1
|
Zhang Y, Nie JH, Du Y, Ye XR, Cui BD, Mou XQ, Liu JB, Yuan WC, Chen YZ. Photomediated One-Pot Multicomponent Cascade Reaction for the Synthesis of N-Acyl/Sulfonyl-α-Phosphonated-1,2,3,4-Tetrahydroisoquinoline via Twice Acyl/Sulfonyl Iminium Formation. Chem Asian J 2025; 20:e202401542. [PMID: 39808689 DOI: 10.1002/asia.202401542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
N-acyl/sulfonyl-α-phosphonated 1,2,3,4-tetrahydroiso-quinolines (THIQs) are significant structural motifs in organic synthesis and drug discovery. However, the one-pot approach enabling direct difunctionalization of THIQs remains challenging. Herein we report a photomediated one-pot multicomponent cascade reaction to access N-acyl/sulfonyl-α-phosphonated THIQs via twice acyl/sulfonyl iminium. This method features air as an oxidant, high atom and step economy, and mild conditions.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Jia-Huan Nie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Yao Du
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Xin-Rui Ye
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, P. R. China
| | - Jia-Bao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wei-Cheng Yuan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Gui-zhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, P. R. China
| |
Collapse
|
2
|
Zhang F, Zheng T, Wang X, Chen Y, Zhang F, Liu X, Wang S, Yang G, Xie S, Wu Q, Xu C, Zhou Q, Wu D, Luo HB, Huang YY. Structure-Based Optimization of Moracin M as Potent and Selective PDE4 Inhibitors with Antipsoriasis Effects. J Med Chem 2025; 68:6789-6803. [PMID: 40066994 DOI: 10.1021/acs.jmedchem.5c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Psoriasis is a complex chronic inflammatory disease that severely affects the quality of life of patients. However, current medications could only control the symptoms but not cure psoriasis with unmet medical needs. Herein, structure-based optimizations of natural product moracin M (IC50 of 2.9 μM) led to a novel PDE4 inhibitor L30 with greatly improved potency (IC50 of 8.6 nM) and remarkable selectivity across other PDEs families (>201-fold). The binding pattern of L30 with PDE4 revealed by cocrystal structure was different from that of roflumilast. Besides, L30 could effectively inhibit the release of inflammatory cytokines and chemokines in Raw264.7 and HaCaT cell lines. Furthermore, topical administration of L30 exhibited significant therapeutic effects in an imiquimod-induced psoriasis mouse model. These findings highlighted the potential of PDE4 inhibitor L30 as a novel lead for the treatment of psoriasis.
Collapse
Affiliation(s)
- Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Life and Health Science, Hainan University, Haikou 570228, China
| | - Tiansheng Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xue Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yu Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Feng Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xingfu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Sen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guofeng Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shenghong Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qi Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Chao Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qian Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Jin Z, Li G, He D, Chen J, Zhang Y, Li M, Yao H. An overview of small-molecule agents for the treatment of psoriasis. Bioorg Med Chem 2025; 119:118067. [PMID: 39832444 DOI: 10.1016/j.bmc.2025.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Psoriasis is a prevalent, chronic inflammatory disease characterized by abnormal skin plaques. To date, physical therapy, topical therapy, systemic therapy and biologic drugs are the most commonly employed strategies for treating psoriasis. Recently, many agents have advanced to clinical trials, and some anti-psoriasis drugs have been approved, including antibody drugs and small-molecule drugs. Many antibody drugs targeting cytokines and receptors, such as interleukin (IL-17 and IL-23) and tumor necrosis factor-α (TNF-α), have been approved for the treatment of psoriasis. And numerous small-molecule agents have displayed promising activities in the treatment of psoriasis. The targets of anti-psoriasis drugs encompass phosphodiesterase IV (PDE4), Janus kinase (JAK), tyrosine kinase (TYK), retinoic acid-related orphan receptors (ROR), vitamin D receptor (VDR), Interleukin (IL), Aryl hydrocarbon receptor (AhR), Interleukin-1 receptor-associated kinase 4 (IRAK), chemoattractant-like receptor 1 (ChemR23), Sphingosine-1-phosphate receptor (S1P), A3 adenosine receptor (A3AR), Heat shock protein 90 (HSP90), The Rho-associated protein kinases (ROCK), The bromodomain and extra-terminal domain (BET), FMS-like tyrosine kinase 3 (FLT3), Tumor Necrosis Factor α Converting Enzyme (TACE), Toll-like receptors (TLR), NF-κB inducing kinase (NIK), DNA topoisomerase I (Topo I), among others. Herein, this review mainly recapitulates the advancements in the structure and enzyme activity of small-molecule anti-psoriasis agents over the last ten years, and their binding modes were also explored. Hopefully, this review will facilitate the development of novel small-molecule agents as potential anti-psoriasis drugs.
Collapse
Affiliation(s)
- Zhiheng Jin
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308 China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Dengqin He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
4
|
Xia L, Li H, Long L, Ruan W, Ma J, Xu S, Qiao D. Research progress on the pathogenesis of psoriasis and its small molecule inhibitors. Arch Pharm (Weinheim) 2025; 358:e2400621. [PMID: 39686874 DOI: 10.1002/ardp.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Psoriasis is a prevalent chronic systemic immune disease characterized by T-cellmediated hyperproliferation of keratinized cells. Among its various manifestations, plaque-type psoriasis is the most common. Treatment options for psoriasis encompass topical medications, biological therapies, phototherapy techniques, and others. However, traditional treatments are associated with numerous side effects. In contrast, targeted therapy has garnered increasing attention due to its high selectivity, strong safety profile, and favorable therapeutic outcomes. Patients with psoriasis lesions exhibit elevated levels of proinflammatory cytokines compared with the general population. These proinflammatory cytokines have been implicated in mediating psoriasis pathogenesis by inducing keratinocyte proliferation through multiple signaling pathways within the body. This study will delve into the Janus kinase-signal transducers and activators of transcription, phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB, also known as AKT), and nuclear factor Kappa-light-chain-enhancer of activated B cells signaling pathways to elucidate their roles in mediating psoriasis pathogenesis. In addition, we will summarize potential targets relevant to the treatment of psoriasis and discuss the design and activity assessment of their inhibitors. It also provides new insights for further in-depth study of psoriasis and development of novel molecularly targeted inhibitors.
