1
|
Huang B, Yang Y, Liu J, Zhang B, Lin N. Ubiquitination regulation of mitochondrial homeostasis: a new sight for the treatment of gastrointestinal tumors. Front Immunol 2025; 16:1533007. [PMID: 40134432 PMCID: PMC11933043 DOI: 10.3389/fimmu.2025.1533007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Mitochondrial homeostasis (MH) refers to the dynamic balance of mitochondrial number, function, and quality within cells. Maintaining MH is significant in the occurrence, development, and clinical treatment of Gastrointestinal (GI) tumors. Ubiquitination, as an important post-translational modification mechanism of proteins, plays a central role in the regulation of MH. Over the past decade, research on the regulation of MH by ubiquitination has focused on mitochondrial biogenesis, mitochondrial dynamics, Mitophagy, and mitochondrial metabolism during these processes. This review summarizes the mechanism and potential therapeutic targets of ubiquitin (Ub)-regulated MH intervention in GI tumors.
Collapse
Affiliation(s)
- Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yulin Yang
- School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
2
|
Shackebaei D, Hesari M, Gorgani S, Vafaeipour Z, Salaramoli S, Yarmohammadi F. The Role of mTOR in the Doxorubicin-Induced Cardiotoxicity: A Systematic Review. Cell Biochem Biophys 2025; 83:43-52. [PMID: 39102090 DOI: 10.1007/s12013-024-01475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug known to induce metabolic changes in the heart, leading to potential heart toxicity. These changes impact various cellular functions and pathways such as disrupting the mechanistic target of rapamycin (mTOR) signaling pathway. The study aimed to investigate the effect of DOX on the mTOR pathway through an in vivo systematic review. Databases were searched on September 11, 2023. We finally included 30 in vivo studies that examined the mTOR expression in cardiac tissue samples. The present study has shown that the PI3K/AKT/mTOR, the AMPK/mTOR, the p53/mTOR signaling, the mTOR/TFEB pathway, the p38 MAPK/mTOR, the sestrins/mTOR, and the KLF15/eNOS/mTORC1 signaling pathways play a crucial role in the development of DOX-induced cardiotoxicity. Inhibition or dysregulation of these pathways can lead to increased oxidative stress, apoptosis, and other adverse effects on the heart. Strategies that target and modulate the mTOR pathways, such as the use of mTOR inhibitors like rapamycin, have the potential to enhance the anticancer effects of DOX while also mitigating its cardiotoxic side effects.
Collapse
Affiliation(s)
- Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Vafaeipour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Salaramoli
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Pei CS, Hou XO, Ma ZY, Tu HY, Qian HC, Li Y, Li K, Liu CF, Ouyang L, Liu JY, Hu LF. α-Synuclein disrupts microglial autophagy through STAT1-dependent suppression of Ulk1 transcription. J Neuroinflammation 2024; 21:275. [PMID: 39462396 PMCID: PMC11515151 DOI: 10.1186/s12974-024-03268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Autophagy dysfunction in glial cells is implicated in the pathogenesis of Parkinson's disease (PD). The previous study reported that α-synuclein (α-Syn) disrupted autophagy in cultured microglia. However, the mechanism of microglial autophagy dysregulation is poorly understood. METHODS Two α-Syn-based PD models were generated via AAV-mediated α-Syn delivery into the mouse substantia nigra and striatal α-Syn preformed fibril (PFF) injection. The levels of microglial UNC-51-like kinase 1 (Ulk1) and other autophagy-related genes in vitro and in PD mice, as well as in the peripheral blood mononuclear cells of PD patients and healthy controls, were determined via quantitative PCR, western blotting and immunostaining. The regulatory effect of signal transducer and activator of transcription 1 (STAT1) on Ulk1 transcription was determined via a luciferase reporter assay and other biochemical studies and was verified through Stat1 knockdown or overexpression. The effect of α-Syn on glial STAT1 activation was assessed by immunohistochemistry and western blotting. Changes in microglial status, proinflammatory molecule expression and dopaminergic neuron loss in the nigrostriatum of PD and control mice following microglial Stat1 conditional knockout (cKO) or treatment with the ULK1 activator BL-918 were evaluated by immunostaining and western blotting. Motor behaviors were determined via open field tests, rotarod tests and balance beam crossing. RESULTS The transcription of microglial ULK1, a kinase that controls autophagy initiation, decreased in both in vitro and in vivo PD mouse models. STAT1 plays a critical role in suppressing Ulk1 transcription. Specifically, Stat1 overexpression downregulated Ulk1 transcription, while Stat1 knockdown increased ULK1 expression, along with an increase in LC3II and a decrease in the SQSTM1/p62 protein. α-Syn PFF caused toll-like receptor 4-dependent activation of STAT1 in microglia. Ablation of Stat1 alleviated the decrease in microglial ULK1 expression and disruption of autophagy caused by α-Syn PFF. Importantly, the ULK1 activator BL-918 and microglial Stat1 cKO attenuated neuroinflammation, dopaminergic neuronal damage and motor defects in PD models. CONCLUSIONS These findings reveal a novel mechanism by which α-Syn impairs microglial autophagy and indicate that targeting STAT1 or ULK1 may be a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Chong-Shuang Pei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhen-Yuan Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Yue Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Chun Qian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jun-Yi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China.
