1
|
Natho P, Colella M, Luisi R. Strained spiro heterocycles as potential bioisosteres: an update on the synthesis of heteroatom-containing spiro[2.3]hexanes and spiro[3.3]heptanes. Chem Commun (Camb) 2025; 61:6579-6594. [PMID: 40231647 DOI: 10.1039/d5cc00656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The interest of medicinal chemists in strained spiro heterocycles has continuously risen, given their potential as non-classical three-dimensional bioisosteres, as it has been shown that their inherent structural characteristics can impose beneficial physicochemical properties on lead compounds (e.g., metabolic stability, lipophilicity). In particular, strained spiro heterocycles containing at least one four-membered ring are in demand, as the inclusion of a small ring results in a more rigid and denser molecular space, whereas the inclusion of a heteroatom allows for placement of an exit vector orthogonal to the neighbouring carbon-centered exit vectors. The continuous development of new strained spiro heterocycles, their site-specific functionalisation, and their application as bioisostere is thus imperative. This review provides an overview of progress since 2014 with a particular focus on heteroatom-containing spiro[2.3]hexanes and spiro[3.3]heptanes.
Collapse
Affiliation(s)
- Philipp Natho
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy.
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy.
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
2
|
Najafi N, Fatemi MH. Computational design of PARP-1 inhibitors: QSAR, molecular docking, virtual screening, ADMET, and molecular dynamics simulations for targeted drug development. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2025; 36:205-246. [PMID: 40289719 DOI: 10.1080/1062936x.2025.2480859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have shown promise in treating various cancers with homologous recombination repair deficiencies, particularly in breast and ovarian cancers harbouring BRCA1/2 mutations. This study aimed to identify and optimize novel PARP-1 inhibitors using the phthalazinone scaffold, known for forming strong and selective interactions with the active site of PARP-1. Through a combination of Quantitative Structure-Activity Relationship (QSAR) modelling, molecular docking simulations, and virtual screening, we discovered compounds with significant anticancer potential. Both the Multiple Linear Regression (MLR) and Support Vector Machines (SVM) models, utilizing four selected molecular descriptors, demonstrated high predictive efficiency for inhibitory activity (MLR: r2 = 0.944, Q2cv (cross-validated correlation coefficient) = 0.921, root mean square error (RMSE) = 0.249; SVM: r2 = 0.947, Q2cv = 0.887, RMSE = 0.245). Molecular docking studies revealed that several new compounds exhibited strong interactions with key amino acids GLY 227A, MET 229A, PHE 230A, and TYR 246A within the PARP-1 active site, similar to those observed in reference inhibitors Olaparib and AZD2461. Then, the top-ranked compound's (3a) ligand-protein complex underwent a 200 ns molecular dynamics (MD) simulation, confirming stable binding and revealing a robust set of intermolecular interactions maintained under physiological conditions.
Collapse
Affiliation(s)
- N Najafi
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - M H Fatemi
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Li QQ, Quan X, Wang ZX, Qiao N, Ni XF, Jing XL, Zhou SS, Tian XL, Zheng GC, Zhan KN, Xu YJ, Yang J, Zhou Y, Liang XT, Zhao ZH, Wei TH, Liu Q, Bai MY, Sun SL, Yu YC, Cao P, Li NG, Zhang XM, Liu J, Shi ZH. Design, Synthesis, and Biological Evaluation of 3,4-Dihydroisoquinolin-1( 2H)-one Derivatives as Protein Arginine Methyltransferase 5 Inhibitors for the Treatment of Non-Hodgkin's Lymphoma. J Med Chem 2025; 68:108-134. [PMID: 39722476 DOI: 10.1021/acs.jmedchem.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Through catalyzing the transfer of methyl groups onto the guanidinium of arginine, protein arginine methyltransferase 5 (PRMT5) was essential to the cell growth of cancer cells. By utilizing a scaffold hopping strategy, a novel series of 3,4-dihydroisoquinolin-1(2H)-one derivatives were designed and synthesized. Through a systematic SAR study, D3 demonstrated excellent PRMT5 inhibitory activity, potent antiproliferative activity against Z-138, favorable pharmacokinetic profiles, and low hERG toxicity. Molecular docking, molecular dynamic (MD) simulation, and surface plasmon resonance (SPR) study indicated that D3 was tightly interacted with PRMT5. Meanwhile, D3 exhibited high selectivity against PRMT5, which could inhibit the growth of various cancer cells, induce apoptosis, and arrest the cell cycle in the G0/G1 phase. Additionally, D3 possessed excellent antitumor efficacy in Z-138 xenograft models, low toxicity in vivo, and acceptable drug metabolism and pharmacokinetics (DMPK) profiles in vitro. Therefore, D3 can be developed as a promising candidate for the treatment of non-Hodgkin's lymphoma (NHL).
Collapse
Affiliation(s)
- Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Xu Quan
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nuo Qiao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing-Feng Ni
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Long Jing
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuang-Shuang Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin-Lei Tian
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Guo-Chuang Zheng
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Kang-Ning Zhan
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Yu-Jing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Ting Liang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zong-Hao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming-Yu Bai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Meng Zhang
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Jian Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
4
|
Abad-Grillo T, McNaughton-Smith G. Chemical Upcycling of Expired Pharmaceuticals as a Source of Value-Added Chemicals for Organic Synthesis and Medicinal Chemistry. Molecules 2024; 29:4811. [PMID: 39459183 PMCID: PMC11510324 DOI: 10.3390/molecules29204811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Pharmaceutical and veterinary products are a class of contaminants of emerging concern, and their presence in the environment is due to continuous and incorrect disposal. Environmental scientists have been accumulating data on their adverse effects on animal populations since toxicological effects on wildlife were first published. Therefore, recycling strategies are needed. Valuable active ingredients can be extracted from expired pharmaceuticals and recycled according to various strategies. In an effort to reveal the potential of the chemical upcycling of expired pharmaceuticals, the active ingredients gabapentin and pregabalin were extracted and used as starting materials to prepare a small collection of promising substrates endowed with functionalities and structural three-dimensionality. Gabapentin 1 was transformed into aminoalcohol 3, spiroamine 4, and the bioactive azaspirolactam 5. The lactam analog 6 was synthesized from pregabalin 2. Due to the biological profile of 5 and the structural similarity of the N-alkylated derivatives 5l and 6b with the drug piracetam, a collection of potentially bioactive structural analogs 5a-l and 6a-b were also prepared. Simple extraction, synthesis, and purification procedures were used as a means of chemical and economic revaluation, resulting in moderate to good yields at a low cost.
