1
|
Maciel EVS, Eisert J, Dederer V, Berwanger A, Knapp S, Empting M, Mathea S, Jensen H, Lermyte F. Native Flow-Induced Dispersion Analysis - Mass Spectrometry Enables Automated, Multiplexed Ligand Screening from Conventional, Nonvolatile Buffers. Anal Chem 2025. [PMID: 40324204 DOI: 10.1021/acs.analchem.5c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Native electrospray ionization mass spectrometry has become an important method for the discovery and validation of noncovalent ligands for therapeutic targets. As a label-free method combining high sensitivity and chemical specificity, it is ideally suited for this application. However, the performance of the method is severely impacted by the presence of nonvolatile buffers and salts, and there is a risk of ion suppression if a target protein is coincubated with multiple candidate ligands. These factors, along with the fairly labor-intensive nature, required operator skill, and limited throughput of most implementations, represent significant obstacles to the widespread adoption of native mass spectrometry-based ligand discovery. Here, we demonstrate the combination of flow-induced dispersion analysis with native mass spectrometry for screening of ligands for an E3 ligase and two kinases of pharmacological relevance. Importantly, this approach avoids ion suppression and formation of salt adducts without the need for offline desalting or buffer exchange, and each multiplexed measurement of a sample consisting of a target protein and a mixture of more than 20 candidate ligands took only a few minutes. Because the method is largely automated, this screening technology represents a potentially important step toward making native mass spectrometry a mainstream biophysical technique in drug discovery.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Jonathan Eisert
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Aylin Berwanger
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Henrik Jensen
- Fida Biosystems Aps, Generatorvej 6, 2860 Soborg, Denmark
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf-Institute of Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
3
|
Hua L, Wang D, Wang K, Wang Y, Gu J, Zhang Q, You Q, Wang L. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery. J Med Chem 2023; 66:10934-10958. [PMID: 37561645 DOI: 10.1021/acs.jmedchem.3c00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Development of fluorescence polarization (FP) assays, especially in a competitive manner, is a potent and mature tool for measuring the binding affinities of small molecules. This approach is suitable for high-throughput screening (HTS) for initial ligands and is also applicable for further study of the structure-activity relationships (SARs) of candidate compounds for drug discovery. Buffer and tracer, especially rational design of the tracer, play a vital role in an FP assay system. In this perspective, we provided different kinds of approaches for tracer design based on successful cases in recent years. We classified these tracers by different types of ligands in tracers, including peptide, nucleic acid, natural product, and small molecule. To make this technology accessible for more targets, we briefly described the basic theory and workflow, followed by highlighting the design and application of typical FP tracers from a perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Berwanger A, Stein SC, Kany AM, Gartner M, Loretz B, Lehr CM, Hirsch AKH, Schulz TF, Empting M. Disrupting Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Latent Replication with a Small Molecule Inhibitor. J Med Chem 2023; 66:10782-10790. [PMID: 37506283 PMCID: PMC10424179 DOI: 10.1021/acs.jmedchem.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Indexed: 07/30/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) can establish latent lifelong infections in infected individuals. During viral latency, the latency-associated nuclear antigen (LANA) mediates the replication of the latent viral genome in dividing cells and tethers them to mitotic chromosomes, thus ensuring their partitioning into daughter cells during mitosis. This study aims to inhibit Kaposi's sarcoma-associated herpesvirus (KSHV) latent replication by targeting the LANA-DNA interaction using small molecular entities. Drawing from first-generation inhibitors and using growth vectors identified through STD-NMR, we expanded these compounds using Suzuki-Miyaura cross-coupling. This led to a deeper understanding of SAR achieved by microscale thermophoresis (MST) measurements and cell-free tests via electrophoretic mobility shift assays (EMSA). Our most potent compounds successfully inhibit LANA-mediated replication in cell-based assays and demonstrate favorable in vitro ADMET-profiles, including suitable metabolic stability, Caco-2 permeability, and cytotoxicity. These compounds could serve as qualified leads for the future refinement of small molecule inhibitors of KSHV latent replication.