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Zhao M, Xu P, Shi W, Wang J, Wang T, Li P. Icariin exerts anti-tumor activity by inducing autophagy via AMPK/mTOR/ULK1 pathway in triple-negative breast cancer. Cancer Cell Int 2024; 24:74. [PMID: 38355608 PMCID: PMC10868106 DOI: 10.1186/s12935-024-03266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent female tumor, of which triple-negative breast cancer (TNBC) accounts for about 15%. Characterized by its aggressive nature and limited treatment options, TNBC currently stands as a significant clinical challenge. This study aimed to investigate the effects of icariin (ICA) on TNBC and explore the underlying molecular mechanism. METHODS Cell viability was assessed using CCK-8 assay, whereas the impact of ICA on cell proliferation was determined using colony formation assay and detection of proliferating cell nuclear antigen protein. Wound healing and transwell assays were used to evaluate the effects of ICA on cell migration and invasion, respectively. Flow cytometry was used to analyze cell cycle distribution and apoptosis. Transmission electron microscopy and monodansylcaverine staining were performed to detect the induction of autophagy, whereas molecular docking was conducted to predict the potential targets associated with autophagy. The in vivo anti-tumor effects of ICA were evaluated using a TNBC 4T1 xenograft mouse model. Protein expression levels were examined using immunoblotting and immunohistochemistry. RESULTS In vitro, ICA effectively suppressed the viability, proliferation, migration, and invasion of TNBC cells and induced G0/G1 phase cell cycle arrest, apoptosis, and autophagy in TNBC cells by regulating the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) signaling pathway. The knockdown of AMPK and inhibition of autophagy with 3-methyladenine reversed the effects of ICA, highlighting the importance of AMPK and autophagy in the anti-cancer mechanism of ICA. In vivo, ICA significantly inhibited TNBC growth, promoted autophagy, and regulated AMPK/mTOR/ULK1 pathway. CONCLUSIONS Our findings demonstrated that ICA exerts anti-cancer effects against TNBC and the associated molecular mechanisms. This study will help to facilitate further preclinical and clinical investigations for the treatment of TNBC.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
| | - Panling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
| | - Juan Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
| | - Ting Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China.
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China.
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
Takakura Y, Machida M, Terada N, Katsumi Y, Kawamura S, Horie K, Miyauchi M, Ishikawa T, Akiyama N, Seki T, Miyao T, Hayama M, Endo R, Ishii H, Maruyama Y, Hagiwara N, Kobayashi TJ, Yamaguchi N, Takano H, Akiyama T, Yamaguchi N. Mitochondrial protein C15ORF48 is a stress-independent inducer of autophagy that regulates oxidative stress and autoimmunity. Nat Commun 2024; 15:953. [PMID: 38296961 PMCID: PMC10831050 DOI: 10.1038/s41467-024-45206-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.
Collapse
Affiliation(s)
- Yuki Takakura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Moeka Machida
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Natsumi Terada
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuka Katsumi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Seika Kawamura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takao Seki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Rin Endo
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Yuya Maruyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hiroyuki Takano
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| | - Noritaka Yamaguchi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
6
|
Fan Z, Wan LX, Jiang W, Liu B, Wu D. Targeting autophagy with small-molecule activators for potential therapeutic purposes. Eur J Med Chem 2023; 260:115722. [PMID: 37595546 DOI: 10.1016/j.ejmech.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Autophagy is well-known to be a lysosome-mediated catabolic process for maintaining cellular and organismal homeostasis, which has been established with many links to a variety of human diseases. Compared with the therapeutic strategy for inhibiting autophagy, activating autophagy seems to be another promising therapeutic strategy in several contexts. Hitherto, mounting efforts have been made to discover potent and selective small-molecule activators of autophagy to potentially treat human diseases. Thus, in this perspective, we focus on summarizing the complicated relationships between defective autophagy and human diseases, and further discuss the updated progress of a series of small-molecule activators targeting autophagy in human diseases. Taken together, these inspiring findings would provide a clue on discovering more small-molecule activators of autophagy as targeted candidate drugs for potential therapeutic purposes.
Collapse
Affiliation(s)
- Zhichao Fan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongbo Wu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Xiang H, Zhou M, Li Y, Zhou L, Wang R. Drug discovery by targeting the protein-protein interactions involved in autophagy. Acta Pharm Sin B 2023; 13:4373-4390. [PMID: 37969735 PMCID: PMC10638514 DOI: 10.1016/j.apsb.2023.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation. Protein-protein interactions (PPIs) play a crucial role at many stages of autophagy, which present formidable but attainable targets for autophagy regulation. Moreover, selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network. Thus, small-molecule regulators, including peptides and peptidomimetics, targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery. This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs. Successful strategies and existing limitations in this field are also discussed.