Collapse
Affiliation(s)
- Teresa Abad-Grillo
- Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, 2, 38206 La Laguna, Tenerife, Spain
| | - Grant McNaughton-Smith
- Centro Atlántico del Medicamento S.A. (CEAMED S.A.), PCTT, 38200 La Laguna, Tenerife, Spain;
| |
Collapse
|
5
|
Wei L, Mei D, Hu S, Du S. Dual-target EZH2 inhibitor: latest advances in medicinal chemistry. Future Med Chem 2024; 16:1561-1582. [PMID: 39082677 PMCID: PMC11370917 DOI: 10.1080/17568919.2024.2380243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/03/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in tumor progression by regulating gene expression. EZH2 inhibitors have emerged as promising anti-tumor agents due to their potential in cancer treatment strategies. However, single-target inhibitors often face limitations such as drug resistance and side effects. Dual-target inhibitors, exemplified by EZH1/2 inhibitor HH-2853(28), offer enhanced efficacy and reduced adverse effects. This review highlights recent advancements in dual inhibitors targeting EZH2 and other proteins like BRD4, PARP1, and EHMT2, emphasizing rational design, structure-activity relationships, and safety profiles, suggesting their potential in clinical applications.
Collapse
Affiliation(s)
- Lai Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sijia Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
6
|
Gomatam A, Hirlekar BU, Singh KD, Murty US, Dixit VA. Improved QSAR models for PARP-1 inhibition using data balancing, interpretable machine learning, and matched molecular pair analysis. Mol Divers 2024; 28:2135-2152. [PMID: 38374474 DOI: 10.1007/s11030-024-10809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024]
Abstract
The poly (ADP-ribose) polymerase-1 (PARP-1) enzyme is an important target in the treatment of breast cancer. Currently, treatment options include the drugs Olaparib, Niraparib, Rucaparib, and Talazoparib; however, these drugs can cause severe side effects including hematological toxicity and cardiotoxicity. Although in silico models for the prediction of PARP-1 activity have been developed, the drawbacks of these models include low specificity, a narrow applicability domain, and a lack of interpretability. To address these issues, a comprehensive machine learning (ML)-based quantitative structure-activity relationship (QSAR) approach for the informed prediction of PARP-1 activity is presented. Classification models built using the Synthetic Minority Oversampling Technique (SMOTE) for data balancing gave robust and predictive models based on the K-nearest neighbor algorithm (accuracy 0.86, sensitivity 0.88, specificity 0.80). Regression models were built on structurally congeneric datasets, with the models for the phthalazinone class and fused cyclic compounds giving the best performance. In accordance with the Organization for Economic Cooperation and Development (OECD) guidelines, a mechanistic interpretation is proposed using the Shapley Additive Explanations (SHAP) to identify the important topological features to differentiate between PARP-1 actives and inactives. Moreover, an analysis of the PARP-1 dataset revealed the prevalence of activity cliffs, which possibly negatively impacts the model's predictive performance. Finally, a set of chemical transformation rules were extracted using the matched molecular pair analysis (MMPA) which provided mechanistic insights and can guide medicinal chemists in the design of novel PARP-1 inhibitors.
Collapse
Affiliation(s)
- Anish Gomatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Bhakti Umesh Hirlekar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Krishan Dev Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Upadhyayula Suryanarayana Murty
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India
| | - Vaibhav A Dixit
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India.
| |
Collapse
|
7
|
Benedetti E, Micouin L. Have spirocyclic scaffolds been properly utilized in recent drug discovery efforts? Expert Opin Drug Discov 2024; 19:263-266. [PMID: 38225892 DOI: 10.1080/17460441.2024.2305735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Affiliation(s)
| | - Laurent Micouin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, Paris, France
| |
Collapse
|
8
|
Wan S, Chen X, Yin F, Li S, Zhang Y, Luo H, Luo Z, Cui N, Chen Y, Li X, Kong L, Wang X. Indirubin derivatives as bifunctional molecules inducing DNA damage and targeting PARP for the treatment of cancer. Eur J Med Chem 2023; 261:115843. [PMID: 37832229 DOI: 10.1016/j.ejmech.2023.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Based on the facts that significant synergistic effect existed between PARP inhibitors and DNA damage agents and the DNA damage caused by indirubin's derivatives, we herein adopted the strategy to combine the pharmacophores of PARP inhibitors and the unique scaffold of indirubin to design a series of bifunctional molecules inducing DNA damage and targeting PARP. After SAR studies, the most potent compound 12a, encoded as KWWS-12a, exhibited improved inhibitory effect against PARP1 compared with PARP1 inhibitor Olaparib (IC50 = 1.89 nM vs 7.48 nM) and enhanced antiproliferative activities than the combination of Olaparib and indirubin-3'-monoxime towards HCT-116 cells (IC50 = 0.31 μM vs 1.37 μM). In the normal NCM-460 cells, 12a showed low toxicity (IC50 > 60 μM). The mechanism research indicated that 12a could increase the levels of γH2AX concentration dependently, arrest the cell cycle in S phase and induce apoptosis in HCT-116 cells. In vivo experiments showed that 12a displayed more significant antitumor potential than that of the positive controls. Our studies demonstrated that 12a could be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Siyuan Wan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ningjie Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yifan Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinxin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Kirichok AA, Tkachuk H, Kozyriev Y, Shablykin O, Datsenko O, Granat D, Yegorova T, Bas YP, Semirenko V, Pishel I, Kubyshkin V, Lesyk D, Klymenko-Ulianov O, Mykhailiuk PK. 1-Azaspiro[3.3]heptane as a Bioisostere of Piperidine. Angew Chem Int Ed Engl 2023:e202311583. [PMID: 37819253 DOI: 10.1002/anie.202311583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
1-Azaspiro[3.3]heptanes were synthesized, characterized, and validated biologically as bioisosteres of piperidine. The key synthesis step was thermal [2+2] cycloaddition between endocyclic alkenes and the Graf isocyanate, ClO2 S-NCO, to give spirocyclic β-lactams. Reduction of the β-lactam ring with alane produced 1-azaspiro[3.3]heptanes. Incorporation of this core into the anesthetic drug bupivacaine instead of the piperidine fragment resulted in a new patent-free analogue with high activity.