Collapse
Affiliation(s)
- Aylin Berwanger
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German
Centre for Infection Research (DZIF), Partner
Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Saskia C. Stein
- German
Centre for Infection Research (DZIF), Partner
Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Institute
of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence RESIST (EXC 2155), Hannover
Medical School, Carl-Neuberg-Str.
1, 30625 Hannover, Germany
| | - Andreas M. Kany
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Melissa Gartner
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Cluster
of Excellence RESIST (EXC 2155), Hannover
Medical School, Carl-Neuberg-Str.
1, 30625 Hannover, Germany
| | - Thomas F. Schulz
- German
Centre for Infection Research (DZIF), Partner
Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Institute
of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster
of Excellence RESIST (EXC 2155), Hannover
Medical School, Carl-Neuberg-Str.
1, 30625 Hannover, Germany
| | - Martin Empting
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German
Centre for Infection Research (DZIF), Partner
Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Cluster
of Excellence RESIST (EXC 2155), Hannover
Medical School, Carl-Neuberg-Str.
1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Schulz TF, Freise A, Stein SC. Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen: more than a key mediator of viral persistence. Curr Opin Virol 2023; 61:101336. [PMID: 37331160 DOI: 10.1016/j.coviro.2023.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus-8, is an oncogenic herpesvirus. Its latency-associated nuclear antigen (LANA) is essential for the persistence of KSHV in latently infected cells. LANA mediates replication of the latent viral genome during the S phase of a dividing cell and partitions episomes to daughter cells by attaching them to mitotic chromosomes. It also mediates the establishment of latency in newly infected cells through epigenetic mechanisms and suppresses the activation of the productive replication cycle. Furthermore, LANA promotes the proliferation of infected cell by acting as a transcriptional regulator and by modulating the cellular proteome through the recruitment of several cellular ubiquitin ligases. Finally, LANA interferes with the innate and adaptive immune system to facilitate the immune escape of infected cells.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany; German Center for Infection Research, Hannover-Braunschweig Site, Germany.
| | - Anika Freise
- Institute of Virology, Hannover Medical School, Germany
| | - Saskia C Stein
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany
| |
Collapse
|
6
|
Nikitina PA, Basanova EI, Nikolaenkova EB, Os'kina IA, Serova OA, Bormotov NI, Shishkina LN, Perevalov VP, Tikhonov AY. Synthesis of esters and amides of 2-aryl-1-hydroxy-4-methyl-1H-imidazole-5-carboxylic acids and study of their antiviral activity against orthopoxviruses. Bioorg Med Chem Lett 2023; 79:129080. [PMID: 36414175 PMCID: PMC9674569 DOI: 10.1016/j.bmcl.2022.129080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Smallpox was eradicated >40 years ago but it is not a reason to forget forever about orthopoxviruses pathogenic to humans. Though in 1980 the decision of WHO to cease vaccination against smallpox had seemed logical, it led to the decrease of cross immunity against other infections caused by orthopoxviruses. As a result, in 2022 the multi-country monkeypox outbreak becomes a topic of great concern. In spite of existing FDA-approved drugs for the treatment of such diseases, the search for new small-molecule orthopoxvirus inhibitors continues. In the course of this search a series of novel 2-aryl-1-hydroxyimidazole derivatives containing ester or carboxamide moieties in position 5 of heterocycle has been synthesized and tested for activity against Vaccinia virus in Vero cell culture. Some of the compounds under consideration revealed a selectivity index higher than that of the reference drug Cidofovir. The highest selectivity index SI = 919 was exhibited by ethyl 1-hydroxy-4-methyl-2-[4-(trifluoromethyl)phenyl]-1H-imidazole-5-carboxylate 1f. The most active compound also demonstrated inhibitory activity against the cowpox virus (SI = 20) and the ectromelia virus (SI = 46).