Collapse
Affiliation(s)
- Lulu Xia
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Hongxin Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Jiajia Ma
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Li G, He D, Qian X, Liu Y, Ou Y, Li M, Song L, Xu Z, Zhang G, Wang J, Pan W, Chen J, Zhang Y, Wu JQ, Chen D, Chen C, Peng S, Yao H, Ke H. Development of selective heterocyclic PDE4 inhibitors for treatment of psoriasis. Eur J Med Chem 2024; 280:116930. [PMID: 39383652 DOI: 10.1016/j.ejmech.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Psoriasis is a chronic autoimmune disease that badly affects the life quality of patients and their families. Inadequate efficacy, safety risks, high cost and low compliance of current psoriasis drugs urge development of novel small molecular drugs. In this study, two series of 37 novel compounds were designed and synthesized as inhibitors of phosphodiesterase 4 (PDE4) that specifically hydrolyzes second messenger cAMP and is an effective target for treatment of inflammatory diseases. Comprehensive structural-activity optimization led to finding of inhibitor 2e with IC50 = 2.4 nM for PDE4D and >4100-fold selectivity over other PDE families. Compound 2e inhibited the release of TNF-α (IC50 = 21.36 μM) and IL-6 (IC50 = 29.22 μM) in the LPS-stimulated Raw264.7 cells. Topical application of 2e exhibited remarkable therapeutic efficacy in imiquimod-induced psoriasis mice model, suggesting that 2e is a strong drug candidate for treatment of psoriasis.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Xudong Qian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Yuanhui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Liyan Song
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Zichen Xu
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, China
| | - Guoping Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jun Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Wei Pan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Dandan Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Cheng Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Siying Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
He D, Li G, Wu JQ, Geng Y, Qian X, Liu Y, Ou Y, Li M, Wang J, Pan W, Zhang G, Chen D, Chen J, Xu Z, Ke H, Yao H. Design, Synthesis, and Biological Evaluation of New Selective PDE4 Inhibitors for Topical Treatment of Psoriasis. J Med Chem 2024; 67:20353-20371. [PMID: 39535061 DOI: 10.1021/acs.jmedchem.4c01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Psoriasis is a complex and chronic inflammatory disease. Current drugs help control the symptoms of psoriasis but make no cure, urging discovery of novel drugs. We report in this paper the discovery of new phosphodiesterase 4 (PDE4) inhibitors for treatment of psoriasis. We designed and synthesized 45 new compounds, among which 14h exhibited IC50 of 0.57 nM for PDE4D and >4100-fold selectivity over other PDE families. Compound 14h inhibited release of inflammatory cytokines of TNF-α (IC50 = 34.2 μM) and IL-6 (IC50 = 40.9 μM) in Raw264.7 cells and reduced the expression of IL-1β and IL-17A in the skin of psoriasis mice. In addition, 14h alleviated IMQ-induced psoriasis in the mouse model and reduced the erythema level, scales, and thickness of the back skin of the mice. In short, our results suggested that PDE4 inhibitor 14h is a strong candidate for the topical treatment of psoriasis.
Collapse
Affiliation(s)
- Dengqin He
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jia-Qiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Xudong Qian
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yuanhui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jun Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Wei Pan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Guoping Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Dandan Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| | - Zichen Xu
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China
| |
Collapse
|
7
|
Zhou J, Xu B, Shen Q, Zhang Z, Hu Y, Wang M, Su Y, Lei Z, Zhang W, Liu T, Liu H, Hu T, Zhou Y. Identification and biological evaluation of fused tetrahydroisoquinoline derivatives as Wnt/β-catenin signaling inhibitors to suppress colorectal cancer. Eur J Med Chem 2024; 276:116664. [PMID: 39018921 DOI: 10.1016/j.ejmech.2024.116664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Colorectal cancer (CRC) has been becoming one of the most common causes of cancer mortality worldwide. Accumulating studies suggest that the progressive up-regulation of Wnt/β-catenin signaling is a crucial hallmark of CRC, and suppressing it is a promising strategy to treat CRC. Herein, we reported our latest efforts in the discovery of novel fused tetrahydroisoquinoline derivatives with good anti-CRC activities by screening our in-house berberine-like library and further structure-activity relationship (SAR) studies, in which we identified compound 10 is a potent lead compound with significant antiproliferation potencies. By the biotinylated probe and LC-MS/MS study, Hsp90 was identified as its molecular target, which is a fully different mechanism of action from what we reported before. Further studies showed compound 10 directly engaged the N-terminal site of Hsp90 and promoted the degradation of β-catenin, thereby suppressing the Wnt/β-catenin signaling. More importantly, compound 10 exhibits favorable pharmacokinetic parameters and significant anti-tumor efficacies in the HCT116 xenograft model. Taken together, this study furnished the discovery of candidate drug compound 10 possessing a novel fused tetrahydroisoquinoline scaffold with excellent in vitro and in vivo anti-CRC activities by targeting Hsp90 to disturb Wnt/β-catenin signaling pathway, which lay a foundation for discovering more effective CRC-targeted therapies.
Collapse
Affiliation(s)
- Jianhui Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Beibei Xu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qianwen Shen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhenwei Zhang
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yuting Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mengxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ziyu Lei
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tao Liu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Yu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Abo-Elmagd MI, Hassan RM, Aboutabl ME, Amin KM, El-Azzouny AA, Aboul-Enein MN. Design, synthesis and anti-inflammatory assessment of certain substituted 1,2,4-triazoles bearing tetrahydroisoquinoline scaffold as COX 1/2-inhibitors. Bioorg Chem 2024; 150:107577. [PMID: 38941697 DOI: 10.1016/j.bioorg.2024.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Aiming to discover effective and safe non-steroidal anti-inflammatory agents, a new set of 1,2,4-triazole tetrahydroisoquinoline hybrids 9a-g, 11a-g and 12a-g was synthesized and evaluated as inhibitors of COX-1 and COX-2. In order to overcome the adverse effects of highly selective COX-2 and non-selective COX-2 inhibitors, the compounds of this study were designed with the goal of obtaining moderately selective COX-2 inhibitors. In this study compounds 9e, 9g and 11f are the most effective derivatives against COX-2 with IC50 values 0.87, 1.27 and 0.58 µM, respectively which are better than or comparable to the standard drug celecoxib (IC50 = 0.82 µM) but with lower selectivity indices as required by our goal design. The results of the in vivo anti-inflammatory inhibition test revealed that compounds 9e, 9g and 11f displayed a higher significant anti-inflammatory activity than celecoxib at all-time intervals. In addition, these compounds significantly decreased the production of inflammatory mediators PGE-2, TNF-ɑ and IL-6. Compounds 9e, 9g and 11f had a safe gastric profile compared to indomethacin, also compound 11f (ulcerogenic index = 1.33) was less ulcerous than the safe celecoxib (ulcerogenic index = 3). Moreover, histopathological investigations revealed a normal architecture of both paw skin and gastric mucosa after oral treatment of rats with compound 11f. Furthermore, molecular docking studies were performed on COX-1 and COX-2 to study the binding pattern of compounds 9e, 9g and 11f on both isoenzymes.
Collapse
Affiliation(s)
- Mai I Abo-Elmagd
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mona E Aboutabl
- Medicinal and Pharmaceutical Chemistry Department, Pharmacology Group, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Kamilia M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Aida A El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed N Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
9
|
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. Int J Mol Sci 2024; 25:8052. [PMID: 39125619 PMCID: PMC11311937 DOI: 10.3390/ijms25158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| | | | | | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| |
Collapse
|
10
|
Fu Y, Li J, Zhao W. Two new limonoid glycosides from the seeds of Citrus Limon and their PDE4D inhibitory activities. Nat Prod Res 2024:1-7. [PMID: 38913076 DOI: 10.1080/14786419.2024.2370042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Two new limonoid glycosides, named limonosides A (1) and B (2), along with four known limonoids (3-6) were obtained from the seeds of Citrus limon. Their structures were deduced based on extensive spectroscopic analysis. Limonoside A (1) and nomilin (4) were found to possess moderate phosphodiesterase type 4D (PDE4D) inhibitory effect with values of 89.8 ± 2.4% and 98.9 ± 3.0% at 10 μM, respectively.