Collapse
Affiliation(s)
- Alexander A Kirichok
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | | | - Yevhenii Kozyriev
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Oles Honchar Dnipro National University, Faculty of Chemistry, 72 Gagarina Ave., 49010, Dnipro, Ukraine
| | - Oleh Shablykin
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Akademika Kukharya 1, 02094, Kyiv, Ukraine
| | | | - Dmitry Granat
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | - Tetyana Yegorova
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | - Yuliya P Bas
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| | | | - Iryna Pishel
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Dmytro Lesyk
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Volodymyrska 60, 01601, Kyiv, Ukraine
| |
Collapse
|
10
|
Wang C, Luo H, Chen X, Zhang Y, Lu D, Liu X, Yin F, Li S, Kong L, Wang X. Discovery of dual PARP and CDK6 inhibitors for triple-negative breast cancer with wild-type BRCA. Bioorg Chem 2023; 139:106683. [PMID: 37379778 DOI: 10.1016/j.bioorg.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Inhibition of PARP is synthetic lethal with defects in BRCA, which provide effective targeted therapy strategy for BRCA mutation type of TNBC patients. However, approximately 80% of TNBC patients do not have BRCA mutations. Recent studies have shown that CDK4/6 inhibitors can increase the sensitivity of wild-type BRCA cells to PARP inhibitors. We designed a series of dual PARP and CDK6 inhibitors, and the most promising compound, P4i, showed good inhibitory activity against PARP1 and CDK6 and good inhibitory effects on MDA-MB-231 (IC50 = 1.96 μM), MDA-MB-468 (IC50 = 2.81 μM) and BT-549 (IC50 = 2.37 μM) cells with wild-type BRCA. Compared with Olaparib, the inhibition capacity of the three BRCA wild-type (MDA-MB-231, MDA-MB-468 and BT-549) cells was about 10-20 times higher, and even better than the combination of Olaparib and Palbociclib. As a novel PARP multifunctional molecule, it is a potential compound for the treatment of BRCA wild-type TNBC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Clinical Pharmacology Institute, School of Pharmacy, Nanchang University, Nanchang 330031, People's Republic of China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
11
|
Zhang J, Gao Y, Zhang Z, Zhao J, Jia W, Xia C, Wang F, Liu T. Multi-therapies Based on PARP Inhibition: Potential Therapeutic Approaches for Cancer Treatment. J Med Chem 2022; 65:16099-16127. [PMID: 36512711 DOI: 10.1021/acs.jmedchem.2c01352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear enzymes called poly(ADP-ribose)polymerases (PARPs) are known to catalyze the process of PARylation, which plays a vital role in various cellular functions. They have become important targets for the discovery of novel antitumor drugs since their inhibition can induce significant lethality in tumor cells. Therefore, researchers all over the world have been focusing on developing novel and potent PARP inhibitors for cancer therapy. Studies have shown that PARP inhibitors and other antitumor agents, such as EZH2 and EGFR inhibitors, play a synergistic role in cancer cells. The combined inhibition of PARP and the targets with synergistic effects may provide a rational strategy to improve the effectiveness of current anticancer regimens. In this Perspective, we sum up the recent advance of PARP-targeted agents, including single-target inhibitors/degraders and dual-target inhibitors/degraders, discuss the fundamental theory of developing these dual-target agents, and give insight into the corresponding structure-activity relationships of these agents.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Yuqi Gao
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Jinbo Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Department of Chemistry and Biology, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Fugang Wang
- Department of Pharmacology, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
12
|
Olaparib Conjugates with Selenopheno[3,2- c]quinolinone Inhibit PARP1 and Reverse ABCB1-Related Multidrug Resistance. Pharmaceutics 2022; 14:pharmaceutics14122571. [PMID: 36559065 PMCID: PMC9783898 DOI: 10.3390/pharmaceutics14122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The restoration of the efficacy of antitumor medicines is a cornerstone in the combat with multidrug resistant (MDR) cancers. The overexpression of the ABCB1 transporter is a major obstacle to conventional doxorubicin therapy. The synergy of ABCB1 suppression and PARP1 activity inhibition that hampers malignant cell DNA repair could be a powerful tool in anticancer therapy. Herein, we report the design and synthesis of three novel olaparib conjugates with selenophenoquinolinones, their ability to reverse doxorubicin resistance in uterus sarcoma cells as well as their mechanism of action. It was found that the most potent chemosensitizer among studied compounds preserves PARP1 inhibitory activity and attenuates cells' resistance to doxorubicin by inhibiting ABCB1 transporter activity. These results demonstrate that the conjugation of PARP inhibitors with selenophenoquinolinones is a prospective direction for the development of agents for the treatment of MDR cancers.
