018-19714-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023] Open
Abstract
The histamine H1-receptor (H1R) is an important mediator of allergy and inflammation. H1R antagonists have particular clinical utility in allergic rhinitis and urticaria. Here we have developed six novel fluorescent probes for this receptor that are very effective for high resolution confocal imaging, alongside bioluminescence resonance energy transfer approaches to monitor H1R ligand binding kinetics in living cells. The latter technology exploits the opportunities provided by the recently described bright bioluminescent protein NanoLuc when it is fused to the N-terminus of a receptor. Two different pharmacophores (mepyramine or the fragment VUF13816) were used to generate fluorescent H1R antagonists conjugated via peptide linkers to the fluorophore BODIPY630/650. Kinetic properties of the probes showed wide variation, with the VUF13816 analogues having much longer H1R residence times relative to their mepyramine-based counterparts. The kinetics of these fluorescent ligands could also be monitored in membrane preparations providing new opportunities for future drug discovery applications.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Andrea J Vernall
- School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Monica Bouzo-Lorenzo
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Reggie Bosma
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Albert J Kooistra
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, PO Box 7161, Amsterdam, The Netherlands
| | - Stephen J Briddon
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Barrie Kellam
- School of Pharmacy, Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| | - Stephen J Hill
- Division of Pharmacology Physiology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
21
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|
22
|
Bosma R, Witt G, Vaas LAI, Josimovic I, Gribbon P, Vischer HF, Gul S, Leurs R. The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor. Front Pharmacol 2017; 8:667. [PMID: 29033838 PMCID: PMC5627017 DOI: 10.3389/fphar.2017.00667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
The pharmacodynamics of drug-candidates is often optimized by metrics that describe target binding (Kd or Ki value) or target modulation (IC50). However, these metrics are determined at equilibrium conditions, and consequently information regarding the onset and offset of target engagement and modulation is lost. Drug-target residence time is a measure for the lifetime of the drug-target complex, which has recently been receiving considerable interest, as target residence time is shown to have prognostic value for the in vivo efficacy of several drugs. In this study, we have investigated the relation between the increased residence time of antihistamines at the histamine H1 receptor (H1R) and the duration of effective target-inhibition by these antagonists. Hela cells, endogenously expressing low levels of the H1R, were incubated with a series of antihistamines and dissociation was initiated by washing away the unbound antihistamines. Using a calcium-sensitive fluorescent dye and a label free, dynamic mass redistribution based assay, functional recovery of the H1R responsiveness was measured by stimulating the cells with histamine over time, and the recovery was quantified as the receptor recovery time. Using these assays, we determined that the receptor recovery time for a set of antihistamines differed more than 40-fold and was highly correlated to their H1R residence times, as determined with competitive radioligand binding experiments to the H1R in a cell homogenate. Thus, the receptor recovery time is proposed as a cell-based and physiologically relevant metric for the lead optimization of G protein-coupled receptor antagonists, like the H1R antagonists. Both, label-free or real-time, classical signaling assays allow an efficient and physiologically relevant determination of kinetic properties of drug molecules.
Collapse
Affiliation(s)
- Reggie Bosma
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University AmsterdamAmsterdam, Netherlands
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening PortHamburg, Germany
| | - Lea A I Vaas
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening PortHamburg, Germany
| | - Ivana Josimovic
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University AmsterdamAmsterdam, Netherlands
| | - Philip Gribbon
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening PortHamburg, Germany
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University AmsterdamAmsterdam, Netherlands
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening PortHamburg, Germany
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University AmsterdamAmsterdam, Netherlands
| |
Collapse
|
23
|
Galambos J, Bielik A, Krasavin M, Orgován Z, Domány G, Nógrádi K, Wágner G, Balogh GT, Béni Z, Kóti J, Szakács Z, Bobok A, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Laszy J, Halász AS, Balázs O, Gál K, Greiner I, Szombathelyi Z, Keserű GM. Discovery and Preclinical Characterization of 3-((4-(4-Chlorophenyl)-7-fluoroquinoline-3-yl)sulfonyl)benzonitrile, a Novel Non-acetylenic Metabotropic Glutamate Receptor 5 (mGluR5) Negative Allosteric Modulator for Psychiatric Indications. J Med Chem 2017; 60:2470-2484. [DOI: 10.1021/acs.jmedchem.6b01858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- János Galambos
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Attila Bielik
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Mikhail Krasavin
- Institute
of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospekt, Peterhof, 198504 Russia
| | - Zoltán Orgován
- Medicinal
Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest, 1117 Hungary
| | - György Domány
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Katalin Nógrádi
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Gábor Wágner
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | | | - Zoltán Béni
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - János Kóti
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Zoltán Szakács
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Amrita Bobok
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Sándor Kolok
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | | | - Mónika Vastag
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Katalin Sághy
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Judit Laszy
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | | | - Ottilia Balázs
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - Krisztina Gál
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | - István Greiner
- Gedeon Richter Plc, 19-21 Gyömrői
út, Budapest, 1103 Hungary
| | | | - György M. Keserű
- Medicinal
Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest, 1117 Hungary
| |
Collapse
|
24
|
Strasser A, Wittmann HJ. Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands. Handb Exp Pharmacol 2017; 241:31-61. [PMID: 28110354 DOI: 10.1007/164_2016_113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several experimental techniques to analyse histamine receptors are available, e.g. pharmacological characterisation of known or new compounds by different types of assays or mutagenesis studies. To obtain insights into the histamine receptors on a molecular and structural level, crystal structures have to be determined and molecular modelling studies have to be performed. It is widely accepted to generate homology models of the receptor of interest based on an appropriate crystal structure as a template and to refine the resulting models by molecular dynamic simulations. A lot of modelling techniques, e.g. docking, QSAR or interaction fingerprint methods, are used to predict binding modes of ligands and pharmacological data, e.g. affinity or even efficacy. However, within the last years, molecular dynamic simulations got more and more important: First of all, molecular dynamic simulations are very helpful to refine the binding mode of a ligand to a histamine receptor, obtained by docking studies. Furthermore, with increasing computational performance it got possible to simulate complete binding pathways of ions or ligands from the aqueous extracellular phase into the allosteric or orthosteric binding pocket of histamine receptors.
Collapse
Affiliation(s)
- Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitäts-Str. 31, Regensburg, 93040, Germany.
| | - Hans-Joachim Wittmann
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitäts-Str. 31, Regensburg, 93040, Germany
| |
Collapse
|