Collapse
Affiliation(s)
- P A Nikitina
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, Moscow 125047, Russia.
| | - E I Basanova
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, Moscow 125047, Russia
| | - E B Nikolaenkova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue, 9, 630090 Novosibirsk, Russia
| | - I A Os'kina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue, 9, 630090 Novosibirsk, Russia
| | - O A Serova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - N I Bormotov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - L N Shishkina
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - V P Perevalov
- D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, Moscow 125047, Russia
| | - A Ya Tikhonov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue, 9, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Moinul M, Khatun S, Amin SA, Jha T, Gayen S. Recent trends in fragment-based anticancer drug design strategies against different targets: A mini-review. Biochem Pharmacol 2022; 206:115301. [DOI: 10.1016/j.bcp.2022.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
8
|
Human Gammaherpesvirus 8 Oncogenes Associated with Kaposi’s Sarcoma. Int J Mol Sci 2022; 23:ijms23137203. [PMID: 35806208 PMCID: PMC9266852 DOI: 10.3390/ijms23137203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human gammaherpesvirus 8 (HHV-8), contains oncogenes and proteins that modulate various cellular functions, including proliferation, differentiation, survival, and apoptosis, and is integral to KSHV infection and oncogenicity. In this review, we describe the most important KSHV genes [ORF 73 (LANA), ORF 72 (vCyclin), ORF 71 or ORFK13 (vFLIP), ORF 74 (vGPCR), ORF 16 (vBcl-2), ORF K2 (vIL-6), ORF K9 (vIRF 1)/ORF K10.5, ORF K10.6 (vIRF 3), ORF K1 (K1), ORF K15 (K15), and ORF 36 (vPK)] that have the potential to induce malignant phenotypic characteristics of Kaposi’s sarcoma. These oncogenes can be explored in prospective studies as future therapeutic targets of Kaposi’s sarcoma.
Collapse
|
9
|
Dahlem C, Abuhaliema A, Kessler SM, Kröhler T, Zoller BGE, Chanda S, Wu Y, Both S, Müller F, Lepikhov K, Kirsch SH, Laggai S, Müller R, Empting M, Kiemer AK. First Small-Molecule Inhibitors Targeting the RNA-Binding Protein IGF2BP2/IMP2 for Cancer Therapy. ACS Chem Biol 2022; 17:361-375. [PMID: 35023719 DOI: 10.1021/acschembio.1c00833] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is overexpressed in several tumor entities, promotes tumorigenesis and tumor progression, and has been suggested to worsen the disease outcome. The aim of this study is to (I) validate IMP2 as a potential target for colorectal cancer, (II) set up a screening assay for small-molecule inhibitors of IMP2, and (III) test the biological activity of the obtained hit compounds. Analyses of colorectal and liver cancer gene expression data showed reduced survival in patients with a high IMP2 expression and in patients with a higher IMP2 expression in advanced tumors. In vitro target validation in 2D and 3D cell cultures demonstrated a reduction in cell viability, migration, and proliferation in IMP2 knockout cells. Also, xenotransplant tumor cell growth in vivo was significantly reduced in IMP2 knockouts. Different compound libraries were screened for IMP2 inhibitors using a fluorescence polarization assay, and the results were confirmed by the thermal shift assay and saturation-transfer difference NMR. Ten compounds, which belong to two classes, that is, benzamidobenzoic acid class and ureidothiophene class, were validated in vitro and showed a biological target specificity. The three most active compounds were also tested in vivo and exhibited reduced tumor xenograft growth in zebrafish embryos. In conclusion, our findings support that IMP2 represents a druggable target to reduce tumor cell proliferation.