Collapse
|
13
|
Meanwell NA, Loiseleur O. Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10972-11004. [PMID: 35675052 DOI: 10.1021/acs.jafc.2c00729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Applications of piperazine and homopiperazine in drug design are well-established, and these heterocycles have found use as both scaffolding and terminal elements and also as a means of introducing a water-solubilizing element into a molecule. In the accompanying review (10.1021/acs.jafc.2c00726), we summarized applications of piperazine and homopiperazine and their fused ring homologues in bioactive compound design along with illustrations of the use of 4-substituted piperidines and a sulfoximine-based mimetic. In this review, we discuss applications of pyrrolidine- and fused-pyrrolidine-based mimetics of piperazine and homopiperazine and illustrate derivatives of azetidine that include stretched and spirocyclic motifs, along with applications of a series of diaminocycloalkanes.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Post Office Box 4000, Princeton, New Jersey 08543, United States
| | - Olivier Loiseleur
- Syngenta Crop Protection Research, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| |
Collapse
|
14
|
Exploration of Diazaspiro Cores as Piperazine Bioisosteres in the Development of σ2 Receptor Ligands. Int J Mol Sci 2022; 23:ijms23158259. [PMID: 35897835 PMCID: PMC9332756 DOI: 10.3390/ijms23158259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
A series of σ2R compounds containing benzimidazolone and diazacycloalkane cores was synthesized and evaluated in radioligand binding assays. Replacing the piperazine moiety in a lead compound with diazaspiroalkanes and the fused octahydropyrrolo[3,4-b] pyrrole ring system resulted in a loss in affinity for the σ2R. On the other hand, the bridged 2,5-diazabicyclo[2.2.1]heptane, 1,4-diazepine, and a 3-aminoazetidine analog possessed nanomolar affinities for the σ2R. Computational chemistry studies were also conducted with the recently published crystal structure of the σ2R/TMEM97 and revealed that hydrogen bond interactions with ASP29 and π-stacking interactions with TYR150 were largely responsible for the high binding affinity of small molecules to this protein.
Collapse
|
15
|
Wang C, Qu L, Li S, Yin F, Ji L, Peng W, Luo H, Lu D, Liu X, Chen X, Kong L, Wang X. Discovery of First-in-Class Dual PARP and EZH2 Inhibitors for Triple-Negative Breast Cancer with Wild-Type BRCA. J Med Chem 2021; 64:12630-12650. [PMID: 34455779 DOI: 10.1021/acs.jmedchem.1c00567] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PARP inhibitors have highly significant effects on BRCA mutant cells, allowing targeted therapy of triple-negative breast cancer (TNBC). However, some TBNC patients lack BRCA mutations. Recent studies have shown that EZH2 inhibitors can increase the sensitivity of wild-type BRCA cells to PARP inhibitors. We designed a series of dual PARP and EZH2 inhibitors, and the most promising compound, 5a, showed good inhibitory activity against PARP-1 and EZH2 and good inhibitory effects on MDA-MB-231 (IC50 = 2.63 μM) and MDA-MB-468 (IC50 = 0.41 μM) cells with wild-type BRCA. Compared with that of olaparib, the growth inhibitory activities against these two cell types increased by approximately 15- and 80-fold, respectively, which was even more effective than the combination of olaparib and tazemetostat/GSK126. 5a can induce autophagy death of tumor cells and cause less damage to normal cells. Therefore, 5a, as a first-in-class dual PARP and EZH2 inhibitor, is a potential anticancer drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Limei Ji
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wan Peng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
16
|
Li W, Pan B, Shi Y, Wang M, Han T, Wang Q, Duan G, Fu H. Identification of poly(ADP-ribose)polymerase 1 and 2 (PARP1/2) as targets of andrographolide using an integrated chemical biology approach. Chem Commun (Camb) 2021; 57:6308-6311. [PMID: 34075974 DOI: 10.1039/d1cc02272e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we describe the identification of PARP1/2 as direct binding proteins of andrographolide (Andro) using protein microarray, surface plasmon resonance (SPR), and enzyme activity assays. We then evaluated the proliferation inhibition, apoptosis, and cell migration effects of Andro on the MDA-MB-436 cell line in vitro. The final biological evaluation confirmed that Andro was a highly effective single agent in the MDA-MB-436 xenograft model and had a low hERG-mediated cardiac toxicity. Therefore, Andro represents the first natural product, non-amide member of a novel nanomolar-potency PARP1/2 inhibitor family.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Bowen Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China. and College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Yang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China. and College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Meiying Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Tianjiao Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Qing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Hongzheng Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| |
Collapse
|
17
|
Puentes LN, Lengyel-Zhand Z, Reilly SW, Mach RH. Evaluation of a Low-Toxicity PARP Inhibitor as a Neuroprotective Agent for Parkinson's Disease. Mol Neurobiol 2021; 58:3641-3652. [PMID: 33788167 DOI: 10.1007/s12035-021-02371-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Repurposing PARP-1 inhibitors (PARPi) for non-oncological applications offers an attractive therapeutic strategy for pathological conditions characterized by PARP-1 hyperactivity. In the context of Parkinson's disease (PD), PARP-1 hyperactivity has been linked to neuronal death and disease progression. From a therapy perspective, the evaluation of PARPi as neuroprotective agents may offer a new therapeutic alternative for neurodegenerative disorders. An ideal PARPi needs to inhibit PARP-1 hyperactivity while also limiting downstream DNA damage and cellular toxicity-an effect that is attractive in cancer but far from ideal in neurological disease applications. Consequently, in this study, we set out to evaluate the neuroprotective properties of a previously reported low-toxicity PARPi (10e) using in vitro neuronal models of PD. 10e is a structural analogue of FDA-approved PARPi olaparib, with high PARP-1 affinity and selectivity. Our studies revealed that 10e protects neuronal cells from oxidative stress and DNA damage. In addition, 10e exhibits neuroprotective properties against α-synuclein pre-formed fibrils (αSyn PFF) mediated effects, including reduction in the levels of phosphorylated αSyn and protection against abnormal changes in NAD+ levels. Our in vitro studies with 10e provide support for repurposing high-affinity and low-toxicity PARPi for neurological applications and lay the groundwork for long-term therapeutic studies in animal models of PD.