Collapse
Affiliation(s)
- Yifan Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jinlong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nantong University, Nantong, China
| | - Weimin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Zhou J, Wang N, Wang M, Hu Y, Zhang Z, Gu Z, Wang J, Shou H, Cheng X, Liu H, Li Y, Zhou Y. Discovery and Optimization of Tetrahydroisoquinoline Derivatives To Enhance Lysosome Biogenesis as Preclinical Candidates for the Treatment of Alzheimer's Disease. J Med Chem 2024; 67:8836-8861. [PMID: 38830007 DOI: 10.1021/acs.jmedchem.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
More than 55 million individuals are suffering from Alzheimer's disease (AD), while the effective therapeutic strategies remain elusive. Our previous study identified a lysosome-enhancing lead compound LH2-051 with a tetrahydroisoquinoline scaffold through a novel dopamine transporter-cyclin-dependent kinase 9-transcription factor EB (DAT-CDK9-TFEB) regulation mechanism to promote TFEB activation and lysosome biogenesis. Here, we launched a comprehensive structure-activity relationship study for LH2-051, and 47 new derivatives were designed and synthesized, in which several compounds exhibited remarkable lysosome-enhancing activities. Notably, compounds 37 and 45 exhibited more favorable TFEB activation and lysosome biogenesis capabilities, good safety profiles, and excellent pharmacokinetic profiles with high brain penetration. Further investigations demonstrated that both compounds significantly enhance the clearance of Aβ aggregates and ameliorate the impairment of learning, memory, and cognition in APP/PS1 mice. Overall, these results indicated that compounds 37 and 45 are promising preclinical drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Jianhui Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Mengxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Zhang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiyong Gu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jing Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haowen Shou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yang Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Yu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
12
|
Guo Y, Zhang Y, Chen L, Dai X, Zhang X, Meng F, Gao Z. Enantioselective Construction of Chiral THIQUINOL and Its Derivatives via Chiral Phosphoric Acid Catalysis. Org Lett 2024; 26:3569-3574. [PMID: 38648520 DOI: 10.1021/acs.orglett.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The first catalytic enantioselective construction of chiral THIQUINOL and its derivatives has been accomplished through a chiral phosphoric-acid-catalyzed direct aza-Friedel-Crafts reaction of 3,4-dihydroisoquinolines with 2-naphthols/anthracen-2-ols/phenanthren-9-ol. This method offers a powerful and straightforward synthetic route toward chiral THIQUINOL derivatives with good to excellent yields and enantioselectivities. These structural motifs are crucial chiral components for further transformations into established or potential chiral ligands and catalysis.
Collapse
Affiliation(s)
- Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ye Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Sichuan University of Science & Engineering, Zigong 643002, China
| | - Lina Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiandong Dai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xujin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Sichuan University of Science & Engineering, Zigong 643002, China
| | - Fanhua Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
13
|
Gu C, Liu J, Qian F, Yu W, Huang D, Shen J, Feng C, Chen K, Li Y, Jiang X, Xu Y, Zhang L. Identification of Dihydrobenzofuran Neolignans as Novel PDE4 Inhibitors and Evaluation of Antiatopic Dermatitis Efficacy in DNCB-Induced Mice Model. J Med Chem 2024; 67:4855-4869. [PMID: 38489246 DOI: 10.1021/acs.jmedchem.3c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Atopic dermatitis is a chronic relapsing skin disease characterized by recurrent, pruritic, localized eczema, while PDE4 inhibitors have been reported to be effective as antiatopic dermatitis agents. 3',4-O-dimethylcedrusin (DCN) is a natural dihydrobenzofuran neolignan isolated from Magnolia biondii with moderate potency against PDE4 (IC50 = 3.26 ± 0.28 μM) and a binding mode similar to that of apremilast, an approved PDE4 inhibitor for the treatment of psoriasis. The structure-based optimization of DCN led to the identification of 7b-1 that showed high inhibitory potency on PDE4 (IC50 = 0.17 ± 0.02 μM), good anti-TNF-α activity (EC50 = 0.19 ± 0.10 μM), remarkable selectivity profile, and good skin permeability. The topical treatment of 7b-1 resulted in the significant benefits of pharmacological intervention in a DNCB-induced atopic dermatitis-like mice model, demonstrating its potential for the development of novel antiatopic dermatitis agents.
Collapse
Affiliation(s)
- Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenchao Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenguo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
14
|
Cai H, Wen H, Li J, Lu L, Zhao W, Jiang X, Bai R. Small-molecule agents for treating skin diseases. Eur J Med Chem 2024; 268:116269. [PMID: 38422702 DOI: 10.1016/j.ejmech.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Skin diseases are a class of common and frequently occurring diseases that significantly impact daily lives. Currently, the limited effective therapeutic drugs are far from meeting the clinical needs; most drugs typically only provide symptomatic relief rather than a cure. Developing small-molecule drugs with improved efficacy holds paramount importance for treating skin diseases. This review aimed to systematically introduce the pathogenesis of common skin diseases in daily life, list related drugs applied in the clinic, and summarize the clinical research status of candidate drugs and the latest research progress of candidate compounds in the drug discovery stage. Also, it statistically analyzed the number of publications and global attention trends for the involved skin diseases. This review might provide practical information for researchers engaged in dermatological drugs and further increase research attention to this disease area.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenxuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
15
|
Zheng L, Aimaiti Z, Long L, Xia C, Wang W, Zhou ZZ. Discovery of 4-Ethoxy-6-chloro-5-azaindazoles as Novel PDE4 Inhibitors for the Treatment of Alcohol Use Disorder and Alcoholic Liver Diseases. J Med Chem 2024; 67:728-753. [PMID: 38156615 DOI: 10.1021/acs.jmedchem.3c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Alcohol use disorder (AUD) results in numerous disabilities and approximately 3 million deaths annually, caused mainly by alcoholic liver disease (ALD). Phosphodiesterase IV (PDE4) has emerged as an attractive molecular target for a new treatment for AUD and ALD. In this study, we describe the identification of 5-azaindazole analogues as PDE4 inhibitors against AUD and ALD. System optimization studies led to the discovery of ZL40 (IC50 = 37.4 nM) with a remarkable oral bioavailability (F = 94%), satisfactory safety, and a lower emetogenic potency than the approved PDE4 inhibitors roflumilast and apremilast. Encouragingly, ZL40 exhibited AUD therapeutic effects by decreasing alcohol intake and improving acute alcohol-induced sedation and motor impairment. Meanwhile, ZL40 displayed the potential to alleviate alcoholic liver injury and attenuate inflammation in the NIAAA mice model. These results showed that ZL40 is a promising compound for future drug development to treat alcohol-related diseases.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zulihuma Aimaiti
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Long
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuang Xia
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenya Wang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Liu R, Li W, Yao Y, Wu Y, Luo HB, Li Z. Accelerating and Automating the Free Energy Perturbation Absolute Binding Free Energy Calculation with the RED-E Function. J Chem Inf Model 2023; 63:7755-7767. [PMID: 38048439 DOI: 10.1021/acs.jcim.3c01670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The accurate prediction of the binding affinities between small molecules and biological macromolecules plays a fundamental role in structure-based drug design, which is still challenging. The free energy perturbation-based absolute binding free energy (FEP-ABFE) approach has shown potential in its reliability. To correctly calculate the energy related to the ligand being restrained by the receptor, additional restraints between the ligand and the receptor are needed. However, determining the restraint parameters for individual ligands empirically is too trivial to be automated, and usually gives rise to numerical instabilities, which set back the applications of FEP-ABFE. To address these issues, we derived the analytical expression for the probability distribution of energy differences, P(ΔU), during the process of restraint addition, which is called the RED-E (restraint energy distribution at equilibrium position) function. Simulations indicated that the RED-E function can accurately describe P(ΔU) when restraints are added at the equilibrium position. Based on the RED-E function, an automatic restraint selection method was proposed to select the best restraint. With this method, there is a high phase-space overlap between the free and restrained states, such that using a 2-λ perturbation can accurately calculate the free energy of the restraint addition, which is a nearly 6 times acceleration compared with current widely used 12-λ perturbation method. The RED-E function gives insight into the non-Gaussian behavior of the sampled P(ΔU) in certain FEP processes in an analytical way. The highly automated and accelerated restraint selection also makes it possible for the large-scale application of FEP-ABFE in real drug discovery practices.