Collapse
Affiliation(s)
- Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Sonja M. Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle 06108, Germany
| | - Tarek Kröhler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ben G. E. Zoller
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Shilpee Chanda
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Yingwen Wu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Fabian Müller
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | | | - Susanne H. Kirsch
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
10
|
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. The main characteristics of these viruses are their ability to establish a lifelong latency into the host with a potential to reactivate periodically. Primary infections and reactivations with herpesviruses are responsible for a large spectrum of diseases and may result in severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the replicative cycle of herpesviruses, and the target of most antiviral agents (i.e., nucleoside, nucleotide and pyrophosphate analogs). However, long-term prophylaxis and treatment with these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (nucleoside analogs) and/or DNA polymerases, with potential cross-resistance between the different analogs. Drug resistance mutations mainly arise in conserved regions of the polymerase and exonuclease functional domains of these enzymes. In the polymerase domain, mutations associated with resistance to nucleoside/nucleotide analogs may directly or indirectly affect drug binding or incorporation into the primer strand, or increase the rate of extension of DNA to overcome chain termination. In the exonuclease domain, mutations conferring resistance to nucleoside/nucleotide analogs may reduce the rate of excision of incorporated drug, or continue DNA elongation after drug incorporation without excision. Mutations associated with resistance to pyrophosphate analogs may alter drug binding or the conformational changes of the polymerase domain required for an efficient activity of the enzyme. Novel herpesvirus inhibitors with a potent antiviral activity against drug-resistant isolates are thus needed urgently.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Gaglia MM. Kaposi's sarcoma-associated herpesvirus at 27. Tumour Virus Res 2021; 12:200223. [PMID: 34153523 PMCID: PMC8250455 DOI: 10.1016/j.tvr.2021.200223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/25/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) was discovered 27 years ago and its link to several pathologies - Kaposi's sarcoma, primary effusion lymphoma, and the B cell variant of Multicentric Castleman disease - is now well established. However, many questions remain about how KSHV causes tumors. Here, I will review studies from the last few years (primarily 2019-2021) that report new information about KSHV biology and tumorigenesis, including new results about KSHV proteins implicated in tumorigenesis, genetic and environmental variability in KSHV-related tumor development, and potential vulnerabilities of KSHV-caused tumors that could be novel therapeutic targets.
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Naimo E, Zischke J, Schulz TF. Recent Advances in Developing Treatments of Kaposi's Sarcoma Herpesvirus-Related Diseases. Viruses 2021; 13:1797. [PMID: 34578378 PMCID: PMC8473310 DOI: 10.3390/v13091797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
Kaposi-sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is the causative agent of several malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). Active KSHV replication has also been associated with a pathological condition called KSHV inflammatory cytokine syndrome (KICS), and KSHV may play a role in rare cases of post-transplant polyclonal lymphoproliferative disorders. Several commonly used herpesviral DNA polymerase inhibitors are active against KSHV in tissue culture. Unfortunately, they are not always efficacious against KSHV-induced diseases. To improve the outcome for the patients, new therapeutics need to be developed, including treatment strategies that target either viral proteins or cellular pathways involved in tumor growth and/or supporting the viral life cycle. In this review, we summarize the most commonly established treatments against KSHV-related diseases and review recent developments and promising new compounds that are currently under investigation or on the way to clinical use.
Collapse
Affiliation(s)
- Eleonora Naimo
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
- Cluster of Excellence 2155 RESIST, Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
13
|
KSHV-specific antivirals targeting the protein-DNA interaction of the latency-associated nuclear antigen. Future Med Chem 2021; 13:1141-1151. [PMID: 34036806 DOI: 10.4155/fmc-2021-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human herpesviruses that is responsible for cancer, especially in immunosuppressed people, such as patients with AIDS. So far, there are no KSHV-specifc antiviral agents available. In this review, we provide an overview on one particular target-centered approach toward novel anti-KSHV drugs focusing on interfering with the molecular functions of the latency-associated nuclear antigen (LANA). This review focuses on attempts to interfere with the LANA-DNA interaction mediated by the C-terminal domain. We describe the drug discovery approaches chosen for this endeavor as well as molecular structures that were identified in this innovative concept toward novel and KSHV-specific antiherpesviral agents.
Collapse
|
14
|
Evolution of biophysical tools for quantitative protein interactions and drug discovery. Emerg Top Life Sci 2021; 5:1-12. [PMID: 33739398 DOI: 10.1042/etls20200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
With millions of signalling events occurring simultaneously, cells process a continuous flux of information. The genesis, processing, and regulation of information are dictated by a huge network of protein interactions. This is proven by the fact that alterations in the levels of proteins, single amino acid changes, post-translational modifications, protein products arising out of gene fusions alter the interaction landscape leading to diseases such as congenital disorders, deleterious syndromes like cancer, and crippling diseases like the neurodegenerative disorders which are often fatal. Needless to say, there is an immense effort to understand the biophysical basis of such direct interactions between any two proteins, the structure, domains, and sequence motifs involved in tethering them, their spatio-temporal regulation in cells, the structure of the network, and their eventual manipulation for intervention in diseases. In this chapter, we will deliberate on a few techniques that allow us to dissect the thermodynamic and kinetic aspects of protein interaction, how innovation has rendered some of the traditional techniques applicable for rapid analysis of multiple samples using small amounts of material. These advances coupled with automation are catching up with the genome-wide or proteome-wide studies aimed at identifying new therapeutic targets. The chapter will also summarize how some of these techniques are suited either in the standalone mode or in combination with other biophysical techniques for the drug discovery process.