Collapse
Affiliation(s)
- Laura N Puentes
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zsofia Lengyel-Zhand
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sean W Reilly
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
He ZX, Gong YP, Zhang X, Ma LY, Zhao W. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules. Eur J Med Chem 2021; 209:112946. [PMID: 33129590 DOI: 10.1016/j.ejmech.2020.112946] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Identification of potent anticancer agents with high selectivity and low toxicity remains on the way to human health. Pyridazine featuring advantageous physicochemical properties and antitumor potential usually is regarded as a central core in numerous anticancer derivatives. There are several approved pyridazine-based drugs in the market and analogues currently going through different clinical phases or registration statuses, suggesting pyridazine as a promising drug-like scaffold. The current review is intended to provide a comprehensive and updated overview of pyridazine derivatives as potential anticancer agents. In particular, we focused on their structure-activity relationship (SAR) studies, design strategies, binding modes and biological activities in the hope of offering novel insights for further rational design of more active and less toxic anticancer drugs.
Collapse
Affiliation(s)
- Zhang-Xu He
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yun-Peng Gong
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Wen Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
19
|
Identification of 2-substituted pyrrolo[1,2-b]pyridazine derivatives as new PARP-1 inhibitors. Bioorg Med Chem Lett 2021; 31:127710. [PMID: 33246105 DOI: 10.1016/j.bmcl.2020.127710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022]
Abstract
A library of new 2-substituted pyrrolo[1,2-b]pyridazine derivatives were rapidly assembled and identified as PARP inhibitors. Structure-activity relationship for this class of inhibitor resulted in the discovery of most potent compounds 15a and 15b that exhibited about 29- and 5- fold selective activity against PARP-1 over PARP-2 respectively. The antiproliferative activity of the as-prepared compounds were demonstrated by further celluar assay in BRCA2-deficient V-C8 and BRCA1-deficient MDA-MB-436 cell lines, displaying that compound 15b could robustly reduce the corresponding cell proliferation and growth with CC50s of 340 and 106 nM respectively. The PK property of 15b was also investigated here.
Collapse
|
20
|
Abstract
Spirocyclic scaffolds are incorporated in various approved drugs and drug candidates. The increasing interest in less planar bioactive compounds has given rise to the development of synthetic methodologies for the preparation of spirocyclic scaffolds. In this Perspective, we summarize the diverse synthetic routes to obtain spirocyclic systems. The impact of spirocycles on potency and selectivity, including the aspect of stereochemistry, is discussed. Furthermore, we examine the changes in physicochemical properties as well as in in vitro and in vivo ADME using selected studies that compare spirocyclic compounds to their nonspirocyclic counterparts. In conclusion, the value of spirocyclic scaffolds in medicinal chemistry is discussed.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
21
|
Sari AN, Bhargava P, Dhanjal JK, Putri JF, Radhakrishnan N, Shefrin S, Ishida Y, Terao K, Sundar D, Kaul SC, Wadhwa R. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers (Basel) 2020; 12:E1160. [PMID: 32380701 PMCID: PMC7281427 DOI: 10.3390/cancers12051160] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
We have earlier reported anticancer activity in Withaferin A (Wi-A), a withanolide derived from Ashwagandha (Withania somnifera) and caffeic acid phenethyl ester (CAPE), an active compound from New Zealand honeybee propolis. Whereas Wi-A was cytotoxic to both cancer and normal cells, CAPE has been shown to cause selective death of cancer cells. In the present study, we investigated the efficacy of Wi-A, CAPE, and their combination to ovarian and cervical cancer cells. Both Wi-A and CAPE were seen to activate tumor suppressor protein p53 by downregulation of mortalin and abrogation of its interactions with p53. Downregulation of mortalin translated to compromised mitochondria integrity and function that affected poly ADP-ribose polymerase1 (PARP1); a key regulator of DNA repair and protein-target for Olaparib, drugs clinically used for treatment of breast, ovarian and cervical cancers)-mediated DNA repair yielding growth arrest or apoptosis. Furthermore, we also compared the docking capability of Wi-A and CAPE to PARP1 and found that both of these could bind to the catalytic domain of PARP1, similar to Olaparib. We provide experimental evidences that (i) Wi-A and CAPE cause inactivation of PARP1-mediated DNA repair leading to accumulation of DNA damage and activation of apoptosis signaling by multiple ways, and (ii) a combination of Wi-A and CAPE offers selective toxicity and better potency to cancer cells.
Collapse
Affiliation(s)
- Anissa Nofita Sari
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
| | - Jaspreet Kaur Dhanjal
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Jayarani F. Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
| | - Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Seyad Shefrin
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Yoshiyuki Ishida
- CycloChem Co. Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Co. Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India; (N.R.); (S.S.); (D.S.)
| | - Sunil C. Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (A.N.S.); (P.B.); (J.K.D.); (J.F.P.)