Collapse
Affiliation(s)
- Honggang Xiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
8
|
Keith J, Christakopoulos GE, Fernandez AG, Yao Y, Zhang J, Mayberry K, Telange R, Sweileh RBA, Dudley M, Westbrook C, Sheppard H, Weiss MJ, Lechauve C. Loss of miR-144/451 alleviates β-thalassemia by stimulating ULK1-mediated autophagy of free α-globin. Blood 2023; 142:918-932. [PMID: 37339583 PMCID: PMC10517214 DOI: 10.1182/blood.2022017265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Most cells can eliminate unstable or misfolded proteins through quality control mechanisms. In the inherited red blood cell disorder β-thalassemia, mutations in the β-globin gene (HBB) lead to a reduction in the corresponding protein and the accumulation of cytotoxic free α-globin, which causes maturation arrest and apoptosis of erythroid precursors and reductions in the lifespan of circulating red blood cells. We showed previously that excess α-globin is eliminated by Unc-51-like autophagy activating kinase 1 (ULK1)-dependent autophagy and that stimulating this pathway by systemic mammalian target of rapamycin complex 1 (mTORC1) inhibition alleviates β-thalassemia pathologies. We show here that disrupting the bicistronic microRNA gene miR-144/451 alleviates β-thalassemia by reducing mTORC1 activity and stimulating ULK1-mediated autophagy of free α-globin through 2 mechanisms. Loss of miR-451 upregulated its target messenger RNA, Cab39, which encodes a cofactor for LKB1, a serine-threonine kinase that phosphorylates and activates the central metabolic sensor adenosine monophosphate-activated protein kinase (AMPK). The resultant enhancement of LKB1 activity stimulated AMPK and its downstream effects, including repression of mTORC1 and direct activation of ULK1. In addition, loss of miR-144/451 inhibited the expression of erythroblast transferrin receptor 1, causing intracellular iron restriction, which has been shown to inhibit mTORC1, reduce free α-globin precipitates, and improve hematological indices in β-thalassemia. The beneficial effects of miR-144/451 loss in β-thalassemia were inhibited by the disruption of Cab39 or Ulk1 genes. Together, our findings link the severity of β-thalassemia to a highly expressed erythroid microRNA locus and a fundamental, metabolically regulated protein quality control pathway that is amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Julia Keith
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Yu Yao
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kalin Mayberry
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rahul Telange
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Razan B. A. Sweileh
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael Dudley
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Camilla Westbrook
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
9
|
Liu W, Zhu SO, Guo YL, Tu LF, Zhen YQ, Zhao RY, Ou-Yang L, Kurihara H, He RR, Liu B. BL-918, a small-molecule activator of ULK1, induces cytoprotective autophagy for amyotrophic lateral sclerosis therapy. Acta Pharmacol Sin 2023; 44:524-537. [PMID: 36042292 PMCID: PMC9958028 DOI: 10.1038/s41401-022-00972-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/28/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common fatal neurodegenerative diseases in adults. ALS pathogenesis is associated with toxic SOD1 aggregates generated by mutant SOD1. Since autophagy is responsible for the clearance of toxic protein aggregates including SOD1 aggregates, autophagy induction has been considered as a potential strategy for treating ALS. Autophagic signaling is initiated by unc-51 like autophagy activating kinase 1 (ULK1) complex. We previously identified that BL-918 as a specific ULK1 activator, which exerted cytoprotective effect against Parkinson's disease in vitro and in vivo. In this study we investigated whether BL-918 exerted a therapeutic effect against ALS, and characterized its pharmacokinetic profile in rats. In hSODG93A-NSC34 cells, treatment with BL-918 (5, 10 μM) dose-dependently induced ULK1-dependent autophagy, and eliminated toxic SOD1 aggregates. In SODG93A mice, administration of BL-918 (40, 80 mg/kg, b.i.d., i.g.) dose-dependently prolonged lifespan and improved the motor function, and enhanced the clearance of SOD1 aggregates in spinal cord and cerebral cortex through inducing autophagy. In the pharmacokinetic study conducted in rats, we found BL-918 and its 2 metabolites (M8 and M10) present in spinal cord and brain; after intragastric and intravenous administration, BL-918 reached the highest blood concentration compared to M8 and M10. Collectively, ULK1 activator BL-918 displays a therapeutic potential on ALS through inducing cytoprotective autophagy. This study provides a further clue for autophagic dysfunction in ALS pathogenesis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi-Ou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu-Lin Guo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Long-Fang Tu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Yong-Qi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong-Yan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Ou-Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hiroshi Kurihara
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Small Molecule Inhibitors for Unc-51-like Autophagy-Activating Kinase Targeting Autophagy in Cancer. Int J Mol Sci 2023; 24:ijms24020953. [PMID: 36674464 PMCID: PMC9866249 DOI: 10.3390/ijms24020953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a cellular process that removes damaged components of cells and recycles them as biochemical building blocks. Autophagy can also be induced to protect cells in response to intra- and extracellular stresses, including damage to cellular components, nutrient deprivation, hypoxia, and pathogenic invasion. Dysregulation of autophagy has been attributed to various diseases. In particular, autophagy protects cancer cells by supporting tumor cell survival and the development of drug resistance. Understanding the pathophysiological mechanisms of autophagy in cancer has stimulated the research on discovery and development of specific inhibitors targeting various stages of autophagy. In recent years, Unc-51-like autophagy-activating kinase (ULK) inhibitors have become an attractive strategy to treat cancer. This review summarizes recent discoveries and developments in small-molecule ULK inhibitors and their potential as anticancer agents. We focused on structural features, interactions with binding sites, and biological effects of these inhibitors. Overall, this review will provide guidance for using ULK inhibitors as chemical probes for autophagy in various cancers and developing improved ULK inhibitors that would enhance therapeutic benefits in the clinic.