Collapse
|
15
|
Lozano C, Ramirez C, Sin N, Viart HF, Prusiner SB, Paras NA, Conrad J. Silver Benzoate Facilitates the Copper-Catalyzed C-N Coupling of Iodoazoles with Aromatic Nitrogen Heterocycles. ACS OMEGA 2021; 6:9804-9812. [PMID: 33869960 PMCID: PMC8047741 DOI: 10.1021/acsomega.1c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
In the literature, C-N coupling methods for the reaction of iodo-oxazole with 2-pyridinone were found to be low yielding. C-N coupling using silver benzoate additives with CuI catalysts and 4,7-dimethoxy-1,10-phenanthroline ligands has been developed to afford synthetically useful yields of the desired heterobicycle product. The reaction conditions are applied to the coupling of a range of iodo-heterocycles with 2-pyridinone. The coupling of a variety of NH-containing heterocycles with 4-iodo-oxazole is also demonstrated. The use of 2-, 4-, or 5-iodo-oxazole allows for the coupling of pyridinone to each oxazole position.
Collapse
Affiliation(s)
- Cedric Lozano
- Institute
for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Cristian Ramirez
- Institute
for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Ny Sin
- Institute
for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco 94158, California, United States
| | - Hélène
M.-F. Viart
- Institute
for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco 94158, California, United States
| | - Stanley B. Prusiner
- Institute
for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco 94158, California, United States
- Department
of Biochemistry and Biophysics, University
of California San Francisco, San
Francisco, California 94158, United States
| | - Nick A. Paras
- Institute
for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco 94158, California, United States
| | - Jay Conrad
- Institute
for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco 94158, California, United States
| |
Collapse
|
16
|
Röhrig UF, Majjigapu SR, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascencao K, Irving M, Coukos G, Vogel P, Michielin O, Zoete V. Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2021; 64:2205-2227. [PMID: 33557523 DOI: 10.1021/acs.jmedchem.0c01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heme enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays an essential role in immunity, neuronal function, and aging through catalysis of the rate-limiting step in the kynurenine pathway of tryptophan metabolism. Many IDO1 inhibitors with different chemotypes have been developed, mainly targeted for use in anti-cancer immunotherapy. Lead optimization of direct heme iron-binding inhibitors has proven difficult due to the remarkable selectivity and sensitivity of the heme-ligand interactions. Here, we present experimental data for a set of closely related small azole compounds with more than 4 orders of magnitude differences in their inhibitory activities, ranging from millimolar to nanomolar levels. We investigate and rationalize their activities based on structural data, molecular dynamics simulations, and density functional theory calculations. Our results not only expand the presently known four confirmed chemotypes of sub-micromolar heme binding IDO1 inhibitors by two additional scaffolds but also provide a model to predict the activities of novel scaffolds.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nahzli Dilek
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kelly Ascencao
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
17
|
Piret J, Boivin G. Antiviral Drugs Against Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:1-30. [PMID: 34258735 DOI: 10.1007/978-981-16-0267-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the nucleoside analogue, acyclovir, represented a milestone in the management of infections caused by herpes simplex virus and varicella-zoster virus. Ganciclovir, another nucleoside analogue, was then used for the management of systemic and organ-specific human cytomegalovirus diseases. The pyrophosphate analogue, foscarnet, and the nucleotide analogue, cidofovir, have been approved subsequently and constitute the second-line antiviral drugs. However, the viral DNA polymerase is the ultimate target of all these antiviral agents with a possible emergence of cross-resistance between these drugs. Recently, letermovir that targets the viral terminase complex was approved for the prophylaxis of human cytomegalovirus infections in hematopoietic stem cell transplant recipients. Other viral targets such as the protein kinase and the helicase-primase complex are also evaluated for the development of novel potent inhibitors against herpesviruses.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Laval University, Quebec City, QC, Canada.