Collapse
Affiliation(s)
- Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenchao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufen Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Liu J, Zhang X, Chen G, Shao Q, Zou Y, Li Z, Su H, Li M, Xu Y. Drug repurposing and structure-based discovery of new PDE4 and PDE5 inhibitors. Eur J Med Chem 2023; 262:115893. [PMID: 37918035 DOI: 10.1016/j.ejmech.2023.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Phosphodiesterase-4 (PDE4) and PDE5 responsible for the hydrolysis of intracellular cAMP and cGMP, respectively, are promising targets for therapeutic intervention in a wide variety of diseases. Here, we report the discovery of novel, drug-like PDE4 inhibitors by performing a high-throughput drug repurposing screening of 2560 approved drugs and drug candidates in clinical trial studies. It allowed us to identify eight potent PDE4 inhibitors with IC50 values ranging from 0.41 to 2.46 μM. Crystal structures of PDE4 in complex with four compounds, namely ethaverine hydrochloride (EH), benzbromarone (BBR), CX-4945, and CVT-313, were further solved to elucidate molecular mechanisms of action of these new inhibitors, providing a solid foundation for optimizing the inhibitors to improve their potency as well as selectivity. Unexpectedly, selectivity profiling of other PDE subfamilies followed by crystal structure determination revealed that CVT-313 was also a potent PDE5 inhibitor with a binding mode similar to that of tadalafil, a marketed PDE5 inhibitor, but distinctively different from the binding mode of CVT-313 with PDE4. Structure-guided modification of CVT-313 led to the discovery of a new inhibitor, compound 2, with significantly improved inhibitory activity as well as selectivity towards PDE5 over PDE4. Together, these results highlight the utility of the drug repurposing in combination with structure-based drug design in identifying novel inhibitors of PDE4 and PDE5, which provides a prime example for efficient discovery of drug-like hits towards a given target protein.
Collapse
Affiliation(s)
- Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xianglei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guofeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhewen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yechun Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
You M, Gao Z, Zhou L, Guo C, Guo Q. Investigation of the Vibrational Characteristics of 6-Isocyano-1-Methyl-1H-Indole: Utilizing the Isonitrile Group as an Infrared Probe. Molecules 2023; 28:6939. [PMID: 37836782 PMCID: PMC10574170 DOI: 10.3390/molecules28196939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Indole derivatives have garnered considerable attention in the realm of biochemistry due to their multifaceted properties. In this study, we undertake a systematic investigation of the vibrational characteristics of a model indole derivative, 6-isocyano-1-methyl-1H-indole (6ICMI), by employing a combination of FTIR, IR pump-probe spectroscopy, and theoretical calculations. Our findings demonstrate a strong dependence of the isonitrile stretching frequency of 6ICMI on the polarizability of protic solvents and the density of hydrogen-bond donor groups in the solvent when the isonitrile group is bonded to aromatic groups. Both experimental and theoretical analyses unveil a significant correlation between the isonitrile stretch vibration of 6ICMI and the solvent acceptor number of alcohols. Furthermore, the polarization-controlled infrared pump-probe conducted on 6ICMI in dimethyl sulfoxide provides additional support for the potential use of the isonitrile stretching mode of 6ICMI as an effective infrared probe for local environments.
Collapse
Affiliation(s)
- Min You
- School of Computer Science and Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - Zilin Gao
- School of Computer Science and Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China;
| | - Changyuan Guo
- Key Laboratory of Intelligent Air-Ground Cooperative Control for Universities in Chongqing, College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qiang Guo
- Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
19
|
Jin J, Mazzacuva F, Crocetti L, Giovannoni MP, Cilibrizzi A. PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes. Int J Mol Sci 2023; 24:11518. [PMID: 37511275 PMCID: PMC10380597 DOI: 10.3390/ijms241411518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders. In this context, the identification of new molecules as PDE4 inhibitors continues to be an active field of investigation within drug discovery. This review summarizes the medicinal chemistry journey in the design and development of effective PDE4 inhibitors, analyzed through chemical classes and taking into consideration structural aspects and binding properties, as well as inhibitory efficacy, PDE4 selectivity and the potential as therapeutic agents.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Letizia Crocetti
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Maria Paola Giovannoni
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
20
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
21
|
Xu H, Li S, Liu J, Cheng J, Kang L, Li W, Zhong Y, Wei C, Fu L, Qi J, Zhang Y, You M, Zhou Z, Zhang C, Su H, Yao S, Zhou Z, Shi Y, Deng R, Lv Q, Li F, Qi F, Chen J, Zhang S, Ma X, Xu Z, Li S, Xu Y, Peng K, Shi Y, Jiang H, Gao GF, Huang L. Bioactive compounds from Huashi Baidu decoction possess both antiviral and anti-inflammatory effects against COVID-19. Proc Natl Acad Sci U S A 2023; 120:e2301775120. [PMID: 37094153 PMCID: PMC10160982 DOI: 10.1073/pnas.2301775120] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/26/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.
Collapse
Affiliation(s)
- Haiyu Xu
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Shufen Li
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jinlong Cheng
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yute Zhong
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Chaofa Wei
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Lifeng Fu
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
| | - Jianxun Qi
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
| | - Yulan Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Miaomiao You
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Zhenxing Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Zhaoyin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Yulong Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Ran Deng
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Qi Lv
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Fengdi Li
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Key Laboratory of Comparative Medicine for Human Diseases of the National Health Commission, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100021, China
| | - Jie Chen
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing100700, China
| | - Siqin Zhang
- Institute for Traditional Chinese Medicine-X, Ministry of Education Key Laboratory of Bioinformatics/Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing100084, China
| | - Xiaojing Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Shao Li
- Institute for Traditional Chinese Medicine-X, Ministry of Education Key Laboratory of Bioinformatics/Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing100084, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan430207, China
| | - Yi Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - George F. Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China
- Beijing Life Science Academy, Beijing102209, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
22
|
Li G, He D, Cai X, Guan W, Zhang Y, Wu JQ, Yao H. Advances in the development of phosphodiesterase-4 inhibitors. Eur J Med Chem 2023; 250:115195. [PMID: 36809706 DOI: 10.1016/j.ejmech.2023.115195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 4 (PDE4) hydrolyzes cyclic adenosine monophosphate (cAMP) and plays a vital roles in many biological processes. PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases, including asthma, chronic obstructive pulmonary disease (COPD) and psoriasis. Many PDE4 inhibitors have progressed to clinical trials and some have been approved as therapeutic drugs. Although many PDE4 inhibitors have been approved to enter clinical trials, however, the development of PDE4 inhibitors for the treatment of COPD or psoriasis has been hampered by their side effects of emesis. Herein, this review summarizes advances in the development of PDE4 inhibitors over the last ten years, focusing on PDE4 sub-family selectivity, dual target drugs, and therapeutic potential. Hopefully, this review will contribute to the development of novel PDE4 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
23
|
Chiral phosphoric acid-catalyzed enantioselective phosphinylation of 3,4-dihydroisoquinolines with diarylphosphine oxides. Commun Chem 2023; 6:26. [PMID: 36759563 PMCID: PMC9911717 DOI: 10.1038/s42004-023-00826-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Chiral phosphorous-containing compounds are playing a more and more significant role in several different research fields. Here, we show a chiral phosphoric acid-catalyzed enantioselective phosphinylation of 3,4-dihydroisoquinolines with diarylphosphine oxides for the efficient and practical construction of a family of chiral α-amino diarylphosphine oxides with a diverse range of functional groups. The phosphine products are suitable for transforming to several kinds of chiral (thio)ureas, which might be employed as chiral ligands or catalysts with potential applications in asymmetric catalysis. Control and NMR tracking experiments show that the reaction proceeds via the tert-butyl 1-(tert-butoxy)-3,4-dihydroiso-quinoline-2(1H)-carboxylate intermediate, followed by C-P bond formation. Furthermore, computational studies elucidated that the hydrogen bonding strength between the phosphonate and isoquinolinium determines the stereoselectivity of the phosphinylation reaction.