Collapse
|
11
|
Teng M, Young DW, Tan Z. The Pursuit of Enzyme Activation: A Snapshot of the Gold Rush. J Med Chem 2022; 65:14289-14304. [PMID: 36265019 DOI: 10.1021/acs.jmedchem.2c01291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A range of enzymes drive human physiology, and their activities are tightly regulated through numerous signaling pathways. Depending on the context, these pathways may activate or inhibit an enzyme as a way to ensure proper execution of cellular functions. From a drug discovery and development perspective, pharmacological inhibition of enzymes has been a focus of interest, as many diseases are associated with the upregulation of enzyme function. On the other hand, however, pharmacological activation of enzymes such as kinases and phosphatases has been of increasing interest. In this review, we discuss seven case studies that highlight pharmacological activation strategy, describe the binding modes and pharmacology of the activators, and comment on how this on-demand activation strategy complements the commonly pursued inhibition strategy, thus jointly enabling bidirectional modulation of specific target of interest. Going forward, we expect activators to play important roles as chemical probes and drug leads.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Damian W Young
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Prospect of ULK1 modulators in targeting regulatory T cells. Bioorg Chem 2022; 129:106141. [PMID: 36137312 DOI: 10.1016/j.bioorg.2022.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Regulatory T (Treg) cells play an instrumental role in coordinating immune homeostasis via potent inhibitory effects. Defects in Treg cells lead to autoimmunity, but an overwhelming proportion of Treg cells encourages cancer progression. Hence, targeting Treg cells has emerged as a promising approach for mitigating disease severity. Recent studies have revealed that kinases are a critical component for tuning the fate of Treg cells, but the entire network of Treg-modulating kinases is still unclear. Here, we propose that the autophagy-activating UNC-51-like kinase 1 (ULK1) is a candidate for Treg cell modulation. While accumulating evidence has highlighted the role of autophagy-related kinases in Treg cells, the ULK1-Treg cell axis is yet to be examined. In this review, we predicted the potential role of ULK1 in Treg cell modulation. Furthermore, we summarized current ULK1 activators and inhibitors that can be investigated as Treg-targeting strategies, which might have beneficial outcomes in autoimmunity and cancer.
Collapse
|
13
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
14
|
Qu J, Lin Z. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Int J Mol Sci 2021; 22:ijms222111912. [PMID: 34769343 PMCID: PMC8585084 DOI: 10.3390/ijms222111912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.
Collapse
|
15
|
Zuo L, Dai C, Yi L, Dong Z. 7,8-dihydroxyflavone ameliorates motor deficits via regulating autophagy in MPTP-induced mouse model of Parkinson's disease. Cell Death Discov 2021; 7:254. [PMID: 34545064 PMCID: PMC8452727 DOI: 10.1038/s41420-021-00643-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and diminished dopamine content in the striatum. Recent reports show that 7,8-dihydroxyflavone (DHF), a TrkB agonist, attenuates the α-synuclein deposition and ameliorates motor deficits. However, the underlying mechanism is unclear. In this study, we investigated whether autophagy is involved in the clearance of α-synuclein and the signaling pathway through which DHF exerts therapeutic effects. We found that the administration of DHF (5 mg/kg/day, i.p.) prevented the loss of dopaminergic neurons and improved motor functions in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, whereas these protective effects of DHF were completely blocked by autophagy inhibitor chloroquine (CQ). Further in vitro studies showed that autophagy was inhibited in N2A cells treated with 1-methyl-4-phenylpyridinium (MPP+), as reflected by a significant decrease in the expressions of autophagy marker proteins (Beclin1 and LC3II) and an increase in the expression of autophagic flux marker p62. DHF restored the impaired autophagy to control level in MPP+-treated N2A cells by inhibiting the ERK-LKB1-AMPK signaling pathway. Taken together, these results demonstrate that DHF exerts therapeutic effects in MPTP/MPP+-induced neurotoxicity by inhibiting the ERK-LKB1-AMPK signaling pathway and subsequently improving impaired autophagy.