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
22
|
Nguyen W, Jacobson J, Jarman KE, Blackmore TR, Sabroux HJ, Lewin SR, Purcell DF, Sleebs BE. Optimization of 5-substituted thiazolyl ureas and 6-substituted imidazopyridines as potential HIV-1 latency reversing agents. Eur J Med Chem 2020; 195:112254. [PMID: 32251744 DOI: 10.1016/j.ejmech.2020.112254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
A persistent latent reservoir of virus in CD4+ T cells is a major barrier to cure HIV. Activating viral transcription in latently infected cells using small molecules is one strategy being explored to eliminate latency. We previously described the use of a FlpIn.FM HEK293 cellular assay to identify and then optimize the 2-acylaminothiazole class to exhibit modest activation of HIV gene expression. Here, we implement two strategies to further improve the activation of viral gene expression and physicochemical properties of this class. Firstly, we explored rigidification of the central oxy-carbon linker with a variety of saturated heterocycles, and secondly, investigated bioisosteric replacement of the 2-acylaminothiazole moiety. The optimization process afforded lead compounds (74 and 91) from the 2-piperazinyl thiazolyl urea and the imidazopyridine class. The lead compounds from each class demonstrate potent activation of HIV gene expression in the FlpIn.FM HEK293 cellular assay (both with LTR EC50s of 80 nM) and in the Jurkat Latency 10.6 cell model (LTR EC50 220 and 320 nM respectively), but consequently activate gene expression non-specifically in the FlpIn.FM HEK293 cellular assay (CMV EC50 70 and 270 nM respectively) manifesting in cellular cytotoxicity. The lead compounds have potential for further development as novel latency reversing agents.
Collapse
Affiliation(s)
- William Nguyen
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Jonathan Jacobson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Timothy R Blackmore
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Helene Jousset Sabroux
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sharon R Lewin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Parkville, Victoria, 3000, Australia; Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, 3004, Australia
| | - Damian F Purcell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute of Infection and Immunity, University of Melbourne, Parkville, Victoria, 3000, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
23
|
Wang J, Li H, He G, Chu Z, Peng K, Ge Y, Zhu Q, Xu Y. Discovery of Novel Dual Poly(ADP-ribose)polymerase and Phosphoinositide 3-Kinase Inhibitors as a Promising Strategy for Cancer Therapy. J Med Chem 2019; 63:122-139. [PMID: 31846325 DOI: 10.1021/acs.jmedchem.9b00622] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Concomitant inhibition of PARP and PI3K pathways has been recognized as a promising strategy for cancer therapy, which may expand the clinical utility of PARP inhibitors. Herein, we report the discovery of dual PARP/PI3K inhibitors that merge the pharmacophores of PARP and PI3K inhibitors. Among them, compound 15 stands out as the most promising candidate with potent inhibitory activities against both PARP-1/2 and PI3Kα/δ with pIC50 values greater than 8. Compound 15 displayed superior antiproliferative profiles against both BRCA-deficient and BRCA-proficient cancer cells in cellular assays. The prominent synergistic effects produced by the concomitant inhibition of the two targets were elucidated by comprehensive biochemical and cellular mechanistic studies. In vivo, 15 showed more efficacious antitumor activity than the corresponding drug combination (Olaparib + BKM120) in the MDA-MB-468 xenograft model with a tumor growth inhibitory rate of 73.4% without causing observable toxic effects. All of the results indicate that 15, a first potent dual PARP/PI3K inhibitor, is a highly effective anticancer compound.
Collapse
|
24
|
Degorce SL, Bodnarchuk MS, Scott JS. Lowering Lipophilicity by Adding Carbon: AzaSpiroHeptanes, a log D Lowering Twist. ACS Med Chem Lett 2019; 10:1198-1204. [PMID: 31417667 DOI: 10.1021/acsmedchemlett.9b00248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
We have conducted an analysis of azaspiro[3.3]heptanes used as replacements for morpholines, piperidines, and piperazines in a medicinal chemistry context. In most cases, introducing a spirocyclic center lowered the measured logD 7.4 of the corresponding molecules by as much as -1.0 relative to the more usual heterocycle. This may seem counterintuitive, as the net change in the molecule is the addition of a single carbon atom, but it may be rationalized in terms of increased basicity. An exception to this was found with N-linked 2-azaspiro[3.3]heptane, where logD 7.4 increased by as much as +0.5, consistent with the addition of carbon. During our investigation, we also concluded that azaspiro[3.3]heptanes are most likely not suitable bioisosteres for morpholines, piperidines, and piperazines, when not used as terminal groups, due to significant changes in their geometry.
Collapse
Affiliation(s)
- Sébastien L. Degorce
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Michael S. Bodnarchuk
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - James S. Scott
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| |
Collapse
|
25
|
Ofori S, Awuah SG. Small-Molecule Poly(ADP-ribose) Polymerase and PD-L1 Inhibitor Conjugates as Dual-Action Anticancer Agents. ACS OMEGA 2019; 4:12584-12597. [PMID: 31460379 PMCID: PMC6682113 DOI: 10.1021/acsomega.9b01106] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 05/05/2023]
Abstract
Immune checkpoint blockades have revolutionized the treatment landscape for several cancer indications, yet they have not gained traction in a range of other tumors such as triple-negative breast cancer. Despite durable disease control by many patients, a third of cancer patients relapse due to acquired resistance. Combined immunotherapy has shown significant promise to overcome these grand challenges. In this report, we describe the synthesis and characterization of dual-action small-molecule PARP1/PD-L1 inhibitor conjugates as potential targeted anticancer agents. These conjugates display significant apoptosis and cytotoxic efficacy to approximately 2-20-fold better than their individual agents in a panel of cancer cell lines. This was underscored by derived combination indices, which was consistent with strong synergy when cells were treated with the individual agents, olaparib and BMS-001 using the Chou-Talalay method. Furthermore, we sought to unravel the mechanistic behavior of the conjugates and their implications on the PARP/PD-L1 axis. We used apoptosis, cell cycle, immunoblotting, and T-cell proliferation assays to establish the synergy imparted by these conjugates. These multifunctional compounds enable the discovery of small-molecule immunochemotherapeutic agents and chemical probes to elucidate the cross-talk between DNA repair and PD-L1 pathways.