Collapse
|
24
|
Chen Y, Zhou Q, Wang J, Xu Y, Wang Y, Yan J, Wang Y, Zhu Q, Zhao F, Li C, Chen CW, Cai X, Bathgate RAD, Shen C, Eric Xu H, Yang D, Liu H, Wang MW. Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4). Nat Commun 2023; 14:492. [PMID: 36717591 PMCID: PMC9886975 DOI: 10.1038/s41467-023-36182-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Members of the insulin superfamily regulate pleiotropic biological processes through two types of target-specific but structurally conserved peptides, insulin/insulin-like growth factors and relaxin/insulin-like peptides. The latter bind to the human relaxin family peptide receptors (RXFPs). Here, we report three cryo-electron microscopy structures of RXFP4-Gi protein complexes in the presence of the endogenous ligand insulin-like peptide 5 (INSL5) or one of the two small molecule agonists, compound 4 and DC591053. The B chain of INSL5 adopts a single α-helix that penetrates into the orthosteric pocket, while the A chain sits above the orthosteric pocket, revealing a peptide-binding mode previously unknown. Together with mutagenesis and functional analyses, the key determinants responsible for the peptidomimetic agonism and subtype selectivity were identified. Our findings not only provide insights into ligand recognition and subtype selectivity among class A G protein-coupled receptors, but also expand the knowledge of signaling mechanisms in the insulin superfamily.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Lingang Laboratory, Shanghai, 200031, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Youwei Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Wang
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Jiahui Yan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi Zhu
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Fenghui Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenghao Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Chun Shen
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China. .,Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
25
|
Wu Y, He L, Yang Y, Yan Z, Zhang Z, Yao X, Luo P. Influence of heat processing on the anti-inflammatory activity of fresh Smilax glabra based on PDE4 inhibition. Food Chem X 2022; 15:100425. [PMID: 36211720 PMCID: PMC9532784 DOI: 10.1016/j.fochx.2022.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Heat processing plays a key role in chemical profiles and health benefits of fresh SG. Fresh SG exhibits significant anti‐inflammatory effect based on PDE4 inhibition. The heat-labile quality and safety aspects of four astilbin isomers are compared.
Smilax glabra Roxb. (SG) is widely used as functional food with various beneficial effects. Fresh SG without processing has been eaten directly for anti-inflammation from ancient China, while the underlying mechanism remains underexplored. This study aims to investigate the anti-inflammatory activity of fresh SG by using metabolites profiles, affinity ultrafiltration mass spectrometry, PDE4 enzyme inhibition assay, and in silico analysis. Encouragingly, fresh SG showed promising anti-inflammatory effect with IC50 value (0.009 μg/μL) on PDE4 was about 12 times higher than that of processed SG (0.110 μg/μL). Astilbin was identified as the main bioactive compound of fresh SG responsible for PDE4 inhibitory activity. We found that heat processing strongly affected astilbin isomerization, leading to significant changes in contents and PDE4 inhibitory activities of four astilbin isomers, resulting in decreased anti-inflammatory activity of fresh SG. This finding will provide theoretical basis for systematic research and food/nutraceutical applications of fresh Smilax glabra in the future.
Collapse
Affiliation(s)
- Youjiao Wu
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
| | - Lili He
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi Province, China
| | - Yi Yang
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
| | - Zhigang Yan
- National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi Province, China
| | - Zhifeng Zhang
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, Sichuan Province, China
| | - Xiaojun Yao
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
- Corresponding author.
| |
Collapse
|
26
|
Chen Y, Chen X, Liang S, Ou Y, Lin G, Hua L, Wu X, Zhou Y, Liu Z, Cai H, Yang Z, Hu W, Sun P. Chlorquinaldol inhibits the activation of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 inflammasome and ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Chem Biol Interact 2022; 365:110122. [PMID: 36002070 DOI: 10.1016/j.cbi.2022.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Psoriasis is a common chronic autoinflammatory/autoimmune skin disease associated with elevated pro-inflammatory cytokines. The pivotal role of interleukin (IL)-1β and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome in the pathogenesis of psoriasis has been widely described. Accordingly, the suppression of NLRP3-dependent IL-1β release is a potential therapy for psoriasis. Repurposing marketed drugs is a strategy for identifying new inhibitors of NLRP3 inflammasome activation. Herein, chlorquinaldol (CQD), a historic antimicrobial agent used as a topical treatment for skin and vaginal infections, was found to have a distinct effect by inhibiting NLRP3 inflammasome activation at concentrations ranging from 2 to 6 μM. CQD significantly suppressed apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) oligomerization, NLRP3-ASC interaction, and pyroptosis in macrophages. The levels of cleaved IL-1β and caspase-1 were reduced by CQD in the cell lysates of macrophages, suggesting that CQD acted on upstream of pore formation in the cell membrane. Mechanistically, CQD reduced mitochondrial reactive oxygen species production but did not affect the nuclear factor-κB (NF-κB) pathway. Intraperitoneal administration of CQD (15 mg/kg) for 6 days was found to improve the skin lesions in the imiquimod-induced psoriatic mouse model (male C57BL/6 mice), while secretion of pro-inflammatory cytokines (IL-17 and IL-1β) and keratinocyte proliferation were significantly suppressed by CQD. In conclusion, CQD exerted inhibitory effects on NLRP3 inflammasome activation in macrophages and decreased the severity of psoriatic response in vivo. Such findings indicate that the repurposing of the old drug, CQD, is a potential pharmacological approach for the treatment of psoriasis and other NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yanhong Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiuhui Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shuli Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yitao Ou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Geng Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lei Hua
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinyi Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yinghua Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhuorong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haowei Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhongjin Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Wenhui Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Ping Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
27
|
Zhou F, Huang Y, Liu L, Song Z, Hou KQ, Yang Y, Luo HB, Huang YY, Xiong XF. Structure-based optimization of Toddacoumalone as highly potent and selective PDE4 inhibitors with anti-inflammatory effects. Biochem Pharmacol 2022; 202:115123. [PMID: 35688178 DOI: 10.1016/j.bcp.2022.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Phosphodiesterase-4 (PDE4) is an important drug target for inflammatory diseases. Previously, we identified a series of novel PDE4 inhibitors derived from the natural Toddacoumalone, among which the hit compound 2 with a naphthyridine scaffold showed moderate potency with the IC50 value of 400 nM. Based on the co-crystal structure of PDE4D-2, further structural optimizations and structure-activity relationship studies led to a highly potent PDE4 inhibitor 23a with the IC50 value of 0.25 nM and excellent selectivity profiles over other PDEs (>4000-fold). The co-crystal structure of PDE4D-23a elucidated that 23a has strong interactions with the M and Q pocket of PDE4D. Importantly, compound 23a significantly inhibits the release of inflammatory cytokines TNF-α and IL-6 in lipopolysaccharide-stimulated RAW264.7 cells. Thus, compound 23a with a naphthyridine scaffold is a promising PDE4 inhibitor for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Feng Zhou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Yue Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Lu Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Zhendong Song
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Ke-Qiang Hou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Yifan Yang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Hai-Bin Luo
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, PR China
| | - Yi-You Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, PR China.