Collapse
Affiliation(s)
- Li Zuo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunfang Dai
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lilin Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
16
|
In silico approaches using pharmacophore model combined with molecular docking for discovery of novel ULK1 inhibitors. Future Med Chem 2021; 13:341-361. [PMID: 33427493 DOI: 10.4155/fmc-2020-0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Discovery of effective autophagy-initiating kinase ULK1 inhibitors has attracted more and more attention in cancer treatment. Methodology & results: The present study describes the application of a pharmacophore-based virtual screening and structure-based docking approach guided drug design. Compound U-2 exhibited a nanomolar range of IC50 against the ULK1 target. Molecular dynamics simulation was used to assess the quality of docking studies. The determinants of binding affinity were investigated, and a different binding pattern was observed. Subsequently, prediction properties of ADMET (absorption, distribution, metabolism, excretion and toxicity) and hepatotoxicity in vitro studies indicated that U-2 possessed good drug-like properties. Moreover, western blot analysis indicated that the compound inhibited autophagic flux in cells. Conclusion: The present study provides an appropriate guideline for discovering novel ULK1 inhibitors. The novel compound may serve as a good starting point for further development and optimizations.
Collapse
|
17
|
Tang Y, Tao Y, Wang L, Yang L, Jing Y, Jiang X, Lei L, Yang Z, Wang X, Peng M, Xiao Q, Ren J, Zhang L. NPM1 mutant maintains ULK1 protein stability via TRAF6‐dependent ubiquitination to promote autophagic cell survival in leukemia. FASEB J 2020; 35:e21192. [DOI: 10.1096/fj.201903183rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/06/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yuting Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yao Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Lu Wang
- Department of Clinical Laboratory University‐Town HospitalChongqing Medical University Chongqing China
| | - Liyuan Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Zailin Yang
- Department of Clinical Laboratory The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xin Wang
- Department of Hematology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| |
Collapse
|
18
|
Alsaqati M, Heine VM, Harwood AJ. Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation. Mol Autism 2020; 11:80. [PMID: 33076974 PMCID: PMC7574213 DOI: 10.1186/s13229-020-00391-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare genetic multisystemic disorder resulting from autosomal dominant mutations in the TSC1 or TSC2 genes. It is characterised by hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway and has severe neurodevelopmental and neurological components including autism, intellectual disability and epilepsy. In human and rodent models, loss of the TSC proteins causes neuronal hyperexcitability and synaptic dysfunction, although the consequences of these changes for the developing central nervous system are currently unclear. METHODS Here we apply multi-electrode array-based assays to study the effects of TSC2 loss on neuronal network activity using autism spectrum disorder (ASD) patient-derived iPSCs. We examine both temporal synchronisation of neuronal bursting and spatial connectivity between electrodes across the network. RESULTS We find that ASD patient-derived neurons with a functional loss of TSC2, in addition to possessing neuronal hyperactivity, develop a dysfunctional neuronal network with reduced synchronisation of neuronal bursting and lower spatial connectivity. These deficits of network function are associated with elevated expression of genes for inhibitory GABA signalling and glutamate signalling, indicating a potential abnormality of synaptic inhibitory-excitatory signalling. mTORC1 activity functions within a homeostatic triad of protein kinases, mTOR, AMP-dependent protein Kinase 1 (AMPK) and Unc-51 like Autophagy Activating Kinase 1 (ULK1) that orchestrate the interplay of anabolic cell growth and catabolic autophagy while balancing energy and nutrient homeostasis. The mTOR inhibitor rapamycin suppresses neuronal hyperactivity, but does not increase synchronised network activity, whereas activation of AMPK restores some aspects of network activity. In contrast, the ULK1 activator, LYN-1604, increases the network behaviour, shortens the network burst lengths and reduces the number of uncorrelated spikes. LIMITATIONS Although a robust and consistent phenotype is observed across multiple independent iPSC cultures, the results are based on one patient. There may be more subtle differences between patients with different TSC2 mutations or differences of polygenic background within their genomes. This may affect the severity of the network deficit or the pharmacological response between TSC2 patients. CONCLUSIONS Our observations suggest that there is a reduction in the network connectivity of the in vitro neuronal network associated with ASD patients with TSC2 mutation, which may arise via an excitatory/inhibitory imbalance due to increased GABA-signalling at inhibitory synapses. This abnormality can be effectively suppressed via activation of ULK1.