Collapse
Affiliation(s)
- Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
26
|
Bronner SM, Merrick KA, Murray J, Salphati L, Moffat JG, Pang J, Sneeringer CJ, Dompe N, Cyr P, Purkey H, Boenig GDL, Li J, Kolesnikov A, Larouche-Gauthier R, Lai KW, Shen X, Aubert-Nicol S, Chen YC, Cheong J, Crawford JJ, Hafner M, Haghshenas P, Jakalian A, Leclerc JP, Lim NK, O'Brien T, Plise EG, Shalan H, Sturino C, Wai J, Xiao Y, Yin J, Zhao L, Gould S, Olivero A, Heffron TP. Design of a brain-penetrant CDK4/6 inhibitor for glioblastoma. Bioorg Med Chem Lett 2019; 29:2294-2301. [PMID: 31307887 DOI: 10.1016/j.bmcl.2019.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
CDK4 and CDK6 are kinases with similar sequences that regulate cell cycle progression and are validated targets in the treatment of cancer. Glioblastoma is characterized by a high frequency of CDKN2A/CCND2/CDK4/CDK6 pathway dysregulation, making dual inhibition of CDK4 and CDK6 an attractive therapeutic approach for this disease. Abemaciclib, ribociclib, and palbociclib are approved CDK4/6 inhibitors for the treatment of HR+/HER2- breast cancer, but these drugs are not expected to show strong activity in brain tumors due to poor blood brain barrier penetration. Herein, we report the identification of a brain-penetrant CDK4/6 inhibitor derived from a literature molecule with low molecular weight and topological polar surface area (MW = 285 and TPSA = 66 Å2), but lacking the CDK2/1 selectivity profile due to the absence of a basic amine. Removal of a hydrogen bond donor via cyclization of the pyrazole allowed for the introduction of basic and semi-basic amines, while maintaining in many cases efflux ratios reasonable for a CNS program. Ultimately, a basic spiroazetidine (cpKa = 8.8) was identified that afforded acceptable selectivity over anti-target CDK1 while maintaining brain-penetration in vivo (mouse Kp,uu = 0.20-0.59). To probe the potency and selectivity, our lead compound was evaluated in a panel of glioblastoma cell lines. Potency comparable to abemaciclib was observed in Rb-wild type lines U87MG, DBTRG-05MG, A172, and T98G, while Rb-deficient cell lines SF539 and M059J exhibited a lack of sensitivity.
Collapse
Affiliation(s)
- Sarah M Bronner
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Karl A Merrick
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Laurent Salphati
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - John G Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | | | - Nicholas Dompe
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Patrick Cyr
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Hans Purkey
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | | | - Jun Li
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | | | | | - Kwong Wah Lai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Xiaoli Shen
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | | | - Yi-Chen Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jonathan Cheong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - James J Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Marc Hafner
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Pouyan Haghshenas
- Paraza Pharma, Inc., 2525 Ave. Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Araz Jakalian
- Paraza Pharma, Inc., 2525 Ave. Marie-Curie, Montreal, QC H4S 2E1, Canada
| | | | - Ngiap-Kie Lim
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Tom O'Brien
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Emile G Plise
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Hadil Shalan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Claudio Sturino
- Paraza Pharma, Inc., 2525 Ave. Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - John Wai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Yang Xiao
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jianping Yin
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Liang Zhao
- Paraza Pharma, Inc., 2525 Ave. Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Stephen Gould
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Alan Olivero
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Timothy P Heffron
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
27
|
Reilly SW, Riad AA, Hsieh CJ, Sahlholm K, Jacome DA, Griffin S, Taylor M, Weng CC, Xu K, Kirschner N, Luedtke RR, Parry C, Malhotra S, Karanicolas J, Mach RH. Leveraging a Low-Affinity Diazaspiro Orthosteric Fragment to Reduce Dopamine D 3 Receptor (D 3R) Ligand Promiscuity across Highly Conserved Aminergic G-Protein-Coupled Receptors (GPCRs). J Med Chem 2019; 62:5132-5147. [PMID: 31021617 PMCID: PMC12079613 DOI: 10.1021/acs.jmedchem.9b00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previously, we reported a 3-(2-methoxyphenyl)-9-(3-((4-methyl-5-phenyl-4 H-1,2,4-triazol-3-yl)thio)propyl)-3,9-diazaspiro[5.5]undecane (1) compound with excellent dopamine D3 receptor (D3R) affinity (D3R Ki = 12.0 nM) and selectivity (D2R/D3R ratio = 905). Herein, we present derivatives of 1 with comparable D3R affinity (32, D3R Ki = 3.2 nM, D2R/D3R ratio = 60) and selectivity (30, D3R Ki = 21.0 nM, D2R/D3R ratio = 934). Fragmentation of 1 revealed orthosteric fragment 5a to express an unusually low D3R affinity ( Ki = 2.7 μM). Compared to piperazine congener 31, which retains a high-affinity orthosteric fragment (5d, D3R Ki = 23.9 nM), 1 was found to be more selective for the D3R among D1- and D2-like receptors and exhibited negligible off-target interactions at serotoninergic and adrenergic G-protein-coupled receptors (GPCRs), common off-target sites for piperazine-containing D3R scaffolds. This study provides a unique rationale for implementing weakly potent orthosteric fragments into D3R ligand systems to minimize drug promiscuity at other aminergic GPCR sites.