| | - Xiao-Feng Xiong
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China.
| |
Collapse
|
28
|
Wang D, Chen X, Guo X, Zhu X, Liu X. Convenient synthesis of 8‐aryl‐6‐aryl‐1,2,3,4‐tetrahydroisoquinoline‐5,7‐dicarbonitriles via a cascade Michael/cyclization reaction. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dao‐Cai Wang
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xi‐Xia Chen
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xiao‐Qian Guo
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xi‐Qiang Zhu
- School of Biological Science and Technology Hubei Minzu University Enshi China
| | - Xiao‐Peng Liu
- School of Biological Science and Technology Hubei Minzu University Enshi China
| |
Collapse
|
29
|
Song Z, Huang YY, Hou KQ, Liu L, Zhou F, Huang Y, Wan G, Luo HB, Xiong XF. Discovery and Structural Optimization of Toddacoumalone Derivatives as Novel PDE4 Inhibitors for the Topical Treatment of Psoriasis. J Med Chem 2022; 65:4238-4254. [PMID: 35188767 DOI: 10.1021/acs.jmedchem.1c02058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psoriasis is a common immune-mediated skin disorder manifesting in abnormal skin plaques, and phosphodiesterase 4 (PDE4) is an effective target for the treatment of inflammatory diseases such as psoriasis. Toddacoumalone is a natural PDE4 inhibitor with moderate potency and imperfect drug-like properties. To discover novel and potent PDE4 inhibitors with considerable druggability, a series of toddacoumalone derivatives were designed and synthesized, leading to the compound (2R,4S)-6-ethyl-2-(2-hydroxyethyl)-2,8-dimethyl-4-(2-methylprop-1-en-1-yl)-2,3,4,6-tetrahydro-5H-pyrano[3,2-c][1,8]naphthyridin-5-one (33a) with high inhibitory potency (IC50 = 3.1 nM), satisfactory selectivity, favorable skin permeability, and a well-characterized binding mechanism. Encouragingly, topical administration of 33a exhibited remarkable therapeutic effects in an imiquimod-induced psoriasis mouse model.
Collapse
Affiliation(s)
- Zhendong Song
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China
| | - Yi-You Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, P. R. China
| | - Ke-Qiang Hou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China
| | - Lu Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China
| | - Feng Zhou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China
| | - Yue Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China
| | - Hai-Bin Luo
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, P. R. China
| | - Xiao-Feng Xiong
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, P. R. China
| |
Collapse
|
30
|
Lu QK, Fan C, Xiang CG, Wu B, Lu HM, Feng CL, Yang XQ, Li H, Tang W. Inhibition of PDE4 by apremilast attenuates skin fibrosis through directly suppressing activation of M1 and T cells. Acta Pharmacol Sin 2022; 43:376-386. [PMID: 33850274 PMCID: PMC8791980 DOI: 10.1038/s41401-021-00656-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/14/2021] [Indexed: 02/03/2023]
Abstract
Systemic sclerosis (SSc) is a life-threatening chronic connective tissue disease with the characteristics of skin fibrosis, vascular injury, and inflammatory infiltrations. Though inhibition of phosphodiesterase 4 (PDE4) has been turned out to be an effective strategy in suppressing inflammation through promoting the accumulation of intracellular cyclic adenosine monophosphate (cAMP), little is known about the functional modes of inhibiting PDE4 by apremilast on the process of SSc. The present research aimed to investigate the therapeutic effects and underlying mechanism of apremilast on SSc. Herein, we found that apremilast could markedly ameliorate the pathological manifestations of SSc, including skin dermal thickness, deposition of collagens, and increased expression of α-SMA. Further study demonstrated that apremilast suppressed the recruitment and activation of macrophages and T cells, along with the secretion of inflammatory cytokines, which accounted for the effects of apremilast on modulating the pro-fibrotic processes. Interestingly, apremilast could dose-dependently inhibit the activation of M1 and T cells in vitro through promoting the phosphorylation of CREB. In summary, our research suggested that inhibiting PDE4 by apremilast might provide a novel therapeutic option for clinical treatment of SSc patients.
Collapse
Affiliation(s)
- Qiu-kai Lu
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chen Fan
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Cai-gui Xiang
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Wu
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hui-min Lu
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chun-lan Feng
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiao-qian Yang
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Heng Li
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Wei Tang
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
31
|
Berberine and its derivatives represent as the promising therapeutic agents for inflammatory disorders. Pharmacol Rep 2022; 74:297-309. [PMID: 35083737 DOI: 10.1007/s43440-021-00348-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Berberine, with the skeleton of quaternary ammonium, has been considered as the well-defined natural product in treating multiple diseases, including inflammation, acute and chronic infection, autoimmune diseases, and diabetes. However, due to the low bioavailability and systemic exposure, broad clinical applications of berberine have been largely impeded. Numerous studies have been conducted to further explore the therapeutic capacities of berberine in preclinical and clinical trials. Over the past, berberine and its derivatives have been shown to possess numerous pharmacological activities, as evidenced in intestinal, pulmonary, skin, and bone inflammatory disorders. In the present review, the pharmacological impact of berberine on inflammatory diseases are fully discussed, with indication that berberine and its potential derivatives represent promising natural therapeutic agents with anti-inflammatory properties.
Collapse
|
32
|
Liu Z, Liu M, Cao Z, Qiu P, Song G. Phosphodiesterase‑4 inhibitors: a review of current developments (2013-2021). Expert Opin Ther Pat 2022; 32:261-278. [PMID: 34986723 DOI: 10.1080/13543776.2022.2026328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterase 4 (PDE4) is responsible for the hydrolysis of cAMP, which has become an attractive therapeutic target for lung, skin, and severe neurological diseases. Here, we review the current status of development of PDE4 inhibitors since 2013 and discuss the applicability of novel medicinal-chemistry strategies for identifying more efficient and safer inhibitors. AREAS COVERED This review summarizes the clinical development of PDE4 inhibitors from 2013 to 2021, focused on their pharmacophores, the strategies to reduce the side effects of PDE4 inhibitors and the development of subfamily selective PDE4 inhibitors. EXPERT OPINION To date, great efforts have been made in the development of PDE4 inhibitors, and researchers have established a comprehensive preclinical database and collected some promising data from clinical trials. Although four small-molecule PDE4 inhibitors have been approved by FDA for the treatment of human diseases up to now, further development of other reported PDE4 inhibitors with strong potency has been hampered due to the occurrence of severe side effects. There are currently three main strategies for overcoming the dose limitation and systemic side effects, which provide new opportunities for the clinical development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Gao Z, Guo Y. Enantioselective Phosphonation of Isoquinolines via Chiral Phosphoric Acid-Catalyzed Dearomatization. Chem Commun (Camb) 2022; 58:9393-9396. [DOI: 10.1039/d2cc02811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and enantioselective phosphonation protocol for construction of chiral α-aminophosphates and α-aminodiarylphosphine oxides has been developed based on chiral phosphoric acid-catalyzed dearomatization of isoquinolines. A series of chiral 1,2-dihydroisoquinolines...