| |
Collapse
|
18
|
Jahnke W, Erlanson DA, de Esch IJP, Johnson CN, Mortenson PN, Ochi Y, Urushima T. Fragment-to-Lead Medicinal Chemistry Publications in 2019. J Med Chem 2020; 63:15494-15507. [PMID: 33226222 DOI: 10.1021/acs.jmedchem.0c01608] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fragment-based drug discovery (FBDD) has grown and matured to a point where it is valuable to keep track of its extent and details of application. This Perspective summarizes successful fragment-to-lead stories published in 2019. It is the fifth in a series that started with literature published in 2015. The analysis of screening methods, optimization strategies, and molecular properties of hits and leads are presented in the hope of informing best practices for FBDD. Moreover, FBDD is constantly evolving, and the latest technologies and emerging trends are summarized. These include covalent FBDD, FBDD for the stabilization of proteins or protein-protein interactions, FBDD for enzyme activators, new screening technologies, and advances in library design and chemical synthesis.
Collapse
Affiliation(s)
- Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, California 94080, United States of America
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Yuji Ochi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Tatsuya Urushima
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
19
|
Calderon A, Soldan SS, De Leo A, Deng Z, Frase DM, Anderson EM, Zhang Y, Vladimirova O, Lu F, Leung JC, Murphy ME, Lieberman PM. Identification of Mubritinib (TAK 165) as an inhibitor of KSHV driven primary effusion lymphoma via disruption of mitochondrial OXPHOS metabolism. Oncotarget 2020; 11:4224-4242. [PMID: 33245718 PMCID: PMC7679036 DOI: 10.18632/oncotarget.27815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
KSHV-associated cancers have poor prognoses and lack therapeutics that selectively target viral gene functions. We developed a screening campaign to identify known drugs that could be repurposed for the treatment of KSHV-associated cancers. We focused on primary effusion lymphoma (PEL), which has particularly poor treatment outcomes. We developed a luciferase reporter assay to test the ability of drugs to inhibit DNA binding of the KSHV LANA DNA binding domain (DBD). In parallel, we screened drugs for selective inhibition of a KSHV+ PEL cells. While potent hits were identified in each assay, only one hit, Mubritinib, was found to score in both assays. Mubritinib caused PEL cells to undergo cell cycle arrest with accumulation of sub-G1 population and Annexin V. Mubritinib inhibited LANA binding to KSHV terminal repeat (TR) DNA in KSHV+ PEL cells, but did not lead to KSHV lytic cycle reactivation. Mubritinib was originally identified as a receptor tyrosine kinase (RTK) inhibitor selective for HER2/ErbB2. But recent studies have revealed that Mubritinib can also inhibit the electron transport chain (ETC) complex at nanomolar concentrations. We found that other related ETC complex inhibitors (Rotenone and Deguelin) exhibited PEL cell growth inhibition while RTK inhibitors failed. Seahorse analysis demonstrated that Mubritinib selectively inhibits the maximal oxygen consumption (OCR) in PEL cells and metabolomics revealed changes in ATP/ADP and ATP/AMP ratios. These findings indicate that PEL cells are selectively sensitive to ETC complex inhibitors and provide a rationale for repurposing Mubritinib for selective treatment of PEL.