Collapse
Affiliation(s)
- Mouhamed Alsaqati
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Vivi M Heine
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
19
|
Yang G, Li Y, Zhao Y, Ouyang L, Chen Y, Liu B, Liu J. Targeting Atg4B for cancer therapy: Chemical mediators. Eur J Med Chem 2020; 209:112917. [PMID: 33077263 DOI: 10.1016/j.ejmech.2020.112917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 02/05/2023]
Abstract
Atg4, a pivotal macroautophagy/autophagy-related cysteine protein family, which regulate autophagy through either cleaving Atg8 homologs for its further lipidation or delipidating Atg8 homologs from the autophagosome. There are four homologs, Atg4A, Atg4B, Atg4C, and Atg4D. Among them, an increasing amount of evidence indicates that Atg4B possessed superior catalytic efficiency toward the Atg8 substrate, as well as regulates autophagy process and plays a key role in the development of several human cancers. Recently, efforts have been contributed to the exploration of Atg4B inhibitors or activators. In this review, we comprehensively clarify the function of Atg4B in autophagy and cancer biology, as well as the relationship between pharmacological function and structure-activity of small molecule drugs targeting Atg4B. The development of novel drugs targeting Atg4B could be well applied in the clinical practice.
Collapse
Affiliation(s)
- Gaoxia Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jie Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Sun D, Yang Z, Zhen Y, Yang Y, Chen Y, Yuan Y, Zhang L, Zeng X, Chen L. Discovery of 5-bromo-4-phenoxy-N-phenylpyrimidin-2-amine derivatives as novel ULK1 inhibitors that block autophagy and induce apoptosis in non-small cell lung cancer. Eur J Med Chem 2020; 208:112782. [PMID: 32961380 DOI: 10.1016/j.ejmech.2020.112782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
UNC51-like kinase1 (ULK1) recruits its binding partners and initiates the autophagy process in cancer. ULK1 is significantly overexpressed in Non-small cell lung cancer (NSCLC) and negatively correlated with clinical prognosis in NSCLC patients. Based upon the binding features of ULK1, we explored the pharmacophore modeling to discover the common anchoring features. It was verified by synthesizing 5-bromo-4-phenoxy-N-phenylpyrimidin-2-amine derivatives, as well as subsequently elucidating the structure-activity relationships (SAR). Among all the obtained ULK1 inhibitors, 5-bromo-4-(2-fluoro-4-nitrophenoxy)-N-(3,4,5-trimethoxyphenyl) pyrimidin-2-amine (3s), was the most active one. The docking analysis was conducted to compare 3s and SBI-0206965, which further elucidated the roles of the H-bond donor. This compound inhibited the proliferation of A549 cells and showed strong inhibitory activity against ULK1 kinase. Moreover, we found that compound 3s could induce apoptosis while simultaneously blocking autophagy. Collectively, these findings shed new light on compound 3s that would be utilized as a promising candidate drug for the future NSCLC therapy.
Collapse
Affiliation(s)
- Dejuan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zijian Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongqi Zhen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanmei Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
21
|
Xu T, Sun D, Chen Y, Ouyang L. Targeting mTOR for fighting diseases: A revisited review of mTOR inhibitors. Eur J Med Chem 2020; 199:112391. [DOI: 10.1016/j.ejmech.2020.112391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
22
|
Vahsen BF, Ribas VT, Sundermeyer J, Boecker A, Dambeck V, Lenz C, Shomroni O, Caldi Gomes L, Tatenhorst L, Barski E, Roser AE, Michel U, Urlaub H, Salinas G, Bähr M, Koch JC, Lingor P. Inhibition of the autophagic protein ULK1 attenuates axonal degeneration in vitro and in vivo, enhances translation, and modulates splicing. Cell Death Differ 2020; 27:2810-2827. [PMID: 32341448 PMCID: PMC7493890 DOI: 10.1038/s41418-020-0543-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Axonal degeneration is a key and early pathological feature in traumatic and neurodegenerative disorders of the CNS. Following a focal lesion to axons, extended axonal disintegration by acute axonal degeneration (AAD) occurs within several hours. During AAD, the accumulation of autophagic proteins including Unc-51 like autophagy activating kinase 1 (ULK1) has been demonstrated, but its role is incompletely understood. Here, we study the effect of ULK1 inhibition in different models of lesion-induced axonal degeneration in vitro and in vivo. Overexpression of a dominant negative of ULK1 (ULK1.DN) in primary rat cortical neurons attenuates axotomy-induced AAD in vitro. Both ULK1.DN and the ULK1 inhibitor SBI-0206965 protect against AAD after rat optic nerve crush in vivo. ULK1.DN additionally attenuates long-term axonal degeneration after rat spinal cord injury in vivo. Mechanistically, ULK1.DN decreases autophagy and leads to an mTOR-mediated increase in translational proteins. Consistently, treatment with SBI-0206965 results in enhanced mTOR activation. ULK1.DN additionally modulates the differential splicing of the degeneration-associated genes Kif1b and Ddit3. These findings uncover ULK1 as an important mediator of axonal degeneration in vitro and in vivo, and elucidate its function in splicing, defining it as a putative therapeutic target.