Collapse
|
34
|
Li H, Zhang Y, Liu M, Fan C, Feng C, Lu Q, Xiang C, Lu H, Yang X, Wu B, Zou D, Tang W. Targeting PDE4 as a promising therapeutic strategy in chronic ulcerative colitis through modulating mucosal homeostasis. Acta Pharm Sin B 2022; 12:228-245. [PMID: 35127382 PMCID: PMC8799862 DOI: 10.1016/j.apsb.2021.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphodiesterase-4 (PDE4) functions as a catalyzing enzyme targeting hydrolyzation of intracellular cyclic adenosine monophosphate (cAMP) and inhibition of PDE4 has been proven to be a competitive strategy for dermatological and pulmonary inflammation. However, the pathological role of PDE4 and the therapeutic feasibility of PDE4 inhibitors in chronic ulcerative colitis (UC) are less clearly understood. This study introduced apremilast, a breakthrough in discovery of PDE4 inhibitors, to explore the therapeutic capacity in dextran sulfate sodium (DSS)-induced experimental murine chronic UC. In the inflamed tissues, overexpression of PDE4 isoforms and defective cAMP-mediating pathway were firstly identified in chronic UC patients. Therapeutically, inhibition of PDE4 by apremilast modulated cAMP-predominant protein kinase A (PKA)–cAMP-response element binding protein (CREB) signaling and ameliorated the clinical symptoms of chronic UC, as evidenced by improvements on mucosal ulcerations, tissue fibrosis, and inflammatory infiltrations. Consequently, apremilast maintained a normal intestinal physical and chemical barrier function and rebuilt the mucosal homeostasis by interfering with the cross-talk between human epithelial cells and immune cells. Furthermore, we found that apremilast could remap the landscape of gut microbiota and exert regulatory effects on antimicrobial responses and the function of mucus in the gut microenvironment. Taken together, the present study revealed that intervene of PDE4 provided an infusive therapeutic strategy for patients with chronic and relapsing UC.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiukai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors.
| |
Collapse
|
35
|
Identification of phosphodiesterase-4 as the therapeutic target of arctigenin in alleviating psoriatic skin inflammation. J Adv Res 2021; 33:241-251. [PMID: 34603793 PMCID: PMC8463927 DOI: 10.1016/j.jare.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 02/18/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Arctigenin, derived from Arctium lappa L., has multiple pharmacological activities, including immunoregulatory, anti-diabetic, anti-tumor, and neuroprotective effects. Nevertheless, the potential therapeutic target of arctigenin in modulating inflammation remains undefined. Objectives In the present study, we identified that arctigenin was a phosphodiesterase-4 (PDE4) selective inhibitor for the first time. Further investigations were performed to fully uncover the effects and mechanism of arctigenin on experimental murine psoriasis model. Methods Crystal structure determination, PDEs enzyme assay, and isothermal titration calorimetry were included to illustrate the binding specialty, inhibitory effects, and selectivity of arctigenin on PDE4D. The anti-inflammatory effects were conducted in LPS-activated human peripheral blood mononuclear cells (PBMCs) and RAW264.7 cells. Imiquimod-induced murine psoriasis was performed to uncover the therapeutic effects and mechanism of arctigenin in vivo. Results Arctigenin could bind to the catalytic domain of PDE4D via formation of hydrogen bonds as well as π-π stacking interactions between the dibenzyl butyrolactone of arctigenin and several residues of PDE4D. Accordingly, arctigenin showed prominent anti-inflammation in human PBMCs and murine RAW264.7 cells. PDE4 inhibition by arctigenin resulted in elevation of intracellular cyclic adenosine monophosphate (cAMP) and phosphorylation of cAMP-response element binding protein (CREB), which were largely blocked through intervention of protein kinase A (PKA) activity by H89 treatment or reduction of protein expression by siRNA transfection. Moreover, we first identified that a topical application of arctigenin ameliorated experimental psoriatic manifestations in imiquimod-induced murine psoriasis model by decreasing adhesion and chemotaxis of several inflammatory cells. Further proteomics analysis revealed that arctigenin could rectify the immune dysfunction and hyperactivation of keratinocytes in the inflamed skin microenvironments, which might be largely related to the expression of Keratins. Conclusion The research provided credible clew that inhibition of PDE4 by arctigenin might function as the potential therapeutic approach for the treatment of psoriasis.
Collapse
|
36
|
Zhang C, Li H, Liu J, Liu M, Zhang H, Chen KX, Guo YW, Tang W, Li XW. Diversity-oriented synthesis of cembranoid derivatives as potential anti-inflammatory agents. Bioorg Chem 2021; 111:104887. [PMID: 33865055 DOI: 10.1016/j.bioorg.2021.104887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Eleven novel cembranoid derivatives were designed, synthesized, and evaluated for their inflammation related activities on the basis of our isolated and previously reported anti-inflammatory marine cembranoids. In bioassay, compound 11 displayed the most promising inhibitory effects with IC50 value of 1.1 μM for the TNF-α inhibitory activity. The further mechanism study of 11 on the inflammatory signaling transduction of RAW264.7 cells was also performed. This research may give an insight for the discovery of marine cembranoid derived anti-inflammatory drug leads.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China.
| |
Collapse
|
37
|
Lu Y, Xiao Y, Yin MZ, Zhou XC, Wu LS, Chen WQ, Luo Y, Kuang YH, Zhu W. Polyethylene Glycol Ointment Alleviates Psoriasis-Like Inflammation Through Down-Regulating the Function of Th17 Cells and MDSCs. Front Med (Lausanne) 2021; 7:560579. [PMID: 33834028 PMCID: PMC8022287 DOI: 10.3389/fmed.2020.560579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: To explore the possible mechanism of improving the imiquimod (IMQ)-induced psoriasis-like inflammation by using polyethylene glycol (PEG) ointment. Methods: We evaluated the appearance of psoriasis lesions by Psoriasis Area and Severity Index (PASI), observed the epidermal proliferation by histopathological staining and immunohistochemical staining, and explored the key molecules and signaling pathways of improving psoriasis-like inflammation treated with PEG ointment by RNA sequencing. Finally, we verified the expression of inflammatory cells and inflammatory factors by flow cytometry, immunohistochemical staining, and Q-PCR. Results: PEG ointment could improve the appearance of psoriasis lesions and the epidermis thickness of psoriasis mouse, inhibit the proliferation of keratinocytes, and down-regulate the relative mRNA levels of IL-23, IL-22, IL-6, IL-17C, IL-17F, S100A7, S100A8, S100A9, CXCL1, CXCL2, and IL-1β in the skin lesions of psoriasis mouse by down-regulating the numbers of myeloid-derived suppressor cells (MDSCs) and T helper 17 (Th17) cells. Conclusion: PEG ointment could improve the IMQ-induced psoriasis-like inflammation by down-regulating the functions of Th17 cells and MDSCs.