Collapse
Affiliation(s)
| | | | | | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | | | - Yue Zhang
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | - Fang Lu
- The Wistar Institute, Philadelphia, PA 19146, USA
| | | | | | | |
Collapse
|
20
|
Kirsch P, Stein SC, Berwanger A, Rinkes J, Jakob V, Schulz TF, Empting M. Hit-to-lead optimization of a latency-associated nuclear antigen inhibitor against Kaposi’s sarcoma-associated herpesvirus infections. Eur J Med Chem 2020; 202:112525. [DOI: 10.1016/j.ejmech.2020.112525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022]
|
21
|
Li Q. Application of Fragment-Based Drug Discovery to Versatile Targets. Front Mol Biosci 2020; 7:180. [PMID: 32850968 PMCID: PMC7419598 DOI: 10.3389/fmolb.2020.00180] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful method to develop potent small-molecule compounds starting from fragments binding weakly to targets. As FBDD exhibits several advantages over high-throughput screening campaigns, it becomes an attractive strategy in target-based drug discovery. Many potent compounds/inhibitors of diverse targets have been developed using this approach. Methods used in fragment screening and understanding fragment-binding modes are critical in FBDD. This review elucidates fragment libraries, methods utilized in fragment identification/confirmation, strategies applied in growing the identified fragments into drug-like lead compounds, and applications of FBDD to different targets. As FBDD can be readily carried out through different biophysical and computer-based methods, it will play more important roles in drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Wang H, Liang L, Guo Z, Peng H, Qiao S, Saha N, Zhu D, Zeng W, Chen Y, Huang P, Wen S. Highly Reactive Cyclic Monoaryl Iodoniums Tuned as Carbene Generators Couple with Nucleophiles under Metal-Free Conditions. iScience 2020; 23:101307. [PMID: 32634743 PMCID: PMC7338778 DOI: 10.1016/j.isci.2020.101307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/05/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022] Open
Abstract
Cross-coupling reactions between aryl iodide and nucleophiles have been well developed. Iodoniums equipped with a reactive C-I(III) bond accelerate cross-coupling reactions of aryl iodide. Among them, cyclic diaryliodoniums are more atom economical; however; they are often in the trap of metal reliance and encounter regioselectivity issues. Now, we have developed a series of highly reactive cyclic monoaryl-vinyl iodoniums that can be tuned to construct C-N, C-O, and C-C bonds without metal catalysis. Under promotion of triethylamine, coupling reactions with aniline, phenol, aromatic acid, and indole proceed rapidly and regioselectively at room temperature. The carbene species is conceptualized as a key intermediate in our mechanism model. Furthermore, the coupling products enable diversity-oriented synthesis strategy to further build up a chemical library of diverse heterocyclic fragments that are in demand in the drug discovery field. Our current work provides a deep insight into the synthetic application of these highly reactive cyclic iodoniums.
Collapse
Affiliation(s)
- Haiwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Liyun Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Zhirong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Hui Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Nemai Saha
- Berhampore Girl's College, Berhampore, Murshidabad, West Bengal 742101, India
| | - Daqian Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yunyun Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| |
Collapse
|
23
|
Messick TE, Tolvinski L, Zartler ER, Moberg A, Frostell Å, Smith GR, Reitz AB, Lieberman PM. Biophysical Screens Identify Fragments That Bind to the Viral DNA-Binding Proteins EBNA1 and LANA. Molecules 2020; 25:molecules25071760. [PMID: 32290261 PMCID: PMC7180839 DOI: 10.3390/molecules25071760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
The human gamma-herpesviruses Epstein-Barr virus (EBV) (HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV) (HHV-8) are responsible for a number of diseases, including various types of cancer. Epstein-Barr nuclear antigen 1 (EBNA1) from EBV and latency-associated nuclear antigen (LANA) from KSHV are viral-encoded DNA-binding proteins that are essential for the replication and maintenance of their respective viral genomes during latent, oncogenic infection. As such, EBNA1 and LANA are attractive targets for the development of small-molecule inhibitors. To this end, we performed a biophysical screen of EBNA1 and LANA using a fragment library by saturation transfer difference (STD)-NMR spectroscopy and surface plasmon resonance (SPR). We identified and validated a number of unique fragment hits that bind to EBNA1 or LANA. We also determined the high-resolution crystal structure of one fragment bound to EBNA1. Results from this screening cascade provide new chemical starting points for the further development of potent inhibitors for this class of viral proteins.
Collapse
Affiliation(s)
- Troy E. Messick
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA;
- Correspondence: (T.E.M.); (P.M.L.); Tel.: +215-898-3896 (T.E.M.); +215-898-9523 (P.M.L.)
| | - Lois Tolvinski
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA;
| | | | - Anna Moberg
- GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden; (A.M.); (Å.F.)
| | - Åsa Frostell
- GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden; (A.M.); (Å.F.)
| | - Garry R. Smith
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA; (G.R.S.); (A.B.R.)