Collapse
Affiliation(s)
- Björn Friedhelm Vahsen
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Vinicius Toledo Ribas
- Department of Morphology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Jonas Sundermeyer
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Alexander Boecker
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 630 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Orr Shomroni
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Lucas Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Elisabeth Barski
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany. .,Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Str. 3a, 37075, Göttingen, Germany. .,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany. .,Department of Neurology, Rechts der Isar Hospital, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
23
|
Liu L, Yan L, Liao N, Wu WQ, Shi JL. A Review of ULK1-Mediated Autophagy in Drug Resistance of Cancer. Cancers (Basel) 2020; 12:352. [PMID: 32033142 PMCID: PMC7073181 DOI: 10.3390/cancers12020352] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
The difficulty of early diagnosis and the development of drug resistance are two major barriers to the successful treatment of cancer. Autophagy plays a crucial role in several cellular functions, and its dysregulation is associated with both tumorigenesis and drug resistance. Unc-51-like kinase 1 (ULK1) is a serine/threonine kinase that participates in the initiation of autophagy. Many studies have indicated that compounds that directly or indirectly target ULK1 could be used for tumor therapy. However, reports of the therapeutic effects of these compounds have come to conflicting conclusions. In this work, we reviewed recent studies related to the effects of ULK1 on the regulation of autophagy and the development of drug resistance in cancers, with the aim of clarifying the mechanistic underpinnings of this therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Jun-Ling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an 710072, China; (L.L.); (L.Y.); (N.L.); (W.-Q.W.)
| |
Collapse
|
24
|
Zhao Y, Wang Z, Zhang W, Zhang L. Non-coding RNAs regulate autophagy process via influencing the expression of associated protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:32-39. [PMID: 31786247 DOI: 10.1016/j.pbiomolbio.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a tightly-regulated multi-step process involving the lysosomal degradation of proteins and cytoplasmic organelles. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is fuse with lysosomes or endosomes, and then deliver its cytoplasmic cargo to the lysosomes. Here, we summarize the recent process of autophagy, focusing on protein molecules, their complexes, and its essential roles of autophagy in various phases. Emerging evidence has revealed that miRNAs, lncRNAs, and circRNAs play an indispensable role in autophagy regulation by modulating targeting gene expression. This review we will summarize the main features of ncRNAs and point to gaps in our current knowledge of the connection between ncRNAs and autophagy, as well as their potential utilization in various disease phenotypes. Also, we highlight recent advances in ncRNAs and autophagy-associated protein interaction and how they regulate the autophagy process.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China.
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
25
|
Roles for Autophagy in Esophageal Carcinogenesis: Implications for Improving Patient Outcomes. Cancers (Basel) 2019; 11:cancers11111697. [PMID: 31683722 PMCID: PMC6895837 DOI: 10.3390/cancers11111697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is among the most aggressive forms of human malignancy with five-year survival rates of <20%. Autophagy is an evolutionarily conserved catabolic process that degrades and recycles damaged organelles and misfolded proteins to maintain cellular homeostasis. While alterations in autophagy have been associated with carcinogenesis across tissues, cell type- and context-dependent roles for autophagy have been reported. Herein, we review the current knowledge related to autophagy in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), the two most common subtypes of esophageal malignancy. We explore roles for autophagy in the development and progression of ESCC and EAC. We then continue to discuss molecular markers of autophagy as they relate to esophageal patient outcomes. Finally, we summarize current literature examining roles for autophagy in ESCC and EAC response to therapy and discuss considerations for the potential use of autophagy inhibitors as experimental therapeutics that may improve patient outcomes in esophageal cancer.
Collapse
|
26
|
Wang X, Lan Z, He J, Lai Q, Yao X, Li Q, Liu Y, Lai H, Gu C, Yan Q, Fang Y, Zhang Y, Li A, Liu S. LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells. Cancer Cell Int 2019; 19:234. [PMID: 31516391 PMCID: PMC6734319 DOI: 10.1186/s12935-019-0951-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Background Chemotherapy resistance is one of the main causes of recurrence in colorectal cancer (CRC) patients and leads to poor prognosis. Long noncoding RNAs (lncRNAs) have been reported to regulate chemoresistance. We aimed to determine the role of the lncRNA small nucleolar RNA host gene 6 (SNHG6) in CRC cell chemoresistance. Methods Cell drug sensitivity tests and flow cytometry were performed to analyze CRC cell chemoresistance. Animal models were used to determine chemoresistance in vivo, and micro RNA (miRNA) binding sites were detected by dual-luciferase reporter assays. Bioinformatics analysis was performed to predict miRNAs binding to SNHG6 and target genes of miR-26a-5p. SNHG6/miR-26a-5p/ULK1 axis and autophagy-related proteins were detected by qRT-PCR and western blotting. Furthermore, immunofluorescence was employed to confirm the presence of autophagosomes. Results SNHG6 enhanced CRC cell resistance to 5-fluorouracil (5-FU), promoted autophagy, inhibited 5-FU-induced apoptosis, and increased 5-FU resistance in vivo. Bioinformatics analysis showed that miR-26a-5p might bind to SNHG6 and target ULK1, and dual-luciferase reporter assays confirmed this activity. qRT-PCR and western blotting showed that SNHG6 was able to negatively regulate miR-26a-5p but correlated positively with ULK1. Conclusion SNHG6 may promote chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in CRC cells.