Collapse
Affiliation(s)
- Yan Lu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Zhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Xing-Chen Zhou
- Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Sha Wu
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Science, Xiangya Hospital, Central South University, Changsha, China
| | - Wang-Qing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Ye-Hong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Zhang R, Li H, Zhang X, Li J, Su H, Lu Q, Dong G, Dou H, Fan C, Gu Z, Mu Q, Tang W, Xu Y, Liu H. Design, synthesis, and biological evaluation of tetrahydroisoquinolines derivatives as novel, selective PDE4 inhibitors for antipsoriasis treatment. Eur J Med Chem 2020; 211:113004. [PMID: 33218684 DOI: 10.1016/j.ejmech.2020.113004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
Psoriasis is a kind of chronic inflammatory skin disorder, while the long-term use of conventional therapies for this disease are limited by severe adverse effects. Novel small molecules associated with new therapeutic mechanisms are greatly needed. It is known that phosphodiesterase 4 (PDE4) plays a central role in regulating inflammatory responses through hydrolyzing intracellular cyclic adenosine monophosphate (cAMP), making PDE4 to be an important target for the treatment of inflammatory diseases (e.g. psoriasis). In our previous work, we identified a series of novel PDE4 inhibitors with a tetrahydroisoquinoline scaffold through structure-based drug design, among which compound 1 showed moderate inhibition activity against PDE4. In this study, a series of novel tetrahydroisoquinoline derivatives were developed based on the crystal structure of PDE4D in complex with compound 1. Anti-inflammatory effects of these compounds were evaluated, and compound 36, with high safety, permeability and selectivity, exhibited significant inhibitory potency against the enzymatic activity of PDE4D and the TNF-α release from the LPS-stimulated RAW 264.7 and hPBMCs. Moreover, an in vivo study demonstrated that a topical administration of 36 achieved more significant efficacy than calcipotriol to improve the features of psoriasis-like skin inflammation. Overall, our study provides a basis for further development of tetrahydroisoquinoline-based PDE4 inhibitors against psoriasis.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Heng Li
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Xianglei Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Jian Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Haixia Su
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Qiukai Lu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Guangyu Dong
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Huixia Dou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Zhanni Gu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Qianwen Mu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Wei Tang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Yechun Xu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
39
|
Almuqrin AH, Al-Otaibi JS, Mary YS, Mary YS, Thomas R. Structural study of letrozole and metronidazole and formation of self-assembly with graphene and fullerene with the enhancement of physical, chemical and biological activities. J Biomol Struct Dyn 2020; 39:5509-5515. [PMID: 32657232 DOI: 10.1080/07391102.2020.1790420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Letrozole and metronidazole are two commonly used drugs for the management of breast cancer and parasitic infections, respectively. This manuscript attempts to study their structure, geometry, search for stable conformers using relaxed potential energy scan, spectral properties, quantum mechanical properties like energy and reactivity descriptors, intra molecular electron transfer properties, non-linear properties etc using various computational tools. It is found that these compounds will form a self-assembly with graphene sheets and fullerenes and exhibit a surface-enhanced Raman spectra and enhancement in non-linear optical properties when compared to the single molecule. The electronic absorption behavior of the compounds was studied using TD-DFT method. Global chemical reactivity descriptors and activity sites toward electrophilic and nucleophilic attack have been discussed. Studies of intra molecular electron transfer gave information about the relative stability of the compounds. Molecular docking studies indicate that the pure compounds and their self-assemblies with graphene have excellent biological activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aljawhara H Almuqrin
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Jamelah S Al-Otaibi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Y Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Y Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Changanacherry, Kerala, India
| |
Collapse
|
40
|
DC591017, a phosphodiesterase-4 (PDE4) inhibitor with robust anti-inflammation through regulating PKA-CREB signaling. Biochem Pharmacol 2020; 177:113958. [DOI: 10.1016/j.bcp.2020.113958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/01/2020] [Indexed: 01/24/2023]
|
41
|
Fu Y, Ding X, Zhang X, Shao X, Zhao J, Xu Y, Luo X, Zhao W. Diterpenoids from the Root Bark of Pinus massoniana and Evaluation of Their Phosphodiesterase Type 4D Inhibitory Activity. JOURNAL OF NATURAL PRODUCTS 2020; 83:1229-1237. [PMID: 32100544 DOI: 10.1021/acs.jnatprod.9b01269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thirty-two diterpenoids were obtained from the root bark of Pinus massoniana, and, among them, five compounds (pinmassins A-E) were identified as undescribed analogues. Spectroscopic methods, X-ray single-crystal diffraction analysis, and ECD calculations were applied to establish the structure of the new isolates. Pinmassin D (4) and abieta-8,11,13,15-tetraen-18-oic acid (23) showed moderate phosphodiesterase type 4D (PDE4D) inhibitory effects with IC50 values of 2.8 ± 0.18 and 3.3 ± 0.50 μM, respectively, and their binding modes were investigated by a molecular docking study.
Collapse
Affiliation(s)
- Yifan Fu
- Department of Natural Products Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoyu Ding
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xianglei Zhang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xingcheng Shao
- Department of Natural Products Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jihui Zhao
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yechun Xu
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xiaomin Luo
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Weimin Zhao
- Department of Natural Products Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
42
|
Liu Z, Du J, Fang J, Yin Y, Xu G, Xie L. DeepScreening: a deep learning-based screening web server for accelerating drug discovery. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5585580. [PMID: 31608949 PMCID: PMC6790966 DOI: 10.1093/database/baz104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
Deep learning contributes significantly to researches in biological sciences and drug discovery. Previous studies suggested that deep learning techniques have shown superior performance to other machine learning algorithms in virtual screening, which is a critical step to accelerate the drug discovery. However, the application of deep learning techniques in drug discovery and chemical biology are hindered due to the data availability, data further processing and lacking of the user-friendly deep learning tools and interface. Therefore, we developed a user-friendly web server with integration of the state of art deep learning algorithm, which utilizes either the public or user-provided dataset to help biologists or chemists perform virtual screening either the chemical probes or drugs for a specific target of interest. With DeepScreening, user could conveniently construct a deep learning model and generate the target-focused de novo libraries. The constructed classification and regression models could be subsequently used for virtual screening against the generated de novo libraries, or diverse chemical libraries in stock. From deep models training to virtual screening, and target focused de novo library generation, all those tasks could be finished with DeepScreening. We believe this deep learning-based web server will benefit to both biologists and chemists for probes or drugs discovery.
Collapse
Affiliation(s)
- Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiewen Du
- Division of Algorithm, Beijing Jingpai Technology Co., Ltd. 1500-1, Hailong Building Z-Park, Beijing 100090, China
| | - Jiansong Fang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9620 Carnegie Ave n building, Cleveland, OH 44106, USA
| | - Yulong Yin
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China.,Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, China
| |
Collapse
|
43
|
Hu Y, Shen Y, Huang L, Van der Eycken EV, Feng H. Metal-Free Decarboxylative A3
-Coupling/Pictet-Spengler Cascade Accessing Polycyclic Scaffolds: Propiolic Acids Exceed Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yingxin Hu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Yangpeng Shen
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC); Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry; Peoples' Friendship University of Russia (RUDN University); 6 Miklukho-Maklaya Street 117198 Moscow Russia
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
44
|
Kou X, Zhao Q, Guan ZH. Copper-catalyzed asymmetric dearomative alkynylation of isoquinolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00041h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cu/(Ph-pybox)-catalyzed asymmetric dearomative alkynylation of isoquinolines has been developed, with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Xun Kou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Qingyang Zhao
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen
- P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|