Collapse
Affiliation(s)
- Sean W. Reilly
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aladdin A. Riad
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chia-Ju Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kristoffer Sahlholm
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A. Jacome
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Suzy Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Chi-Chang Weng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nathan Kirschner
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Christopher Parry
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Shipra Malhotra
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Fu R, Li M, Zhou P, Hao W, Tu S, Jiang B. Synthesis of 3,4‐Dihydrobenzo[
f
]phthalazines
via
Iodine/
tert
‐Butyl Hydroperoxide‐Mediated Annulation Cascade of Yne‐Allenones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rong Fu
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Meng‐Fan Li
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Peng Zhou
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Bo Jiang
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| |
Collapse
|
29
|
Reilly SW, Puentes LN, Schmitz A, Hsieh CJ, Weng CC, Hou C, Li S, Kuo YM, Padakanti P, Lee H, Riad AA, Makvandi M, Mach RH. Synthesis and evaluation of an AZD2461 [ 18F]PET probe in non-human primates reveals the PARP-1 inhibitor to be non-blood-brain barrier penetrant. Bioorg Chem 2019; 83:242-249. [PMID: 30390553 PMCID: PMC6378121 DOI: 10.1016/j.bioorg.2018.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
Poly(ADP-ribose)polymerase-1 inhibitor (PARPi) AZD2461 was designed to be a weak P-glycoprotein (P-gp) analogue of FDA approved olaparib. With this chemical property in mind, we utilized the AZD2461 ligand architecture to develop a CNS penetrant and PARP-1 selective imaging probe, in order to investigate PARP-1 mediated neuroinflammation and neurodegenerative diseases, such as Alzheimer's and Parkinson's. Our work led to the identification of several high-affinity PARPi, including AZD2461 congener 9e (PARP-1 IC50 = 3.9 ± 1.2 nM), which was further evaluated as a potential 18F-PET brain imaging probe. However, despite the similar molecular scaffolds of 9e and AZD2461, our studies revealed non-appreciable brain-uptake of [18F]9e in non-human primates, suggesting AZD2461 to be non-CNS penetrant.
Collapse
Affiliation(s)
- Sean W Reilly
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura N Puentes
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Alexander Schmitz
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chia-Ju Hsieh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi-Chang Weng
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yin-Ming Kuo
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prashanth Padakanti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aladdin A Riad
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Feskov IO, Chernykh AV, Kuchkovska YO, Daniliuc CG, Kondratov IS, Grygorenko OO. 3-((Hetera)cyclobutyl)azetidines, “Stretched” Analogues of Piperidine, Piperazine, and Morpholine: Advanced Building Blocks for Drug Discovery. J Org Chem 2018; 84:1363-1371. [DOI: 10.1021/acs.joc.8b02822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Illia O. Feskov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine, Murmanska Street 1, Kyiv 02660, Ukraine
| | | | - Yuliya O. Kuchkovska
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ivan S. Kondratov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine, Murmanska Street 1, Kyiv 02660, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
31
|
Yan RJ, Xiao BX, Ouyang Q, Liang HP, Du W, Chen YC. Asymmetric Dearomative Formal [4 + 2] Cycloadditions of N,4-Dialkylpyridinium Salts and Enones To Construct Azaspiro[5.5]undecane Frameworks. Org Lett 2018; 20:8000-8003. [PMID: 30525703 DOI: 10.1021/acs.orglett.8b03576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The asymmetric dearomative formal [4 + 2] cycloaddition reaction of activated N,4-dialkylpyridinium salts and acyclic α,β-unsaturated ketones was developed by the cascade iminium ion-enamine catalysis of a cinchona-derived amine. A spectrum of valuable azaspiro[5.5]undecane architectures was efficiently constructed with high to excellent diastereoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Ru-Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ben-Xian Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Qin Ouyang
- State Key Laboratory of Trauma, Burn and Combined Injury, and College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Hua-Ping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, and College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China.,State Key Laboratory of Trauma, Burn and Combined Injury, and College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| |
Collapse
|
32
|
Reilly SW, Puentes LN, Hsieh CJ, Makvandi M, Mach RH. Altering Nitrogen Heterocycles of AZD2461 Affords High Affinity Poly(ADP-ribose) Polymerase-1 Inhibitors with Decreased P-Glycoprotein Interactions. ACS OMEGA 2018; 3:9997-10001. [PMID: 30198004 PMCID: PMC6120739 DOI: 10.1021/acsomega.8b00896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics with enhanced selectivity and cytotoxicity in BRCA1/2 mutant cancer cells. AZD2461, a congener of FDA approved olaparib, is a potent PARPi with high affinity for PARP-1 and nonsubstrate for P-glycoprotein (P-gp), an attractive characteristic for cancer therapeutics. Analogues of AZD2461 were synthesized and profiled in BRCA1 functional and nonfunctional cell lines, revealing compounds (2, 3, and 5) of low cytotoxicity and excellent PARP-1 affinities (∼4-8 nM). In comparison to AZD2461, these agents were found to be less stimulating of P-gp, suggesting that these compounds may be excellent candidates for neurological applications where blood brain barrier penetrance is sought.
Collapse
Affiliation(s)
- Sean W. Reilly
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laura N. Puentes
- Department
of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Chia-Ju Hsieh
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mehran Makvandi
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert H. Mach
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|