Collapse
Affiliation(s)
- Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Zhixian Lan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Juan He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Xiang Yao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Yongfeng Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Huasheng Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Chuncai Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China
| |
Collapse
|
27
|
Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer. Oncogene 2019; 38:7106-7112. [DOI: 10.1038/s41388-019-0936-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/19/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
|
28
|
Nicolaou CA, Humblet C, Hu H, Martin EM, Dorsey FC, Castle TM, Burton KI, Hu H, Hendle J, Hickey MJ, Duerksen J, Wang J, Erickson JA. Idea2Data: Toward a New Paradigm for Drug Discovery. ACS Med Chem Lett 2019; 10:278-286. [PMID: 30891127 DOI: 10.1021/acsmedchemlett.8b00488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Increasing the success rate and throughput of drug discovery will require efficiency improvements throughout the process that is currently used in the pharmaceutical community, including the crucial step of identifying hit compounds to act as drivers for subsequent optimization. Hit identification can be carried out through large compound collection screening and often involves the generation and testing of many hypotheses based on available knowledge. In practice, hypothesis generation can involve the selection of promising chemical structures from compound collections using predictive models built from previous screening/assay results. Available physical collections, typically used during hit identification, are of the order of 106 compounds but represent only a small fraction of the small molecule drug-like chemical space. In an effort to survey a larger portion of chemical space and eliminate inefficiencies during hit identification, we introduce a new process, termed Idea2Data (I2D) that tightly integrates computational and experimental components of the drug discovery process. I2D provides the ability to connect a vast virtual collection of compounds readily synthesizable on automated synthesis systems with computational predictive models for the identification of promising structures. This new paradigm enables researchers to process billions of virtual molecules and select structures that can be prepared on automated systems and made available for biological testing, allowing for timely hypothesis testing and follow-up. Since its introduction, I2D has positively impacted several portfolio efforts through identification of new chemical scaffolds and functionalization of existing scaffolds. In this Innovations paper, we describe the I2D process and present an application for the discovery of new ULK inhibitors.
Collapse
Affiliation(s)
- Christos A. Nicolaou
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Christine Humblet
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Hong Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Eva M. Martin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Frank C. Dorsey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Thomas M. Castle
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Keith Ian Burton
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Haitao Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jorg Hendle
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Michael J. Hickey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Joel Duerksen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jibo Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jon A. Erickson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
29
|
Colecchia D, Dapporto F, Tronnolone S, Salvini L, Chiariello M. MAPK15 is part of the ULK complex and controls its activity to regulate early phases of the autophagic process. J Biol Chem 2018; 293:15962-15976. [PMID: 30131341 DOI: 10.1074/jbc.ra118.002527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy, a pathway for bulk protein degradation and removal of damaged organelles, represents one of the major responses of cells to stress, thereby exerting a strict control on their correct functioning. Consequently, this process has been involved in the pathogenesis and therapeutic responses of several human diseases. Mitogen-activated protein (MAP) kinase 15 (MAPK15) is an atypical member of the MAP kinase family that recently emerged as a key modulator of autophagy and, through this, of cell transformation. Still, no information is available about signaling pathways mediating the effect of MAPK15 on this process, nor is it known which phase of autophagosome biogenesis is affected by this MAP kinase. Here, we demonstrate that MAPK15 stimulated 5'-AMP-activated protein kinase-dependent activity of UNC-51-like kinase 1 (ULK1), the only protein kinase among the ATG-related proteins, toward downstream substrates and signaling intermediates. Importantly, MAPK15 directly interacted with the ULK1 complex and mediated ULK1 activation induced by starvation, a classical stimulus for the autophagic process. In turn, ULK1 and its highly homologous protein ULK2 are able to transduce MAPK15 signals stimulating early phases of autophagosomal biogenesis in a multikinase cascade that offers numerous potential targets for future therapeutic intervention in cancer and other autophagy-related human diseases.
Collapse
Affiliation(s)
- David Colecchia
- From the Consiglio Nazionale delle Ricerche (CNR), Istituto di Fisiologia Clinica (IFC), Siena 53100.,the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100
| | - Francesca Dapporto
- the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100.,the Università degli Studi di Siena, Siena 53100, and
| | - Serena Tronnolone
- the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100
| | - Laura Salvini
- the Toscana Life Sciences Foundation, Siena 53100, Italy
| | - Mario Chiariello
- From the Consiglio Nazionale delle Ricerche (CNR), Istituto di Fisiologia Clinica (IFC), Siena 53100, .,the Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory (CRL), Unit "Signal Transduction," Siena 53100
| |
Collapse
|