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA; (G.R.S.); (A.B.R.)
| | - Paul M. Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA;
- Correspondence: (T.E.M.); (P.M.L.); Tel.: +215-898-3896 (T.E.M.); +215-898-9523 (P.M.L.)
| |
Collapse
|
24
|
Kirsch P, Jakob V, Elgaher WAM, Walt C, Oberhausen K, Schulz TF, Empting M. Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus. ACS Chem Biol 2020; 15:388-395. [PMID: 31944659 DOI: 10.1021/acschembio.9b00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells. By inhibition of the LANA-DNA interaction, we seek to eliminate or reduce the load of the viral DNA in the host. To achieve this goal, we screened our in-house library using a dedicated fluorescence polarization (FP)-based competition assay, which allows for the quantification of LANA-DNA-interaction inhibition by small organic molecules. We successfully identified three different compound classes capable of disrupting this protein-nucleic acid interaction. We characterized these compounds by IC50 dose-response evaluation and confirmed the compound-LANA interaction using surface plasmon resonance (SPR) spectroscopy. Furthermore, two of the three hit scaffolds showed only marginal cytotoxicity in two human cell lines. Finally, we conducted STD-NMR competition experiments with our new hit compounds and a previously described fragment-sized inhibitor. Based on these results, future compound linking approaches could serve as a promising strategy for further optimization studies in order to generate highly potent KSHV inhibitors.
Collapse
Affiliation(s)
- Philine Kirsch
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Valentin Jakob
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Walid A. M. Elgaher
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Christine Walt
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Kevin Oberhausen
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Thomas F. Schulz
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Martin Empting
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Yakushiji F, Ishikawa A, Katsuyama A, Ichikawa S. Development of cyclic peptide derivatives from the N-terminal region of LANA for targeting the nucleosome acidic patch. Bioorg Med Chem Lett 2020; 30:126839. [PMID: 31848042 DOI: 10.1016/j.bmcl.2019.126839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 11/26/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is known to be a carcinogenic agent that causes AIDS-associated Kaposi's sarcoma (KS). When KSHV infects host's cells, one of the virus's proteins, latency-associated nuclear antigen 1 (LANA), binds to the host's nucleosomes to retain episomes and create latency circumstances. Although the infectious mechanism of KSHV is partly elucidated, the development of drug candidates for targeting KS is ongoing. In this study, we developed cyclic peptides corresponding to an N-terminal LANA sequence that disrupt the LANA-nucleosome interaction. The cyclic peptides showed a different secondary structure compared to their corresponding linear peptide derivatives, which suggests that our cyclization strategy imitates the N-terminal LANA binding conformation on nucleosomes.
Collapse
Affiliation(s)
- Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Sapporo 060-0812, Japan.
| | - Aoi Ishikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo 060-0812, Japan; Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Sapporo 060-0812, Japan.
| |
Collapse
|
26
|
Kirsch P, Hartman AM, Hirsch AKH, Empting M. Concepts and Core Principles of Fragment-Based Drug Design. Molecules 2019; 24:molecules24234309. [PMID: 31779114 PMCID: PMC6930586 DOI: 10.3390/molecules24234309] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
In this review, a general introduction to fragment-based drug design and the underlying concepts is given. General considerations and methodologies ranging from library selection/construction over biophysical screening and evaluation methods to in-depth hit qualification and subsequent optimization strategies are discussed. These principles can be generally applied to most classes of drug targets. The examples given for fragment growing, merging, and linking strategies at the end of the review are set in the fields of enzyme-inhibitor design and macromolecule–macromolecule interaction inhibition. Building upon the foundation of fragment-based drug discovery (FBDD) and its methodologies, we also highlight a few new trends in FBDD.
Collapse
Affiliation(s)
- Philine Kirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
| | - Alwin M. Hartman
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany; (P.K.); (A.M.H.); (A.K.H.H.)
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-988-062-031
| |
Collapse
|